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Abstract. We prove rigorously that the structure constants of the leading (highest
spin) linear terms in the commutation relations of the conformal chiral operator
algebra Wm are identical to those of the Diffo 1R2 algebra generated by area
preserving diffeomorphisms of the plane. Moreover, all quadratic terms of the WN

algebra are found to be absent in the limit N -> oo. In particular we show that W^
is a central extension of DiίTo 1R2 with non-trivial cocycles appearing only in the
commutation relations of its Virasoro subalgebra. We also propose a representation
of W^ in terms of a single scalar field in 2 + 1 dimensions and discuss its significance
in the context of quantum field theory.

1. Introduction

The construction of all unitary highest weight representations of the infinite
dimensional symmetry algebras that arise in two dimensional conformal field
theory has provided a non-perturbative framework for solving a large class of
physically interesting quantum field theory models (see for instance [1] and
references therein). One of the most striking results in the classification of rational
conformal field theories was the realization that simple Lie algebras determine the
structure and the operator content of unitary scale invariant 2-dim systems. In
the chiral operator approach, rational conformal field theories are described as
minimal models of extended conformal symmetry algebras W generated by the
stress-energy tensor T(z) and other holomorphic fields {ws(z),seJ}, which are
associated with additional conserved currents in the 2-dim world. Typically, the
generators of ^-algebras are labeled by the vertices of Dynkin diagrams of simple
Lie algebras G, which also determine the conformal weight (spin) s of the chiral
fields ws(z). The Virasoro algebra

[T(z), T(z')] = (T(z) + T(ϊ))δtZ(z - z') + ~ δ,zzz(z - z') (1)
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is the most elementary member in the family of conformal algebras and is associated
with the simplest Lie algebra Alf

Ί^-algebras are closed (in the sense that they satisfy the Jacobi identity) and
have determining relations which are in general quadratic in nature. Nevertheless,
their unitary representations can be constructed in analogy with the Verma module
representations of the Virasoro and Kac-Moody algebras and correspond to
unitary conformal field theories with discrete symmetry, depending on the simple
Lie algebra G [2]. Using a suitable generalization of the Feigin-Fuks
construction, it follows that the full spectrum of the anomalous dimensions of the
^-invariant primary fields for these theories is expressed in terms of the
fundamental weights of G and forms a set of rational numbers. In this fashion,
the bootstrap approach to quantum field theory yields a systematic way to
understand the vacuum structure of string theory as well as construct a periodic
table of all types of criticality in 2-dim statistical mechanics, parallel to the Cartan
classification of Lie algebras.

In what follows, we focus our attention on the operator algebra WN which is
associated with the Lie algebra AN_^ and study the details of its structure in the
limit N -* oo. WN is generated by the stress-energy tensor T(z) and a collection of
primary conformal fields (ws(z); s = 3, 4,..., N} with integer spin s. The interest in
the large N limit behavior of extended conformal symmetries arose from some
earlier preliminary considerations which showed that the leading (highest spin)
linear terms in the commutation relations of W^ describe an infinite dimensional
subalgebra, Diffo R2, of all area preserving diffeomorphisms of the plane [3]. In
this paper we present the details of the proof and show furthermore that the
quadratic and the rest of the terms in WN vanish in the limit N->oo, with the
exception of central cocycle terms in the Virasoro subalgebra of W^. Our result
sheds some new light in the relations between conformal algebras and area
preserving diffeomorphisms of 2-manifolds that arise as residual symmetries in the
light-cone formulation of membrane theories [4]. It also suggests a conformal field
theory approach to the representation theory of Diffo R2 which might be of (some)
value in mathematics as well as quantum field theory. The proof we present here
relies on the Hamiltonian description of ^-algebras using the Gelfand-Dickey
algebraic structure of integrable non-linear differential equations of the KdV type.

There are several motivations and objectives in our program. First notice that
due to the quadratic nature of the determining relations of WN, there is no natural
geometric interpretation of higher spin fields with 5 > 2. This problem arises in all
higher spin theories (see for instance [5]) and makes difficult the construction of
consistent self-interacting gauge theories of massless higher spin fields (in any
number of dimensions). One possible resolution to the problem is provided by the
inclusion of an infinite family of particles with all possible spins. In our case this
procedure leads to the operator algebra W^ while the connection we find with
the symmetry algebra of area preserving diffeomorphisms assigns a definite
meaning to the role that 2-dim higher spin chiral fields have in geometry.

Second, as far as strings are concerned, we would very much like to have a
non-perturbative framework for studying their quantization. Since there is no such
prescription available at the moment, it seems natural to "play it by ear" and
adopt some ideas and techniques from the 1/JV expansion of SU(N) Yang-Mills
gauge theories (see for instance [6] and references therein). Motivated by the
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behavior oϊSU(N) => SΊ/(3) gauge theories in the limit N -> oo and their description
in terms of loop dynamics, it is natural for our purposes to embed conventional
(W2)-stήngs in a much larger theory (W^-strings) with WN => W2 as the symmetry
algebra on the world sheet. This generalization may accommodate new prospects
in building string theories [7] and in analogy with SU(ao) gauge theories,
^-strings could be used for developing a non-perturbative approach to string
quantization itself. Certainly, the association of W^ with the algebra of area
preserving diffeomorphisms we establish in this paper suggests that higher
dimensional extended objects (e.g. membranes) could be employed in the
formulation of VF^-string theory. This construction is still far from being completed
and constitutes a long term goal in our investigation.

Third, we would like to know whether the bootstrap (operator algebra)
approach to quantum field theory can be applied successfully to theories in more
than two dimensions. Although we do not have any systematic procedure available
in our disposal for d > 2, we find that a certain class of 3-dim field theory models
can be approximated by 2-dim conformal field theories that possess an infinite
collection of additional conserved currents with all integer spins. To be more
precise, we think of the Dynkin diagrams that describe the operator content of
^"-algebras (and only for classical non-exceptional simple Lie algebras) as some
suitable discretizations/skeletonizations of a continuous third dimension in
space-time. Passing to the limit N -> oo we effectively obtain a field theory in one
dimension higher, provided that the large N limit of the underlying simple Lie
algebra (e.g. A^ for W^) is defined as a continual algebra, in the nomenclature of
reference [8]. In this sense, we manage to describe (genuine) higher dimensional
theories in terms of lower dimensional physics using infinite dimensional structure
groups. We will return to this point later, while discussing the geometric
interpretation of W^ as a subalgebra of the area preserving diffeomorphisms of R2.

Incidentally, we point out that the idea to use 2-dim models with infinite
dimensional structure groups for the description of higher dimensional theories,
has already been adopted by Atiyah in his work on the moduli space of Yang-Mills
instantons [9]. In particular, 4-dim self-dual gauge connections with values in
G and with topological charge /ceZ, can be thought of as instantons of a 2-dim
principal chiral model with values in ΩG, the loop space of G. Also, recent work
in general relativity has shown that in many aspects, gravity resembles ordinary
gauge theories with infinite dimensional structure groups. For example, the
self-dual Einstein equations for gravitational instantons are equivalent to Nahm's
equations for BPS monopoles with G^Diff0Z t ( 3 ), the volume preserving
diffeomorphism group of the 3-space J£(3) [10].

