
Commun. Math. Phys. 134, 633-646 (1990) Communications ΪΠ

Mathematical
Physics

© Springer-Verlag 1990

A Generalization of the Kac-Moody Algebras
with a Parameter on an Algebraic Curve
and Perturbations of Solitons

V. G. Mikhalev

Department of Computer Sciences, Vladimir State Teachers Institute, Prospect Stroiteley II,
SU-600024 Vladimir, USSR

Received April 10, 1990

Abstract. The Lie-algebraic approach for the dynamic systems associated with a
generalization of the Kac-Moody algebras on Riemann surfaces is developed. A
technique of solving the inverse scattering problem of operators with spectral
parameters on Riemann surfaces is presented. Some equations associated with
generalized Kac-Moody algebras are presented. The connection between their
hamiltonian structure and deformed Lax representation is discussed as well as its
applications to some special perturbations of integrable systems.

1. Introduction

The Lie-algebraic approach to the theory of completely integrable nonlinear
equations makes it possible to connect a classical r-matrix formalism, represen-
tations of zero curvature and Poisson brackets of the coefficients of transition
matrices. Kostant [1] was the first who proposed the method of construction of
integrable systems by dividing a Lie algebra to a direct sum of two subalgebras
© = © + 0(5_. Then in works of the Leningrad-school researchers (see [2] and
reference in it) this method was adapted to a wide class of the Lie algebras
including infinite dimensional ones. Almost all known nonlinear equations
admitting the Lax representation were plunged into this approach.

In this paper the same approach is developed for some Lie algebras dividing as

where ©± are subalgebras. (50 is a finite dimensional subspace. They are used in
consideration of the operator bundles parametrized by point on an algebraic curve
of genus g>0. For a class of such operators the Gelfand-Lefitan-Marchenko
approach to the solution of the inverse scattering problem was developed in [3]. In
Sect. 3 its modified version will be given without proofs. As it follows from [4], the
algebra of those operators inevitably includes ©0. It will be seen that most aspects
of the Lie-algebraic approach require generalizations.
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Instead of classical r-matrix constructed by the operator

&=&+-&.,
one must consider two operators

ί?-lp IP f _ P
A — 2*+~ 2* -9 L — tQi

where P±, P0 are projectors on ©±, ©0. The operators .R and L satisfy a system of
equations generalizing the modified classical Yang-Baxter equation [5].

The nonlinear equations associated with such algebras are not completely
integrable ones. They admit a representation more general than the Lax one.

The Poisson brackets of the transition matrix coefficients can be calculated by
the corresponding generalization of the classical r-matrix.

In conclusion I shall put some words about applications of constructions
mentioned below to those perturbations of integrable systems which result not
only in small deformations of invariant tori but also in their bifurcations.

2. Generalization of the Lie- Algebraic Approach in the Case
of Operators Bundle with a Parameter on an Algebraic Curve of Genus g >0

Suppose that the Lie algebra © as a linear space may be broken up

© = © + φ©oθ©-,

where ©0 is a finite dimensional subspace. Let us consider at the same time an
ordinary commutator in © and also a new one

= [*& η] + K, Λj] -

£=IP+-IP_, L = P0

The commutator (1) also defines the Poisson-Kirillov bracket

(2)

/. Derivation of the Equations Generalizing the Yang-Baxter Ones

Write down the Jacoby identity for (1). After manipulations we obtain

K, fo, v]0]o + c c. = [(1 - L)ξ, B(η, v)] + [(1 - L)η, B(v, £)] + [(1 - L)v, B(ξ,

ξ, C(η, v)] + tfη, C(v, ξj] + [£v, C(ξ, ηj] ,

Theorem 1. (1) and (2) admit the Jacoby identity, if R and L satisfy the following
system of equations generalizing the modified classical Yang-Baxter equation
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Consequence. (1) and (2) admit the Jacoby identity if ©+ are subalgebras.

The proof may be performed by the direct computation.

