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Abstract. The geometry of N = 2 supergravity is related to the variations of
Hodge structure for "formal" Calabi-Yau spaces. All known results in this
branch of algebraic geometry are easily recovered from supersymmetry
arguments. This identification has a physical meaning for a type IIB superstring
compactified on a Calabi-Yau 3-fold. We give exact (non-perturbative) results
for the string effective Lagrangian. Our geometrical framework suggests a
re-formulation of the Gepner conjecture about (2,2) superconformal theories
as the solution to the Schottky problem for algebraic complex manifolds having
trivial canonical bundle.

I. Introduction

It is well known that some classical problems in mathematics can be studied using
ideas arising from supersymmetry [1]. A partial list of results contains the Witten
formulation [2] of Morse theory, the simple proof of the index theorems [3] given
by Alvarez-Gaume [4], and the theory of elliptic genera [5].

On the physical side, the understanding of the mathematical implications of
susy is also crucial, since it may give non-perturbative insight on the theory [6].

These results arise from rigid supersymmetry. It is an easy guess that local
supersymmetry (supergravity) should be even more powerful as a "mathematical
trick." What is not easy to figure out, is what are the mathematical problems
related to supergravity.

In this paper we give a partial answer to this question for N = 2 supergravity.
We show that this theory is deeply connected with the period maps [7] for algebraic
complex threefolds having trivial canonical bundle (Calabi-Yau spaces [8]).
Everything is known [9,10] about these maps, turns out to be a well known fact
of supergravity. N = 2 SUGRA is a "physicist's" approach to the theory of Hodge
structures and Hodge bundles over moduli spaces.

To give a rough idea of the period map and its relevance for physics, let us
consider the situation where its meaning is obvious. Consider the compactification
[11] of the type IIB superstring [12] on a Calabi-Yau (CY) 3-fold X. The 4D
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effective theory has N — 2 (space-time) supersymmetry. The scalar fields of the
N = 2 vector multiplets, are associated to harmonic (2,1) forms on X. So
they parametrize the inequivalent complex structures of X (the Kuranishi [13]
deformation space S). By definition of CY space, for each complex structure
(specified by a point sεS) there is a holomorphic (3,0) form φ). The period map
associates to a point of S the line in PH3(X,<C) generated by φ). From this map
we easily reconstruct the low-energy interactions in a purely geometric way.

The period map should satisfy a number of conditions. First of all, there are
the usual Riemann-Hodge bilinear relations. In addition, there are universal
differential constraints, known as infinitesimal period relations. A variation of Hodge
structure [9] is a map satisfying these conditions, but which needs not to arise as
the period map for some manifold. The Schottky problem is to characterize the
variations corresponding to real manifolds.

Below we show that any N = 2 supergravity can be written in this "geometrical"
way for some variation of Hodge structure. Conversely, any such variation defines
a sugra model. The formal period map is interpreted as the equation of motion
for the auxiliary field Tμv. The scalars' Kahler metric is the Weil-Peterson (WP)
metric on the formal deformation space. So, the theorem [14] giving the WP metric
in terms of the period maps is re-interpreted as the usual susy relation between
the kinetic terms for the vector fields and for their scalar partners. This physical
interpretation can be extended to more general results about the geometry of
Hodge bundles.

The case of a two dimensional CY space (X3 surface), is completely understood
from the mathematical side [15], as well as from the physical one [16].
Compactifying on K3 a type II superstring, we get N = 4 space-time SUSY. For
K3 there are no infinitesimal period relations. This corresponds to the uniqueness
of the N = 4 Lagrangian [17].

There are many applications for our geometrical point of view.
Our first motivation was to get the low-energy theory for a superstring

compactified on a CY space. In first approximation, this is just a Kaluza-Klein
problem. In Kaluza-Klein theory we need the internal metric. Unfortunately, no
example of a CY metric is known. Since such a metric is uniquely fixed by the
complex structure and the Kahler class [8], it is natural to look for a formula
relating the effective Lagrangian directly to these data rather than to the metric
itself. This is similar to what Strominger [18] and Candelas [19] did by relating
the effective couplings to topological invariants of X.

We give exact formulae for the various couplings in the low-energy Lagrangian.
Unfortunately, these formulae are quite involved, even in the simplest cases.

A related application is the moduli problem for two-dimensional N = 2
superconformal theories, and their Zamolodchikov metric [20]. The starting point
is Seiberg's remark [16] that this moduli space is equal to the scalars' sigma-model
of the low-energy theory for the superstring defined by the given superconformal
theory. The Zamolodchikov metric can be read directly from the effective kinetic
terms [16]. The metric is constrained by (space-time) N = 2 supersymmetry.