We think that all these reasons are very compelling for justifying the study we
undertake in this paper. Certainly, the results we obtain in the sequel do not
answer in detail all the questions we have raised; they should be thought of as a
modest first step toward the general direction we have outlined. Here is a brief
description of the way that our material is organized. In Sect. 2 we set up the
notation and review the Hamiltonian formulation of extended conformal
symmetries in terms of the Gelfand-Dickey Lie-Poisson algebra of formal
pseudodifferential operators. We find this framework most appropriate and
effective for studying the large N limit behavior of WN. In Sect. 3 we present the
results of somewhat lengthy computations which establish the advertised relation
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between Wx and the algebra of area preserving diffeomorphisms of the plane. In
Sect. 4 we continue this investigation and address the problem of constructing
unitary representations of Diff0lR

2 with the aid of 2-dίmZ00-symmetric conformal
field theories. In Sect. 5 we concentrate on the 3-dim description of W^ using a
continual analogue of the Toda field and (Feigin-Fuks) free field representations.
Finally, in Sect. 6 we draw our conclusions and indicate some other directions for
future work.

2. The Chiral Operator Algebra WN

Zamolodchikov's spin N operator algebra WN is generated by the stress-energy
tensor T(z) and the additional conserved currents (vvs(z)} with spin s = 3,4,..., N
respectively. Introducing Fourier modes, the commutation relations of WN take
the form [2]

[LM,LJ = (n - m)Ln+m + ^(n3 - n)δn+m^ (2)

[Ln, ws(m)] = [(s - l)n - m]ws(n + m), (3)

[wφ),Mv(jfi)] = £ ZQ''''^^^---.^^)^.^!)..^^). (4)
{Si £#}{*.}

Here, Ln denote the Fourier modes of T(z) and ws(w) those of ws(z). The identity
operator is included among the generators using the identification / = w0 (i.e.,
w0(fe) = δk>0) and the integers {/cj are chosen so that the condition of momentum
conservation k± + /c2 + "" + fcp = rc + m is always satisfied. Furthermore, the
normal ordering prescription is implicitly introduced on the right-hand side of
Eq. (4). The central charge c is the only free parameter in the operator algebra
WN, whose defining relations (2)-(4) are non-linear (quadratic or higher polynomial)
and satisfy the Jacobi identity.

WN is clearly a conformal algebra because it contains the Virasoro as subalgebra
(see Eq. (2)). Determining the structure constants C for arbitrary N is not an easy
task and requires extremely lengthy computations. For any given pair of spins
(s,s'X the structure constants C are (in general) different from zero only if
s1+s2 + — + S p £ s + s'-2. We also assume that C(0,0;0,...,0;c) = 0 for all s, s'.
The only terms in (4) which are linear in the generating fields {wj occur when all
{sj but one (call it s") are zero. Obviously, we have to demand that s" ̂  s + sf - 2,
as well as s" ̂  N. Then, for sufficiently large N, the leading (highest spin) linear
term in (4) has s" = s -f s' - 2. Later we will show (among other things) that when
N-> oo, Cs

sf
s'~2(n,m; ft -f m;c) is independent of c and in fact

C*st
s'~2(H,m;m + m) = n(s' - 1) - m(s - 1). (5)

We mention for completeness that central charge terms occur in Eq. (4) when
Si = s2 = ••• = sp = 0 and C£r° Φ0.

There are several ways to describe the detailed structure of the conformal
operator algebra WN. The most direct method (though not very practical) is
provided by the constraint of Jacobi identities in the commutation relations (2)-(4).
This leads to an algebraic system of equations for the structure constants C^},
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which turns out to be very complicated to solve when N is sufficiently large.
Equivalently, the explicit calculation of the operator product expansion ws(z)ws,(zf)
for any two primary conformal fields vvs and ws, requires knowledge of the singular
as well as (some) of the non-singular terms in the operator product expansion of
fields with spin less than 5 and s'. Although the closure of the resulting operator
algebra puts severe constraints on the values of all possible free parameters
(coefficients) that appear, this procedure does not seem to be the most efficient for
our purposes.

Alternatively, one may use the free field representation of W-algebras and
introduce a multi-component free massless bose field Φ(z) [1,2]. For WN, the
components of Φ, {φa\ a = 1, 2, . . . , N — 1}, have two-point correlation functions of
the form

(6)

The generators T(z), ws(z) (s = 3, 4, . . . , N) of WN are composite fields of Φ, i.e.,

(7)

ws(z) = £ Mαι -as:dφaι(z) -dφas(z): + derivative terms, (8)
{ l ^ α ί ^ J V - l }

with appropriately chosen numerical constants Mfll fls.
The structure of the operator algebra WN is determined entirely by the Lie

algebra characteristics of A N _ 1 . In particular,

(9)
A = ι

is the Weyl vector of AN_ 1 and the N vector hk (k = 1, 2, . . . , N) which are defined by

f>k = 0, Mm = 3*.*-^ (10)
k = ι ιy

form an overcomplete system in (N — l)-dim Euclidean space. In this notation,
C i

[hk — hk+l\k = 1,2,..., Λ Γ — 1} are the N —I simple roots of AN_± and < £ hk\
U=ι

ί - 1, 2, . . . , N - 1 i the fundamental weights. Therefore, p2 = ̂ (N* - N). Also, α0

is a loop counting parameter of the order — 1/αJ ~ ft, i.e. Planck's constant. The
asymptotic behavior of the (N - l)-component free boson Φ(z) is Φ(z) ~ 2iα0p log z,
which insures the fall off rate

Γ(z)~z~4; w s(z)~z-2 s(s = 3,. . . , iV) (11)

as z -> oo. The latter condition is necessary for conformal symmetry to be unbroken.
Another method for deriving the commutation relations of WN is provided by

the Toda field theory for the Lie algebra AN,1 [11]. In this case, one introduces
a collection of scalar fields φa(z9 z) (α = 1, 2, . . . , N — 1), which satisfy the coupled
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system of differential equations

ddφa(z, z) = exp (Y Kabφb(z, z)\ (12)
\b=l /

Here Kab is the Cartan martix of AN_l. There is always a se_t of Characteristic
(N - 1) chiral fields w<+)(dφ f l, d

2φa, . . . , dsφa) and similarly w<->(^«, 32φfl, . . . , 3
sφα)

(s = 2, 3, . . . , N) associated with the Toda equations (12). The simplest one,

T(z) := w<2

+) = - 1 X 3ψβ(z, z)Kabdφb(z, z) + Σ 520«(*> 4 (13)

coincides with the holomorphic component of the improved stress-energy tensor
of Toda field theory, while T(z):= w(

2~
}(z) is defined similarly and yields the

antiholomorphic component. The explicit expression of w(

s

±] with s — 3, . . . , N is a
little bit more complicated and we refer the reader to reference [11] for further
details. Nevertheless, it is important to point out that all the characteristic fields
w^±} are conserved, i.e. dw4+) = 0 and dw(

s~
] = Q, by virtue of the equations of

motion (12). Moreover their conformal weights are s = 2, 3, . . . , N respectively and
generate two (commuting) copies of the operator algebra WN, one holomorphic
and one antiholomorphic, depending on the choice of the + or — signs. Since
we are considering chiral operator algebras, it is sufficient to concentrate only on
the holomorphic sector generated by (w* + )(z)}.