2. The Generalization of the Kac-Moody Algebras
to the Riemann Surfaces of Genus g>0

In this subsection necessary for future information from [4] is presented.
Let Γ be a nonspecific algebraic curve of genus g with two groups of fixed

points P*. si denotes the space of meromorphic functions with poles lying only at
P f . It has a natural ring structure. Its additive basis was constructed in [4]. The
dual space si* is formed by 1 -forms. A coupling given by integration along a
contour C from the set was suggested in [4]. The dual basis is generated by forms
ωt such that

c

A 1-form ω0 makes a bilinear mapping si® j/

Any operator £eEndj/ is defined by the kernel R(λ,μ) which is 1-form with
respect to μ and 0-form with respect to λ, so that

RA(λ)= f R(λ,μ)A(μ).

The algebra si can be divided

, (3)

where si+9 si- are subalgebras of functions which poles are only at Pf

+, Pf
correspondingly; j/0 is a finite dimensional addition of j^+φj/_ to the algebra.

Example. Let us consider the algebraic curve of genus 1 defined in C3 by the
relations „ „

2 1 2 2
W l = ~ϊF' W2= ~W

The ring «s/ consist of meromorphic functions with poles only at 8 points λ = oo
and Λ, = 0. The basis in si is generated by elements of view

The dual space is determined in regard to coupling defined by integration along
the contour C = {|λ| = l}, oriented anticlockwise. The dual basis is generated by
1 -forms

0— o ' 1 — o ' 2 — •8πι δπiωj 8πιw2

The algebra si includes two subalgebras
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and an addition J3/0 = {/!?}. It is necessary for applications to the theory of
nonlinear equations to extend s/0 for account of s/+ and si,. In particular I'll
consider a case with

a* — ί j O A\ 42 A3 Λ3\
<&0 — 1^0? Λ0> Λ0> Λ0> Λl] '

A unity operator in si is determined by the kernel

* rf ι\ Λ . W i . w2 . ftιW2Vs,00C(X,X)= 1 + h — -I- -δ(λ-
\ W i w2

and projectors P0, P+ by

-f
W2

w2 w1w2

(4)

The multiplicative structure of si results in our being able to determine for any
semi-simple matrix algebra an algebra

which is a generalization of the Kac-Moody one to the case of arbitrary Riemann
surfaces of genus g > 0. That algebra consists of matrices, which elements belong to
the ring si. The dual space consists of matrices, which elements are /-forms.
Bilinear coupling is defined by the expression

Let <§ = C00(S1,(5) denote an algebra of periodic infinite differentiable with
respect to x functions taking values in ©. Let us construct its central extension (§Λ

by the generalization of the Maurer-Cartan cocycle

3. Hamiltonian Structure of (<BΛ)*

The decomposition (3) induces the following one:

where <§± are subalgebras too. Therefore, in accordance with the consequence of
Theorem 1, the commutator (1) and the bracket (2) also admit the Jacoby identity.
The bracket (2) can be rewritten in the form

{V(x,λ)®V(y,μ)}Z

= δ(x - y)R(λ, μ) [Π, U(x, λ)® 1] - R(μ, λ) [77, 1 ® U(x, μ)])

+ δ'(x-y)Π(R(λ,μ)ω()(λ)+R(μ,λ)ω0(μ))

x ([77, U(x, v)® l]<5(x -y) + Πω0(v)δ'(x - y)) ,
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where Π = σi<S)σi, σt - form an orthonormal basis in (5, l/(x, λ) e (S )̂*, R(λ,μ\
L(λ, μ) are kernels of operators jR and L.

In applications (6) should be reduced to an invariant finite-dimensional
submanifold. The reduction may be done by choice of appropriate ©0 and ω0

because the width of © grading is limited.
I shall imply below that U(x,λ) belongs to such an invariant submanifold

Me((§Λ)* Let me introduce a fundamental solution T(x,y,λ),

ω0(λ)Tx(x, y, λ) = U(x, λ)T(x, y, λ) , T(y, y,λ) = l,

and a transition matrix Γ(2π, 0, λ).
As in the polynomial bundle case the following theorem is proved by direct

computation

Theorem 2. The invariants of coadjoint action have the form

so as

It should be noted that because of ©0 the invariants of coadjoint action shall
not be commuted with respect to (2). Using (6) and Theorem 2 the bracket