In this way, we get a relation between the (Zamolodchikov) geometry of
superconformal moduli and the geometry of N = 2 supergravity. Then, our
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interpretation of this geometry allows to identify the superconformal moduli space
with a Hodge variation (of the Calabi-Yau type).

The correspondence between the superconformal and "formal CY" moduli
recalls a conjecture by Gepner [21]; every (2,2) c = 9 superconformal model is
equivalent to a "sigma-model" on a CY threefold. Indeed, our argument associates
to each such conformal theory a "CY space" (in the sense of formal Hodge theory).

Assuming (a weak version of) the conjecture, our results strongly suggest a
"physical" solution to the Schottky problem for Calabi-Yau threefolds. The
variations of Hodge structure arising from geometry are precisely those associated
to the N = 2 supergravities which can be realized as low-energy limits of type IIB
superstrings (neglecting the hypermultiplet sector).

Recently, there was some progress towards a proof of this conjecture [22, 23].
These works also use ideas from algebraic geometry. However, the relation between
the two approaches is unclear.

The paper is organized as follows. In Sect. II we recall some mathematical facts
about Hodge variations and all that. In Sect. Ill we review the geometry of N = 2
sugra and relate it to Hodge variations. In Sect. IV we consider the string. The
abstract ideas have a direct meaning here. This leads to a re-formulation of the
Gepner conjecture as the solution to Schottky. We discuss the Yukawa couplings
for the heterotic string. Finally, in Sect. V we discuss the application to low-energy
effective Lagrangians.

II. Some Mathematical Preliminaries

Variations of Hodge Structure. Let X be a compact complex threefold with trivial
canonical bundle

We assume X to be Kahler, and fix a reference Kahler class ω0eH2(X,R).
Without loss of generality, we take b ί ( X ) = Q. Then the cohomology in H3(X,<C)
is primitive.

Following ref. [9], we define Hz = #3(AΓ,Z)/torsion, H = HZ®(C and
Hp-q(X, <C), (p + q = 3). In this notation, the Hodge decomposition reads

H= H**\ Hp'9 = Hq p,

2'1 = h2Λ =m. (11.2)

The data {Hz,H
p'q} is called [9] a Hodge structure (of weight 3). In this paper,

we are interested in the supersymmetry interpretation of a variation of Hodge
structure [9]. It is more convenient to work with the Hodge filtration of H,

where

tf=>F'=0H'+* 3-'-*. (11.3)
k ^ O

On the lattice Hz there is a natural skew-symmetric form
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which satisfy the Hodge-Riemann bilinear relations:

1. β(H™, //''•«') = 0 unless p' = 3 -p, qf = 3-q,

2. (ϊ)p-qQ(ψ,ψ)>0 for all (non-zero) ψεHp>q. (11.5)

The data {Hz, {F
p}, Q} is called a polarized Hodge structure [9] (of weight 3).

In terms of the filtration the first bilinear relation reads

F1 =(F3)1

F'-iF'i- (IL6)

where 1 denotes the orthogonal complement with respect to Q. Equation (II.6)
implies that the filtration (H = F° => F1 =? F2 z> F3} is uniquely determined by the
"short" filtration [H ^ F2 ID F3}.

Since β( , •) is non-degenerate, it induces a symplectic structure on //. To make
manifest the connection with N = 2 sugra, we choose canonical coordinates on H

Y° Y 1 Ym P P P e=H*Λ , Λ , . . . , Λ. , / Q , / I , . . . , Γmt=Π

such that yi2//*9β = JΓ ^7 Λ P^ (II.7)
/ = 0

In practice, we can start with a canonical homology basis1 α0 _,am;b°,bl, _,
bmeH3(X,Z). For ^eH we put

There are three basic classifying spaces (period domains) we shall need below.
First we have the classical period domain D,

D = (complex line /eH| Vφeί, φ Φ 0, - iQ(φ, φ) > 0}. (II.9)

D depends only on the topological type of X. It is an open domain in PH.
The Griffiths period domain D is the space of all filtrations

{F3c:F2c:F1ciF0 = //} (11.10)

with dim(Fp)= Y /,p+*,3-p-k an(j satisfying the bilinear relations. D is an open
k ^ O

subset of a homogeneous complex manifold. The compact dual D is defined as D,
except that the second Riemann-Hodge relation is not required. Clearly, D is open
in/5.