We intend to return to the free field and Toda field theory representations of
WN when we discuss Wx from a 2 + 1 viewpoint using the continual analogue of
the algebra A^. Meanwhile, for the actual computation of the commutation
relations of W^ we adopt an alternative (though equivalent) formalism originated
from the Hamiltonian description of integrable non-linear differential equations
of the KdV type. More specifically, we are going to use the Gelfand-Dickey algebra
of formal pseudodifferential operators, GΌ(AN_1), with the simple Lie algebra
AN_l as its label [12], and study the structure of WN in the large N limit, JV-> oo.
We point out that Gelfand-Dickey algebras have already been employed quite
successfully in the classical description of extended conformal symmetries [13, 14].
In this framework, the calculation of the structure constants C^1? becomes just a
combinatorics problem. Of course, to make exact contact with the corresponding
(quantum) chiral operator algebras of 2-dim conformal field theory, one has to
normal order all quadratic (and higher) terms that appear in the commutation
relations of fields with spin s ̂  3. Although the structure of the algebra remains
unchanged and consistent with Jacobi identity, the normal ordering prescription
deforms (in general) the classical values of the structure constants C. How-
ever, this deformation is insignificant when JV-»oo [15] and the classical
(Gelfand-Dickey algebra) calculation of W^ yields the exact quantum mechanical
answer. We will return to this point later.

Next, we review (briefly) the basic theory of Gelfand-Dickey algebras,
GΌ(AN_1), associated with the ^-series of simple Lie algebras (see [12-14] for
more details). Let

LN = dN + u2(z)dN-2 + +uN(z) (14)

be an Nth order differential (Lax) operator with N — 1 coordinate (potential)
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functions {^(z); i = 2,3,..., JV}. We also consider (formal) pseudodifferential
operators A(z) = /4_(z) + A + (z) with

/4_(z)= £ dkαfc(z); ^ + (z)= Σ ak(z)dk (15)

and introduce the notation res/4 =<z_1(z). Then, to any local functional
/[w2,...,wN], we assign the (formal) operator sum

"-1 , δ/
Λ r

/= X (? *- + d NxN(f). (16)

The variable xN(f) is chosen so that the following condition is satisfied:
res [LN, Xf~] = 0. With this in mind, the Gelfand-Dickey bracket between any two
functionals /[M] and g[u\ is defined to be

(17)
where

VXf(LN) = LN(XfLN)+ - (LNXf) + LN. (18)

In all formulas, we use Leibniz's rule for the multiplication of operators (both
differential and formal). In particular, for all k> 0, the following identities are true:

* k
\z)dk-m, (19a)

= o\m

oo /If i m __ 1 \

d~ka(z)= £ (-H }a(m\z)d-k-m. (19b)
m=o \ m J

It was shown in references [13, 14] (see also [2]) that under the GD-bracket
(17), the coordinate functionals u2, «3, . . . , UN form a closed conformal algebra with
quadratic determining relations. In this case, the Virasoro subalgebra is generated
by u2(z),

{u2(z)9 u2(z')}N = (u2(z) + u2(z'))δtz(z - z') + ^(N3 - N)δ,zzz(z - z'\ (20)

and the central charge is c = I 2 p 2 . However, the rest of the coordinate fields us(z)
(s = 3, . . . , N) are not primary. Primary conformal fields ws(z) with spin s = 3,...,N
are obtained using appropriate (polynomial) combinations of all (tφ); i ̂  s} and
their derivatives. They are of the (general) form

HΦ)= Σ A^.^W u^z), (21)
{i},{k}

with kl + ••• + kp + /! -f •-• + ip = s ̂  N. Then, T(z):= u2(z) and (ws(z); s = 3,...,N}
generate the extended conformal symmetry algebra WN, as desired. All the
calculations are fairly straightforward but quite lengthy. In fact, the numerical
constants A{^.{k} in Eq. (21) are not easy to compute for arbitrary N. Explicit results
are only available for small values of N, e.g. 2, 3, 4. Nevertheless, we find that
when N -> oo the structure of the operator algebra WN simplifies considerably and
exact expressions for all structure constants become available. This is the subject
of the next section.
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3. The Algebraic Structure of W^

According to Eq. (16), the (formal) operators

*MZ') = SS~N- lδ(z - z') + d'NxN(us(z')) (22)

are assigned to the coordinate functions us with s = 2,3,..., N. The variables XN(US)
are not arbitrary. Recall that the definition of the GΌ(AN_1) algebra imposes the
constraint res [LN, XUs] = 0, for all values of s. This condition is equivalent to the
following differential equation:

x>s(z')) = (~Ϋ ~ - Z>P(Z))(%P+* (23)
Λ V p = θ f c = l \ K /

Here MO(Z) =l,uί(z) = Q and the derivatives are taken with respect to z. Then, the
Gelfand-Dickey bracket (17) between any two (coordinate) fields us and us, is given
by

K(z), us(z')}N = $dz(A + B + C + D), (24)

where

m + 1 -(δ(z - z)up(z}}*\δ(z' - z)ιv(z)f+m)

m j " '
(25a)

with p, k subject to the restriction p + k ̂  s — 1,

N oo s- l - fc-p

B- Σ Σ Σ (-r

's-l-p-i

m
(25b)

with p, fc subject to the same restriction p + k 5Ξ s — 1,

c=- Σ s 1 Ys~ί~1)w,+p +*+ιM^(z-3«p (s))Wδ(z'-2) (25c)
p,p' = 0 fe = 0 \ k /

with p subject to the restriction p ̂  s — 1, and

J>= - Σ S I 1(S"^~1V..P + P'+*M^(Z-^^^ (25d)

with p subject to the same restriction p ^ s — 1. We have w0(z)= I,w1(z) = 0 as
before and all derivatives in (25a-d) are taken with respect to the integration
variable z.

With this result in our disposal we study now the leading behavior of the
commutation relations (24). Notice that for sufficiently large N (i.e., N ^ s + s' — 2)
the spin of all leading linear terms is s + s' — 2. The term (25a) will provide a
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contribution ~ us+s, _ 2 only if (p = 0; p' = s + sf - 2) or (p = s + s' — 2; p' = 0). Since
p -f fe ̂  5 — 1, the second possibility is immediately ruled out. On the other hand,
the constraint k + k' + m = s + sf — p — ρf — 1 = 1 implies that either (k = 1;
k' = m = 0) or (kf = 1; k = m = 0) or (m = 1; k = kr = 0). Therefore, the total highest
spin linear contribution from A is

- (N - s + l)δ f(z - z)δ(z' - z)us+s,_2(z)

-(N-s' + l)δ(z-z)(δ(z'-z)us+s,_2(z)\2 (26)

+ (5 - l)<5(z - z)(δ(zf - z)us+s,_2(z)\;.