{l7(x,λ),F}0

A, F = f SpT"(2π,0,μ)ω(μ)
cμ

can be presented in the form

{ I7(χ, λ\ F}0

A = (1 - £*) TOx, λ\ I7(x, A)] + Flx(x, A)ω0(A))

), (7)

Vfa λ) = n dimM P+ — -̂ T(x, 0, λ)T»- 1(2π, 0, A)T(2π, x, A) ,
\ω0(/l)

V2(x, λ) = n- dimMat P0 7 ΆX, 0, λ}Tn~ \2π, 0, l)T(2π, x, λ) .
\ω0(λ) )

Here the star denotes an adjoint operator defined by the same kernel. The relation
(7) is a generalized Lax representation. This statement is in agreement with the result
of [8] that in the general case there are no ordinary Lax representations
parametrized by point on an algebraic curve of genus g > 0. 1 shall restrict myself by
the case when, after a specific choice of the Riemann surface, (7) can be written in the
form

(7)

with some B, where ε is a small variable.
If C7(x, ί, λ) evolved due to the equation

the dynamic of the transition matrix is determined, taking into account (7'), by the
following equation:

7χ2π, 0, ί, λ) = A(2π, λ, ί)T(2π, 0, ί, λ) - T(2π, 0, ί, λ)A(Q, λ, t)
2π

+ ε J Γ(2π, x, ί, λ)B(x, ί, λ) T(x, 0, ί, λ)dx . (8)
o
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Let me present the result of the calculations of Poisson brackets of transition
matrix coefficients

(T(λ)® T(μ)Y0 = (/(A, μ), T(λ)® T(μ)-] + , (9)

where

and the form Ω(λ, μ) is determined by the relation

Ω(λ, μ) = I dx $ (R(v, λ)L(v, μ) + R(v, μ)L(v, λ))

x (Γ(2π, x, λ)® Γ(2π, x, μ) [77, 1 ® t/(x, v)] Γ(x, 0, λ)® Γ(x, 0, μ)

+ T(2π, x, λ)® Γx(2π, x, μ)77Γ(x, 0, A)® Γ(x, 0, μ)ω0(v)

+ T(2π, x, A)® Γ(2π, x, μ)77T(x, 0, λ)® Tx(x, 0, μ)ω0(v)) .

3. The Investigation of Operators with a Parameter
on an Algebraic Curve by Inverse Scattering Transform

Let us consider an operator L of the form

U = iσ3λ+ Σ Σ Σ ΨuAxflatσi,
i = l J=Q fc=o

where σt are the Pauly matrices, λ and ω are connected by an algebraic relation of
view

ωw= Σ PλW, (11)
e=\

PjW = Σ P™λm are polynomials of λ which highest power ^ M, φijk(x) are infinite
m

differentiable functions of x.
Equation (11) gives an algebraic curve Γ which may be seen as n-sheets

covering over /ί-plane. The monomials λjωk, Q^k^n — i form a basis in stf - the
space of meromorphic functions having poles lying only at 2n points P f :
p.+ = 1/1=00}, Pί~ = {A = 0}. The elements λjωkσt form a basis in the algebra
s/(2, .a/) which is the analog of the Kac-Moody algebra with a parameter on an
algebraic curve. Thus, U e s/(2, j/, R) is the algebra of infinite differentiable
functions taking their values in s/(2, ««/).

We can introduce a general grading in .a/ through the powers of A,

.
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the width of grading q is finite and obeys the estimation q^Mn~l.
Let us demand that φίjk(x) -> 0 more rapid than x to any finite power and

|x|-»oo

hence are the Schwartz functions. Now turn to the study of the spectral theory of
the L-operator with rapidly decreasing boundary conditions. We must consider a
fundamental solution

L(x, λ, ω)T(x, y,λ,ω) = 09 T(y, y, λ, ω) = 1 ,

lost functions

V>_(*U,ω) = lim T(x,y,λ,ω)e~ίλσ3y,
y-* — oo

φ+(x,A,ω) = lim T(x9y9λ,ω)e~iλσ3y

9
y-» + oo

lim (φ_ (x, A, ω) -«"•»*) =0,
y-» — oo

lim (ψ+(x,λ,ω)-eίλ"3X)=0,
y-* — oo

and transition matrix T,
Elsewhere the terms "-half-planes" or "A-axes" will mean connected pieces of

the inverse image on Γ of λ belonging to corresponding half-plane or axis.