It is easy to see that the second and fourth terms (25b, d) do not contribute at all
to this order, while the only relevant term in (25c) has p = 0, p' = s + 5' - 2, k = 1
and equals to

- (s - \}(δ(z - z)us+s,_2(z)\;δ(z' - z). (27)

Putting the expressions (26), (27) together and performing the necessary
integrations, we obtain the following result (for N ̂  5 + 5' — 2):

{us(z\II,,(Z')}N = [(s - lK+s,_2(z) + (sf - lK+,.2(z')]5 ,(z - z')

+ (lower spin terms). (28)

The lower spin terms are local functionals of {ut(z)} with i<s + s' — 2. Their
structure is determined by all other terms in Eqs. (25a-d) and turns out to be
quite complicated indeed.

It is clear that when N-> oo, most of the numerical coefficients that appear in
the commutation relations (24) diverge rapidly. For example, the central charge c
of the Virasoro algebra (20) blows up to infinity like oo3. However, the infinities
we encounter here are not characteristic of the chiral operator algebra W^. They
originate from the normalization of the fields (ws(z); s = 2,3,..., N} used in the
definition of the Gelfand-Dickey algebra GΌ(AN_ί). At this point we realize that
the standard choice (14), (18) of the operators LN and VX(LN) is rather special,
because the value of the central charge c = Λ/"3 — N is fixed. On the other hand we
know that the commutation relations of WN allow for arbitrary values of c.
Therefore, to obtain a (classical) Hamiltonian description of WN for all values of
N and c, it is necessary to modify our definitions by introducing appropriate
rescalings in the (basic) variables of the theory.

First we consider the Virasoro subalgebra (20) and define the quantities

Lv = — { , }N (29)
C

for all c Φ 0. It follows that

[u2(z\ u2(z'KN = (U2(z) + u2(zf))δft(z - z') 4- ̂ 3^* «,(* - *') (30)
ΛP 12

with arbitrary central charge for all N = 2,3,..., oo. For consistency, we also have
to rescale the rest of the generating fields {us(z)}. Recall that in the free field
representation of WN9 conformal fields of weight s are ~ (3Φ(z))s. Then, for s = 2,

Eq. (29) implies that dΦ(z) has been modified by a factor of ^/c/ΛΓ3. Therefore, it
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is natural to define

/ c Y/2

us(z) = ( — } us(z\ for s = 2,3, . . . ,Λf . (31)
\N3J

This is the only consistent prescription applicable to all values of N9 including oo.
Moreover, it does not affect the coefficients of the (leading) highest spin linear
terms in Eq. (28). From now on, we adopt the rescaled variables (ύs(z)} in our
description of WN and its large N limit. For convenience (and to simplify the
calculations) we may choose c = 1; arbitrary values of c will be considered in the
next section.

Our next task is the computation of all terms in the commutation relations
[us(z\ύs,(z'}~]^ w*tri arbitrary s and s'. Using Eqs. (24), (25) and with the definitions
(29), (31) in mind we obtain:

08._2(z')δSt2)δ"'(z - z') + &δs,2δs,t2δ'"(z - z')

1 {s^p + 2}

+ ̂  Σ (s'-l-p)5
^ P,P'^2

+ ύp(z')ύp,(z'))δ'(z-zf)

- J{S=Σ 2}(^- 1 -P)^
2 P,p'^2

1 { s Z p ' + 2}

-~ Σ (5/- ! -p)δ

+z Σ (s'-i-p^^.-a.^^^ ωβ^ω-M2)";^))^-^).
^ p,p'Z2

(32)

Few clarifying remarks are in order. The final result (32) has been organized
so that the subscript (spin) of all contributing fields is strictly ^ 2. For example
the second term on the right-hand side (~ ύs_2) is present only if s — 2 ̂  2; similar
restrictions apply to all other terms. The derivatives are always taken with respect
to the variable z and not z'. The calculation is straightforward but quite lengthy.
We find that many individual terms in (25a-d) diverge when N -» oo (even after
introducing the rescaling (29) and (31)); however, their net contribution to the
bracket [us(z\ϋs,(z')']^ is zero. We also point out that some of the quadratic terms
in Eq. (32) are not manifestly antisymmetric; nevertheless one can easily verify that
the total expression we have obtained is in fact antisymmetric, as required. Also
the Jacobi identity is automatically satisfied, because Gelfand-Dickey algebras
have been designed this way.



Structure of the WΛ Algebra 497

The commutation relations (32) provide a Hamiltonian description of the
extended conformal algebra Wm. Setting s = s' = 2, we obtain the Virasoro
(sub)algebra with c = 1. Unfortunately, the generating fields {ίϊs(z); s^ 3} are not
primary (in general). We have

[S2(z), ύs(zf)^ = lu,(z) + (s - l)u,(z>W(z - z') + ^us-2(z')δ'"(z - z'} (33)

for all s^4. Only ύ3(z) is a primary field with conformal weight 3. Also, the
determining relations (32) are quadratic in nature. The simplest example where
quadratic terms occur is provided by [w3(z), us(z')']σo with s ̂  3. In this case we have

- (fi2(z)fi,_ ,(Z) + U2(Z')US. tf))δ'(z - Z'}

z)ύs^(z] - U2(z)ύ's_ ,(z))δ(z - z'\ (34)

Notice that the right-hand side of Eq. (34) involves linear terms with spin higher
than s as well as quadratic terms. This is a characteristic behavior of higher spin
algebras, in any number of space-time dimensions.

The standard attitude in higher spin theories is that consistent self-interacting
gauge theories of massless particles with s > 2 require the inclusion of an infinite
family of fields with all integer spins s = 2,3,...,ΛΓ->oo. In terms of the
corresponding infinite dimensional algebra of gauge transformations this means
that all quadratic terms should disappear when N-+OO. On these grounds we
expect that only the leading (highest spin) linear terms will actually contribute in
the large JV limit of WN. Certainly, this behavior is not manifest in Eq. (32).
Nevertheless, we are going to show that all quadratic terms are trivial, in the sense
that there exist fields

w,(z) = δ,(z)+ £ ^^fiίΐ^ δ^ίz) (35)
ttu*}

with linear commutation relations. A{$} are numerical constants which will be
calculated shortly. The integers {i} and {k} are not arbitrary but satisfy the
constraint kί + — h kp + i l + — h ip = s, for all 5 = 4, 5, . . . . We also assume that
4}8} = 0 i f j > = l.