Theorem 3. The first column ofψ+e~ lλ<T3X and the second column of ψ _ e ~ lλ<T3X are
analytical functions at the upper λ-half-planes of Γ; the second column ofψ+e~ίλσ3X

and the first column ofψ_e~ ίλ<T3X are analytical functions at the under λ-half-planes
ofΓ.

As for the transition matrix

(a b
T=

c a

the coefficient a is an analytical function at the upper - half-planes of Γ and d - at
the under ones.

b and c are determined at real λ — axes where the relation ad — bc = \ is valid.
Assume, that as in rational cases b(λ) -» 0 if φijk(x) are of Schwartz type.

For imaginary φijk(x) we have

d(λ, ω) = α(A, ω) , c(A, ω) = — b( J, ώ) .

If ώ = ω, lmλ=Q then we obtain at the real /l-axes

Suppose that there are no branch points at real /l-axes. The inverse image of real
A-axis cut the Riemann surface Γ on two connected pieces. In that case a(λ) is
completely determined at the upper A-half-planes by ks own zeroes and by the
function b(λ) determined at the real axes. For the aim the Gauchy-type kernel is
necessary according to a contour which is an inverse image of the axis of real λ. So
we have

(, λ _., , y / K(λ,ω,~λ,ώ)ln(ί-\bCλ,ώ)\)dλ
a(λ, ώ) = F( ~
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K is a Cauchy-type kernel. F(λ, ω) is a meromorphic function having poles at the
upper /l-half-planes and unit modulus at the real /l-axes. Let us call zeroes of a and
a function b(λ) "the spectrum of the rapidly decreasing problem." On being the
branch points lying at the real axes the add spectrum should appear which is the
nontrivial phase of a at the real A-axes.

To solve the inverse scattering problem we must construct a triangular
representation of the Jost function if only at the right-hand end.

Theorem 4. The right-hand Jost functions can be presented in a view

oo «-l

ψ+(x,λ,ω) = eίλσ3X+ f Σ Kίx9y)cϋieiλσ3ydy.
x j=o

The kernels Kj(x9 y) obey a system of linear partial equation of Goursat type.
From their boundary conditions on diagonal x — y one can obtain the formulas
connecting X/x, y) and φijk(x).

To express the Kj(x,y) in terms of a spectrum let us derive the GeΓfand-
Levitan-Marchenko equations. For that the following relations should be
required:

1 +00

2πn -L,r
j -oo kM

-— J ωkelλxdλ= Σ (

2nn -oo,r ί=o

When φίjk(x) are purely imaginary

Kl(x,y) Kf(x,yj

Therefore, one can obtain the GeΓfand-Levitan-Marchenko equation by the same
way as in [7]. We obtain

n-i R2 dkK?(x v) oo π-i
' Ffc + y)+ Σ Σ Oijk χ\ + f Σ Kj(x,

j = ι k = o oy x j=o
n-ί Rί f^kK1(\ v} oo /i- 1

Σ Σ bίjk Λ'^-ί Π K](X,z)Fi+J
j = Q k = 0 vy x j=0

ωleiλxdλ .
2πn-ί,Γa(λ)

These equations make somebody able to restore q>ijk(x) from the spectral data of
(10).

It should be noted that in definition (10) λ may enter also in some finite negative
powers. It should not result in any troubles in construction of a triangular
representation. But the spectral problem would be more complicated: the
additional poles of the transition matrix would appear as it was in the case of
solutions of a nonlinear Schrόdinger equation with finite density [2].