At this point it is instructive to compare Eq. (35) with (21). Recall that the
coordinate (Lax) fields {us(z)} of the Gelfand-Dickey algebra GΌ(AN_1) are not
primary in general. However, for appropriate choices of the structure constants
A$}9 the polynomial combinations (21) yield primary conformal fields ws(z) of
weight s. The classical (Hamiltonian) description of WN (for all N = 2,3,...) is
formulated entirely in terms of the field variables {ws} and not {us} (see [1 1, 13, 14]).
For this reason we need to know which are the appropriate combinations to
consider for the generators of W^. It is quite remarkable that the choice (35) not
only eliminates all non-linear terms, but also provides the primary conformal fields
(generators) of W^. The calculations are once more a little bit complicated; we
only indicate how to proceed and then state the result for the general form of the
numerical coefficients A(^}.

The key formula is provided by the commutation relations (34), which play
the role of a "generating function" for all ws(z) with s ̂  4. To be more specific, we
start with w3(z):= ύ3(z) which is a primary conformal field when N-* oo. We find
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that

[w3(z), w3(z')]00 = 2(w4(z) + w4(z'))<5'(z - z'), (36)
where

w4(z) = δ4(z)-iδl(z). (37)

Next we calculate the bracket between w3(z) and w4(z'). We find that

[w3(z), w4(z');L = (2w5(z) + 3w5(z'))5'(z - z'), (38)
where

w5(z) = w5(z)-α2(z)M3(z). (39)

Iterating this procedure we obtain a whole tower of fields of the form (35). The
next few members are given by the following expressions:

w6 = M6 - tϊ2w4 - \ύ\ + \ύ\, (40)

w7 = UΊ - u3iί4 - U2u5 + M 2w 3, (41)

W
8
 = W

8
 - U

2
U
6
 - U

3
U

5
 - \U\ + M

2
M3 + W

2
W

4
 - i«2» (

42
)

w9 = ίϊ9 — u2ίϊ7 — ίϊ3M6 — u4M5 H- M|MS 4- 2w2M3M4 4 ^w3 — w|u3, (43)

W i o = W l O ~ Ms ~ M? ~ Mβ ~ i"5 + "2^6 + "2«4

4- 2M2w3w5 4 ulu4 - ύ\ύ± - \u\u\ 4 \u\ (44)

and so on. For simplicity we have suppressed the z-dependence of the variables ύ.
All these fields are designed so that for all s ̂  3 we have

[w3(z), w^z')^ = [2ws+ x(z) + (s - l)ws + 1(z')]5'(z - z'). (45)

It is interesting to notice that no derivative terms appear in the expressions for
{ws}. Therefore, the structure constants A$} in Eq. (35) are independent of {fe}. It
is very straightforward now to guess the general formula for ws with arbitrary
s ̂  4. It is given by

- * » - " ? ' ' w w " ' W A (46)

with riiii 4- n2i2 4 — h npip = s. We emphasize that here, the integers n1 , n2, . . . , np

denote powers and not derivatives of the fields uil9ui2,...,uip. Also the subscripts
iι,i 2» » ϊ p (spins) are not ordered in any particular way and their values are all
^ 2. For example, to obtain w7, we partition 7 as <7 1 >, < 3-1, 4-1 >, <2 1, 5-1 > and
<2 2, 3 1>. Then, we write down the corresponding polynomial combinations
M7,£3M4,M4M3,M2M5,M5M2, M2M3, M2u3w2, M3M2 and weight them with + 1, - 1, -£, -|,
— j, 4j, +j, 43- respectively. Summing up all these terms we recover Eq. (41).
Similarly we construct any other field ws that satisfies the relation (45).

Using the expression (46) and the commutation relations (32) it is possible to
show that

[wβ(z), *,.(/)]„ = [(5- l)ws+s,_2(z)4(s'- l)uw_2(z')]<5'(z-z')

<5S',2<Πz-z') (47)

is true for all values of 5 and s' = 2, 3, 4, ____ Therefore, the structure of the extended
conformal algebra W^ is linear and the assertion we made earlier is proven. From
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now on we concentrate on Eq. (47) and discard the intermediate variables ύ used
in the course of this investigation.

The final piece of information comes from a recent paper by Bilal [15]. It was
shown that in the JV-»oo limit, the quantum (commutator) algebra of (w5(z);
s = 2,3,..., N} reduces to the classical (Poisson bracket) algebra W^. In particular,
the Gelfand-Dickey calculation provides the dominant contribution to the
structure constants of WN when N is large. To put it differently, the normal ordering
prescription deforms the numerical coefficients in (25a-d) only by a negligible
amount which has no effect on the final result for [w^zXw^z')]^. It is then safe
to conclude that the chiral operator algebra W^ of two dimensional (quantum)
conformal field theory is described precisely by the commutation relations (47).

2
4. Unitary Representations of Diffg R

Introducing Fourier components ws(n) (neZ) for the fields w5(z) (s = 2, 3,...), we
obtain

K(n), nv(m)] = [(s' - l)π - (s - l)m]ws+s,_2(n + m) + ̂ δn + m^2δs^2) (48)

with c = 1. Arbitrary values of the central charge will arise if we make use of Eqs.
(29) and (31) with c Φ 1 in general. For this reason we may consider Eq. (48) as
the (quantum mechanical) commutation relations of the chiral algebra W^ with
arbitrary central charge c. For convenience we also drop the subscript (oo) of the
GD-bracket (47). The observation that the structure constants of W^ are given by
Eq. (5) was made first in reference [3], where the leading order (highest spin)
behavior of W^ was studied. The present result completes this investigation and
shows that no other terms appear in the commutation relations of W^, apart from
a central (cocycle) term in the Virasoro subalgebra.

It is quite natural now to look for a geometric interpretation of the infinite
dimensional symmetry algebra (48). This is certainly possible because the
determining relations of W^ are linear. We will see that the right framework for
our purposes is provided by the algebra of area preserving diffeomorphisms of the
2-plane, Diff0R

2. To be more precise let us consider the Lie algebra of all
Hamiltonian (i.e., divergenceless) vector fields on R2 with commutation relations

Here, { /, g] denotes the Poisson bracket between any two functions /, g on R2, i.e.

™-ψτ-ττ (50)
dx dy dx dy

and

is the Hamiltonian vector field associated with /. The coordinate functions (x, y)
on R2 have been chosen so that {x9y} = 1. The symmetry algebra (49) arises in
1-dim classical mechanics and generates all canonical transformations on the phase
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space R2. In this setting, the variables x and y represent the position and conjugate
momentum (respectively) of a particle with one degree of freedom.

Next, we introduce the basis elements

/m.» = * l"+V+1; weZ (52)

for the generating functions of Diff0R
2. It is straightforward to verify that in this

basis the commutation relations (50) become

{fm,n,fm;n } = [(m + D(n' + 1) - (m' + !)(« + l)]/m+m.,n+n, (53)

This is a double graded algebra which contains the Virasoro as subalgebra (with
central charge c = 0). Indeed, the basis elements {/m0;me2£} satisfy the relations

{/m,o>/m',o} = (m - m')/m+m<,0 (54)

There are many other interesting subalgebras of (53). Some of them have already
been considered in the mathematics literature, in connection with certain problems
in (co)homology [16,17]. Explicit calculations have shown that the homologies
of arbitrary fixed dimension of the Lie algebra of polynomial Hamiltonian vector
fields on R2 are finite dimensional. Also, the subalgebra of polynomial vector fields
generated by all even functions in x and j; has been used extensively in the
cohomology theory of differential operator algebras. For our purposes it is natural
to consider the subalgebra of Hamiltonian vector fields

^O} (55)

which are polynomial only in the y variable. We will prove shortly that W^ is a
central extension of Diffo (R2).

Notice that the infinite dimensional space (55) is a module for the Virasoro
algebra whose action is defined as follows:

Λ,o /m,n:={Λ,o,/m.J = ~[(m+ l)-(n+ !)(*+ l)]/m+M. (56)

It can be readily checked that the central charge c is zero. Equation (56) has an
important meaning in conformal field theory. It states that (for fixed n) /m π are
the basis elements of a primary conformal field of weight Δ = — (n + 1). Indeed,

in the holomorphic representation Lk= — zk+i — , primary fields transform
dz

according to the rule

Lk(zm+1dzΔ)=-[(m+l) + Δ(k+ l)]zm+k + 1dz4. (57)

Therefore, Diffo ^2 can be viewed as an infinite dimensional higher spin con-
formal symmetry algebra. The Fourier components of the generating conformal
fields {ws} are /m π and the allowed values for the weight (spin) s are
1 - Δ = n + 2 = 2, 3, 4, . . . . (Recall that Δ and 1 - Δ are dual to each other.) To
make exact contact with the commutation relations (48), we introduce the variables

^2. (58)

Then Eq. (53) yields

{ws(n), Hv(m)} = [(s' - l)n - (s - l)m]ws+s,_2(n + m), (59)
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which is identical to Eq. (48), up to central charge terms. We conclude immediately
that W^ is a central extension of Diffo R2, with non-trivial cocycle appearing only
in the commutation relations of its Virasoro subalgebra.

This result is quite important for the geometric interpretation of higher spin
symmetries in two dimensions. Area preserving diffeomorphisms are certainly easy
to comprehend geometrically. However, we have no good explanation for their
origin at the moment, other than the algebraic identification of W^ with Diffo R2.
Why area preserving diffeomorphisms and not some other infinite dimensional
Lie algebra? We think that 2-dim conformal field theories with an infinite number
of additional conserved currents can be interpreted as (2 + l)-dim quantum field
theories. The higher dimensional viewpoint we propose in Sect. 5 is very suggestive
and could provide a physical answer to this question.

Diff^ R2 is also interesting from a mathematical point of view. We point out
that the full algebra of area preserving diffeomorphisms of R2 admits the following
decomposition:

DifΓ0 R
2 = Diff + R2 Θ H θ Diffo R2. (60)

Here, DiffJ R2 is generated by {/m>n; weZ, n ̂  0}, H by {/m>_ x = xm+*; weZ} and
Diffo R2 by {/m>ll;meZ,n< —1}. It is clear that H is an abelian subalgebra
of Diffo R2, i.e. {/m,-ι,/m',-ι} =0. Also, notice that the Belavin-Polyakov-
Zamolodchikov duality between conformal fields of weight A and 1 — A [1] implies
that

(Diffo R2)* £ Diffί R2 Θ H. (61)

However, "self-dual" fields have weight Δ* = Δ, i.e. Δ = 1/2, which is not integer.
Since the basis element {/ I Π f_1;meZ} have Δ = 0, H is not a Cartan subalgebra
of Diff0R

2. Also, one may'verify directly that {^Difr^R2}^ Diff^R2 and so
(60) is not a Cartan decomposition of Diff0R

2. In fact we have no such candidate
for Diffo R2. On the other hand, area preserving diffeomorphisms of compact
2-surfaces, e.g. the torus S1 x S1, share many common features with simple Lie
algebras. As we will see later, Diff^S1 x S1) ̂  A^.

Unitary representations of area preserving diffeomorphisms pose a difficult
problem in mathematics. Of course we already know a unitary representation of
Diff0 R

2 from elementary quantum mechanics. It is defined by assigning the
operators

F = ihξf + f-y^ (62)
dy

to all classical functions / on R2. ξf is the Hamiltonian vector field (51) and the
Hubert space where the operators (62) act consists of all square integrable functions
on R2, L2(R2). This representation is known as prequantization in the theory of
geometric quantization (see for instance [18]). Unfortunately, it is not relevant for
quantum field theory because L2(R2) cannot accommodate an infinite number of
degrees of freedom. Nevertheless, it is possible to gain some information about
the (field theoretic) representations of Diff^ R2 using the connection we found
with the symmetry algebra Wn.

It is known that unitary (highest weight) representations of the chiral operator
algebras WN (N = 2,3,...) correspond to 2-dim conformally invariant models with
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(global) TLN symmetry [1,2]. These theories are minimal models of the WN algebras
(in the sense that they have a finite number of conformal building blocks) and fall
into classes (series) depending on N. For any (fixed) N, the only allowed values
for the central charge c are given by the rational numbers

p = N + l,N + 2,.... (63)
P(P + i

Moreover, the spectrum of anomalous dimensions of W^-invariant fields is

Π(Kί9.. 9KN-l9K\9 9KN-'L) — ~ J (64)
24p(p + 1)

where {kj and {fcj} are all positive integers subject to the constraints

N-l J V - 1

and {ωj are the fundamental weights of AN_l satisfying

o}i'0}j = 5 for i^j- (66)

It is clear that when N -> oo, the only values of c allowed by unitarity are

r _ Oλr. h _ 1 0 ^ 4 (£Ί\
Lk — L*"> Λ — *» A J? M 5 V° ' J

and the number of conformal (building) blocks of all W^-minimal models is infinite.
This procedure suggests that highest weight (Verma) module representations of
the centrally extended Diffo R2 algebra (48) can be constructed in analogy with
the Virasoro algebra. In particular, we introduce a normalized state | f t> (so that
</ι |/ι> = 1), with the property

ws(n) |/ι>=0, for n>0, (68a)

ws(0)|Λ> = A J Λ > (68b)

for all s ̂  2. Then, the Verma module of W^ is obtained by successive applica-
tion of the operators {ws(n);s^2, rc<0} on |h>. For central charge ck = 2k
(k = 1,2,3,...) the roots of the corresponding Kac determinant (hs=2) will be given
by Eq. (64) in the limit N -> oo. Notice that many of these numbers are zero. Since
ω t - f—hω^_ 1 = p, we have that f ι( l , l , . . . ; l , l , . . .) = 0. Also for certain other
choices of {kt} and {k'J, the numerator in (64) diverges (typically) like N and the
denominator like N2. However, it is also possible for some of the h's to be infinite.