The following two theorems point out the operators which are researchable by
the above mentioned approach.
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Theorems. Let Γ be a compact Riemann surface, U(x,λ,ω) be a single-valued
meromorphic function of Γ taking values at the algebra of infinite differentiable 2 x 2
matrices with zero trace such that
1. U -+ iλσ3.

2. The poles of U coincide with ones of λ.

Then U(x,λ,ω) may be presented in the form (10).

Theorem 6. Insert the conditions 1 and 2 of Theorem 5 onto

1. U ^Uo.

2. The poles of U coincide with ones of |/detl/0.
Then, by gauge transformation with constant with respect to x matrix g, U may be

transformed to matrix U such that
1. U -+ Uσ3, where λ = 1/det [70.|Λ:|->OO ^ κ

2. The poles of λu+u_U coincide with ones of λ.

The matrix λu+u_U obeys the conditions of Theorem 5 with a Riemann
surface Γ being two sheets covering over Γ with branch points lying at zeroes of
det f/o Therefore we can construct a triangular representation of Jost functions
according to operators obey conditions of Theorem 6.

4. Nonlinear Equations Associated with s/(2, si)

Let s/(2, si) denote the algebra of 2 x 2 matrixes taking si values in the ring was
described in the example of Sect. 1. It includes the algebra generated by

iλkwiσi iλkw2σ2 ίλkwίw2σ3

σi - are the Pauly matrixes.
Let us divide ©(j/) into subalgebras

and an addition ®(j/0) =
following relations:

), Y0, Z0, Z j } . The commutator (1) with (12) results in

-
2

1 ><c t<__

2

(13)
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0 in other cases. The elements X0, 70, Z0 have been related to ®(Λ/O) because it is
only the case when the Poisson-Kirillov bracket corresponding to (13) is reducible
to

Me©*, M = {X*19YΪ19Z*2}.

Let us denote as d>(j^)A a central extension of the algebra of periodic infinite
differentiable with respect to x functions taking their values in (5(j/). Its central
extension is determined by the cocycle (5) with the 1-form

dλ

The Poisson-Kirillov brackets on (<§(J/)Λ)* are ultralocal and result in the relation
just the same as (13). They are also reducible to M, so the bracket (6) for UeM

λdλ Im ψdλ i Re ψdλ

•
! 2 j 4πw2

Imψdλ * i Re ψdλ λdλ

4πw2

is equivalent to

{ψ(x), ψ(y)} = iδ(x—y). (14)

Let us derive the solution of
LΓ=0,

where

U _ί iλ W i R e φ + zw
x ωo \~wι Re^-Hw2Imφ — iλ

in the form

0 H

- o
obeys the Riccaty equation,

From the last equation a set of recurrent relations on h% and Λ^ can be obtained.
From them it follows that

Jίf= § arccos(iSpΓ(2π,0,λ))ωμ)

C^\Ψ\2+C^(ψ2 + ψ2)~\dx (15)

ω(λ)=—dλ.
π
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The hamiltonian (15) and the bracket (14) result in the following equation

:^Ψ, (16)

which is the perturbed nonlinear Schrόdinger equation. Its representation may be
derived from (7) as

E ^ίiΛjrHc^i/i+Λ^o-^
where

0

P+ and PO are defined by the kernels (4). Matrix M is a solution of the equation

Let us derive it in the form

*-'.

V

A

thus, we shall also find a set of recurrent relations on g£, gf, g^, gf, /fc°, /fc

3.
Computing coefficients attached to the lowest two powers one can obtain the final
representation

with

— 2w!/l Imφ — 2iw2λ Reφ + w2

2iw2λ Reφ — 2w^ Imφ + w2 Ret/;^ + iw^ lmψx\

The Poisson bracket of the transition coefficients is given by (9).
The approach mentioned above can be also applied to the equation



644 V. G. Mikhalev

in that case

2_ α
-- — - . _ _1 4A2 8U3' 2- 4A2 8iA3 '

iA W j Reφ-Mw2Imφ\

* — iA /

dλ
4πiw1w2 '

9= § arccos(iSpΓ(2π,0,A))ωμ)
cλ

*xψx-ψxψxx , L.,l2w*-v?*v

,v ^ x , 2 , 2 ^
O A, λ = 1 + M + -̂  + -1-2 1 + τA

P_(A~, A)=

and also for the system

with

^^^2

= I arccos(iSpΓ(2π,0,/l))ω(/l)

ω=

{u(x\ ΰ(y)} = W(x - jO, {t (x), ι5(y)} = iδ(x - y).