All structural details in the representations of WN are determined by the simple
Lie algebra AN-ίt When Λf-»oo, the number of vertices in the corresponding
Dynkin diagram becomes infinite and so does the dimensionality of the Cartan
matrix. Then it is natural to trade the infinite number of Lie algebra labels with
one continuous parameter. But this is equivalent to introducing an extra dimension
in space-time and reformulating the underlying field theory in 2 + 1 dimensions.
Of course, we have to make additional regularizations in quantum theory to avoid
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divergencies from the A ^-degrees of freedom. For instance, in the free field
representation for the stress-energy tensor T(z), the summation over a has to be
regulated appropriately when JV->oo.

It is (more or less) obvious now that the systematic study of W^ and its unitary
field theoretic representations require a higher dimensional viewpoint. In the next
section we present a general framework for this study and derive some (partial)
results. However, the complete picture is still lacking.

5. W^ From a 2 + 1 Viewpoint

The key idea for the rest of our investigation comes from the recent work of
Saveliev and collaborators [8]. These authors proposed a new class of infinite
dimensional Lie algebras-the continual generalizations of Z-graded Lie algebras,
which have an infinite dimensional Cartan subalgebra and a continuous set of
roots. Their approach incorporates many physically interesting symmetries,
including arbitrary current algebras, the algebra of Poisson brackets and the
algebra of vector fields on a manifold (diffeomorphisms). However, for our needs,
we only have to consider the large N limit of AN and its continual realization.
Somewhat different descriptions of A^ have also been discussed in refs. [19-21].
For notational purposes we review first the main constructions of ref. [8] and
then apply them to W^. This way we set the basis for a new representation of
W^ in terms of a single scalar field in 2 -I-1 dimensions.

Let Xi9 Hh Yi (ί = 1,2,..., N - 1) be the system of Chevalley-Weyl generators
for A N _! with commutation relations (see for instance [22])

Of course, there is no summation over repeated indices in the equations above
— 1) x (N — 1) Cartan matrix of AN_ί9and K is the (non-degenerate)

2
__ j

K =

-1

2

-1

-1

2

0 2 -1

-1 2

(70)

It is convenient to introduce a parameter At (which depends on N) and rescale
the generators [Xi9Hi9 Yt} as follows:

j _~ (71)

Then the structure of the defining relations (69) remains the same, with the only
difference that δy and Ktj are replaced by

-Kίj
~ (72)
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When N -> oo, it is possible to choose At appropriately so that δ and K become
distributions of some continuous variable ί. In this case we interpret Eqs. (72) as
discretized versions of the generalized functions δ(t — t') and 3C (ί, ί') = — δ "(t — tf)
respectively. With this prescription in mind, it is natural to introduce a
one-parameter family of generators {3Γ(t)9Jt?(t)9<3f(t)} which satisfy the com-
mutation relations

'}~] = 0; {X(t\ ®(t')-} = δ(t - t)#(t\ (73a)

(73b)
The set of generators (71) is a discretization of {X(t\J^(t\9(t)} and Eqs. (73) can
be thought as the defining (Weyl) relations of A ao. In analogy with finite dimensional
simple Lie algebras, the rest of the A^ generators are obtained by taking successive
commutators of the $Γ's and '̂s and imposing Serre's condition.

The limiting procedure we adopt here is well motivated by (certain) physical
considerations in elementary quantum mechanics. To be more precise, let S[q] =
^\dtq(t)2 be the action of a 1-dim free particle propagating in time from ί0 to tf.
The quantum mechanical propagator of this system, (q0,t0\qf9tfy, is computed
in a standard way by introducing a time skeletonization (ί0, tl = ί0 + Aty . . . , tf =
t0 + (N — 2) At). In other words, we think of the Dynkin diagram of AN_^

1 2 3 N-l

0 - 0 - 0 ----- 0 (74)

Co) (tf)

as representing the propagation of a free particle in TV — 2 discrete time steps At
from the original to the final configuration. Introducing small fluctuations ξ(t)
around the classical path of the system, q(t) = qcl(t) + ξ(t) one finds that

o I <?/»£/> = Cexp< -SciM f > where C is a constant written in terms of the

δ2S
determinant of Jf(ί,ί')'= - =-δ"(t-t'). When N is finite, detJf is

δq(t)δq(t)
approximated by (A t) 3 det X, the determinant of the Cartan matrix (70). To obtain
the complete quantum mechanical answer for the propagator, we pass to the
continuum limit At-+Q by letting N->oo. Since JΓ(ί,ί') is precisely the defining
distribution of the commutation relations (73), the analogy with techniques used
in the path integral quantization of a free particle shows that Saveliev's description
of A oo as a continual Lie algebra is very natural physically.

It is advantageous to adopt the notion of continual algebras and try to
reformulate conformal field theories with an infinite collection of additional (higher
spin) conserved currents in terms of 3-dim physics. In this case, as we have already
indicated, the extra (third) dimension of space-time is associated with the
continuous set of roots of A^. The picture we envision here is best described by
the field theoretic representations (6)-(13) of WN in the limit N-> oo. Notice that
in the free field as well as the Toda field representations of WN9 the components
of the scalar field Φ, {φa\ a = 1, 2, . . . , N — 1}, are labeled by the roots of the simple
Lie algebra AN-V. Therefore, in the large N limit, it is appropriate to replace the
infinite collection of fields {φa} by a single scalar field Φ(t) which depends on a
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continuous variable t. Of course the z and/or z dependence of Φ(t) has been
suppressed to simplify the notation.

It is necessary now to construct the continual analogue of the free and Toda
field theory representations of W^ This way we hope to obtain an intrinsic 3-dim
description of Diffo R2 and its unitary representations. Using a single scalar field
Φ(z,z, ί), the Toda field equations (12) for A^ assume the following form:

Φ"M,ί)) (75)

Then it is straightforward to verify that the current

w2(z) := J AΛ'[ - $dΦ(z9 z9 ί) Jf (ί, t')dΦ(zy z9 1') + δ(t - t')d2 Φ(z9 z, f)] (76)

is conserved, i.e. <5w2(z) = 0, as a consequence of Eq. (75). Comparison with Eq.
(13) shows that w2(z) can be regarded as the (improved) stress-energy tensor T(z)
of the continual A^ Toda field theory with action

S[Φ] = ldzdzdt[^dΦ(z, z, t)jΓ δΦ(z, z, ί) + e* *<*•* •'>]. (77)

Clearly, S[Φ] describes a 3-dim field theory whose equations of motion are given
by (75). Here we have used implicitly the (short-hand) notation

Jf Φ(z, z, ί) = \άϊ JΓ(t9 f')Φ(z, z, tf). (78)

In analogy with the results obtained in ref. [11], it is possible to construct an
infinite list of higherjcharacteristic) fields (ws(δΦ(ί), d2Φ(t\ . . . , 5sΦ(ί)); s = 2, 3, . . .}
with spin s, so that <9ws(z) = 0 for all values of s. These fields will certainly provide
the representation of W^ we are looking for. Since their existence is guaranteed
by the general theory of Toda models, it is reasonable to expect that (ws(z)} are
s-fold integrals of the form

-I- higher derivative terms. (79)

t^. . . , ίs) and the coefficients of all other terms are generalized functions written
in terms of δ(t) and its derivatives. They are the continual analogue of the formulas
derived by Bilal and Gervais in [11].