The kernels P±(Z,λ) and P0(X^) are defined by (4).
One can directly verify that when α = 0(ε) and β = O(s) then all the above

equations admit the representation (7').
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5. Conclusion

The inverse scattering problem (ISP) is a good technique to investigate solutions of
near-integrable equations [8]. On a small perturbation the solution should also be
a nonlinear sum of solitons with parameters being slowly changed and continuous
spectrum excitations. If there are no excitations in continuous spectrum in a
moment, one can ignore its influence on solitions at the first order. On some
additional conditions the amplitude of excitations of continuous spectrum would
be small for all the time. It is a consequence of the property of the most integrable
systems: on a small perturbation the in variance of the most invariant tori is
conserved.

In a paper [9] a simple perturbation technique was developed which uses the
ISP as a canonical transform of a phase space of rapidly decreasing functions. It
results in one being able to derive the first order of evolution of the solitonic
parameters and excitations in continuous spectrum without any manipulations
with Jost functions. The transform of the phase space is a transition to the
expressions of spectral data to have canonical Poisson brackets.

In that paper only the case of hamiltonian perturbation theory with perturbed
hamiltonian and unperturbed Poisson brackets was considered. As it follows from
(9), the equations of Sect. 4 provide the opposite example of hamiltonian
perturbation theory: after transition to spectral data of new L-operator one should
obtain a hamiltonian system for which hamiltonians have the same structure but
the Poisson bracket is perturbed. So the perturbation

Γα1

=ί ~
L

Ί

\dx

(17)

of the nonlinear Schrόdinger equation may be described only by deformation of
the Poisson brackets.

The induction of a new L-operator for (16) has the following reason: it glues by
small hands lying near zeroes of λ two Riemann surfaces which correspond to
finite-gap solutions being different from one another only by \p-+\p. On being
zeroes of Baker- Akhiezer function which move from one piece of the new Riemann
surface to another we shall say: "there is a bifurcation of invariant torus". So the
perturbation (17) may result not only in slow deformations of invariant tori but
also in their bifurcations. In particular, in the rapidly decreasing case solitons of a
new type may appear, perhaps because the perturbation (17) takes off the phase
degeneracy of the nonlinear Schrόdinger equation.

The statement is similar to the anisotropic Landau-Lifshitz equation,

S, = [S, Sxx] + [S, 2Γ S] , y = diag( - 4α, - 4/J, 0) .

On any nonvanished α and β it has a solution of domain wall type. It has no such
solutions when α = 0, β = 0 and they could not be obtained in the perturbation
framework with respect to α and β. The reason is just the same: after transition
from α = 0, β^OtoαΦO, βΦO the axial and polar degeneracies would be taken off.
In that example the integrability is kept after the deformations, but it is not so in
most of the other cases.

The inverse scattering problem for the L-operators associated with the
equations which have been considered in Sect. 4 may be solved as well as in the
rational case. To restore the potentials from scattering data one must use the
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techniques of Sect. 3. The evolution of scattering data due to the nonlinear system
is defined by Eq. (7). Since a potential is reflectionless at the initial moment, r = 0, it
should be r = 0(ε) for a finite time (in the resonantless case it is true for all time),
here r is a reflection coefficient. It results in our being able to reduce our dynamic
system to a submanifold of reflectionless potentials at the first order of ε. It should
be emphasized that the equations for which those potentials are exact solutions
either do not exist or have much more complicated nonlocal form.

The hamiltonian (15) or similar may also be perturbed by terms which do not
change symmetries. One may consider their influence on solitions by the
techniques of [9], preliminarily calculating the Poisson brackets of scattering data
using (9). The last term in (9) can be omitted at first order.

More detailed calculations according to some interesting case from the
physicist's point of view will be presented elsewhere in my publications.
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