It is unfortunate that the explicit expressions for the generating fields {ws(z);
5 ̂  TV} of WN are complicated and quite difficult to derive. Nevertheless we think
that the Toda field representation of WN simplifies considerably in the limit N -> oo.
In fact we only need to know the continual analogue of the chiral field w3(z),
because the rest of the generators (ws(z); 5^4} can be obtained by successive
application of the commutation relations (45). Recall from Sect. 3 that Eq. (45)
acts as a recursive relation for all generating higher spin fields of the infinite
dimensional Lie algebra Wx. This procedure provides a practical and efficient way
to construct any field theoretic representation of W^ once the explicit (continual)
expressions for w2(z) and w3(z) are known. However, the results we have obtained
so far are incomplete and we postpone their presentation for future publication
[23].

It is clear now that similar considerations apply to the free field representation
of W^. For this reason we do not repeat the arguments we gave earlier. However^
there are a few additional remarks we would like to make next. It is known that
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the free field representation of WN (for JV = 2,3,...) is described in terms of the
Heisenberg (oscillator) algebra

ίAa(n),Ab(m)l = nδn+mt0δa^ n,meZ; a,b= 1,2,...,N- 1. (80)

The operators Aa(n) arc the Fourier components of dφα(z) and the system of
conformal fields (ws(z); 5 = 2,3,..., N} belongs in the universal enveloping algebra
of (80) [1,2]. Therefore, when JV-> oo, there is an infinite number of Lie algebra
(A^) degrees of freedom and additional regularization are required in field theory.
This point has to be taken into account when we construct the continual analogue
of the Feigin-Fuks (free field) representation, or any other representation of W^.

Finally, it would be interesting to develop a BRST quantization of field theories
with W^ as the underlying symmetry algebra. It is known that the BRST operator
<2 of the chiral operator algebra WN (N = 2,3,...) is nilpotent, provided that the
central charge of the theory is [24]

c = 2 £ (6s2-65+1). (81)
s = 2

Notice that when Λf-> oo, c diverges like oo3 which is not very satisfactory. In this
case we have an infinite collection of ghost and conjugate-ghost fields (bs(z),cs(z))
and each one contributes 2(6s2 — 6s + 1) to the total value of the central charge
(81). Here, we also expect that appropriate regularization of the A^ -algebra degrees
of freedom will renormalize the unwanted divergencies in the ghost sector of the
theory and produce a finite answer for the "critical" value of c. This problem will
be addressed elsewhere.

6. Conclusions

We have shown that the infinite dimensional symmetry algebra Wx of 2-dim
conformal field theory is a central extension of DϋΓ^ IR2. We also proposed
representations of W^ in terms of 3-dim scalar field theories. This description,
although incomplete for the moment, could help us understand why area preserving
diffeomorphisms arise in the large N limit of extended conformal symmetries. It
is crucial to realize that in this case, the symmetry algebra of area preserving
diffeomorphisms does not refer to the 2-dim world M on which chiral W^~
conformal field theories are defined. If that were the case, the transformations
(z, z) -> (σ^z, z), σ2(z, z)) with Jacobian J(σγ, σ2) = 1 would mix the (local) light-cone
coordinates z, z and violate chirality. Two dimensional theories in the fixed area
gauge break scale invariance and therefore fail to be conformal. In order to give
a geometric interpretation to the algebra of area preserving diffeomorphisms
associated with W^ one has to introduce an auxiliary surface (membrane) and
reformulate the theory in 2 + 1 dimensions. Then, according to Eq. (54), point
canonical transformations on the membrane induce conformal transformations
on M.

It is quite remarkable that both infinite dimensional Lie algebras W^ and A^
are described in terms of area preserving diffeomorphisms of 2-surfaces. The
latter is identified with Diff^S1 x S1), the algebra of area preserving diffeo-
morphisms of the torus [8,20,21]. Although we have no good explanation
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for this occurrence, it is tempting to speculate that membrane dynamics could
provide a non-perturbative framework for string quantization. In particular, it
would be very interesting to construct a consistent theory of strings with W^ as
the conformal symmetry algebra on the 2-dim world-sheet and study its relation
with ordinary H^-string theory. Work toward this direction is in progress.

Finally, we point out that there are several integrable systems in 2 + 1
dimensions that may be viewed as 2-dim models with infϊni' iimensional structure
algebras. Some examples (including the Λ^-Toda field thury (75)) have already
been considered in ref. [25]. However, an intrinsic 3-dim description of their
quantization is still lacking. We think that a systematic study of these problems
will improve our present understanding of the relations between 2 and 3
dimensional physics. It could also lead to new classes of exactly solvable quantum
field theories, which are quite different from those considered by Witten [26].
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Communicated by N. Yu. Reshetikhin

Note added in proof. After this work was completed I realized that the tower of higher spin fields
(46) can be obtained from the generating function

w(t) = log(l + fl(ί)),

where

w(ί)= Σ ws(z)ίs, u(t)= Σus(z)ts

s=2 5=2

and log(l + x) = x - x2/2 + x3β - x4/4 + .
It also became clear that the large N limit of WN algebras is not uniquely defined. It turns

out that the commutation relations of W^ depend on the background charge α0 used in the
Feigin-Fuks free field realization of the W-generators. However, different limiting procedures
for the quantum commutation relations of WN at large N (depending on the choice of α0) do
not affect the leading structure (59), but only the subleading terms associated with derivatives
of the fields ws(z) and central terms. This is so, because the structure constants of the purely
polynomial w-terms are independent of the background charge and do not deform upon
quantization. Since the rescaling (29), (31) does not change the structure constants of purely
polynomial terms, the results of our analysis are valid for them in all cases.

If the background charge is not independent of N but is chosen so that α0 ~ 1/ΛT, in the limit
N -> oo the resulting W^ algebra will be well-defined and no rescaling of the generators is
necessary. In this case, the quantum commutation relations will be given by Eq. (59), up to
subleading terms associated with derivatives of the fields ws(z) as well as derivatives of ό-functions.
However, it is quite difficult to compute the form of these deformation terms directly using the
Feigin-Fuks representation. Recently, Pope, Romans and Shen made an ansatz for the complete
quantum structure of W^ which admits central terms in the commutation relations of all higher
spin fields, by requiring linearity and compatibility with the Jacobi identities [27]. Subsequently,
it was shown that their algebra provides an adequate description of W^ (with α0 ~ 1/JV, as
N -> oo) using the large N limit of WN minimal models (Z^ parafermions) [28].