Let HR = H2®1R, and GR = Aut(HR,β)^Sp(2m + 2,R). GR is identified in
supergravity with the Gaillard-Zumino duality group [24].

Then we have [9]

£ = GR/F, (Π.11)

where V c GR is the stabilizer of a point in D.
There is a natural projection

D.

1 I.e. the intersection numbers are #(α,, αj) = #(6/} 6j) = 0, #(α7,
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The last definition we want to recall is that of period map. Let (3E, m, S) be the
local universal deformation family of X (Kuranishi [13] family). For a CY space
the local universal deformation space 5 is smooth [14]: it is isomorphic to an open
set in

If θεHl(X,Θ\ 0Jω0 = 0. Indeed, 0Jω0eH£'2(X,(C) and fc° 2 = Λ 1 ° = fr1/2 = 0.
Thus all the deformations preserve the Kahler class. This fact is crucial for the
physical applications. It implies that the moduli space for the Einstein metrics on
a CY 3-fold (with b1 = 0) is the product of the moduli of complex structures with
those of Kahler classes. Thus, the scalars' manifold for the effective IIB theory is
a product space. This corresponds to the existence of two types of matter multiplets
in N = 2 SUGRA: vector-multiplets and hypermultiplets. The scalars of each kind
of multiplets parameterize one factor space. The Zamolodchikov metric also is a
product metric, one factor being Kahlerian and the other one quaternionic. The
assumption b1 = 0 is crucial. This is physically obvious: if bί ^Q,X should be
(locally) reducible and by ref. [25] we have N ̂  4 space-time SUSY. For N = 4
we have just one type of matter multiplets. Since the N = 4 case is trivial, we
assume b^ = 0. Then /i2'0 = 0. By a theorem of Kodaira [26] X is projective algebraic.
So, our physical problem is equivalent to computing the period integrals for a
family of algebraic manifolds and can (in principle) be solved by algebraic-geometric
techniques.

A point 56 S stands for a compact Kahler manifold Xs = w~ 1(s), diffeomorphic
to X = X0, c1(Xs) = Q. For each seS we have a Hodge filtration {Fp(s)}p=0,...,3>
according to Eq. (II.3).

Take a diffeomorphism

φs:X^Xs. (11.14)

Obviously, φ induces the isomorphism

H3(X,C)ΞH (11.15)

(locally in S; in the large φs is defined only up to "modular transformations" =
Aut[Hz]).

The Griffiths period map is given by

Ω:S-+D Ω(s) = {φf(FP(s))}p=0_, (11.16)

and the classical period map by

β(s) = π[β(s)]eί>. (11.17)

These maps are holomorphic [7]. This also follows from supersymmetry.
The rest of this section is devoted to the description in this mathematical

framework of the basic physical constructions: the vector and scalars' kinetic terms
and the superpotential.

The Weil-Peterson Metric on the Universal Deformation Space. The WP metric
on S is defined in the usual way. For ψ, φeHjΛ(Xs) % TS(S) the WP metric is [14]

Λ*φ. (11.18)
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The physical interpretation of the WP metric is clear from its definition. Consider
the compactification of the type IIB superstring on X. In the resulting 4D theory
[16] the vector-multiplets' scalar fields ZA take value in 5

z: (Space-Time) -> 5.

In the low-energy effective Lagrangian their kinetic terms read

GWP(z,zl^X^i*, (11.19)

as it is easy to see from Kaluza-Klein arguments. See e.g. refs. [18,19].
The resulting effective theory has two local supersymmetries. Then the WP

metric should be of the special kind allowed in TV = 2 SUGRA. One point of the
present paper is to show that virtually everything known about the deformations
of CY 3-folds [10] is contained in the statement that the WP metric is consistent
with N = 2 supergravity.

The first condition that follows from N — 2 susy is that GWP is Kahler. In fact,
it should be Hodge [27]. That this is true for a Calabi-Yau manifold was shown
by G. Tian [14]. This author also gives the explicit form of the Kahler potential
in terms of the classical period map.

Since the metric is Hodge, the Kahler form ωwp is the Ricci form for some
metric h on a line bundle I. The most efficient way of describing the metric GWP

is to specify I and h. Using the notations as above, let L0 be the tautological bundle
over ΊPH and L0 its restriction to the open domain D c TPH. The quadratic form
— ΐβ(v) induces a metric h along the fibers of L0. This metric is positive-definite
by definition of D.

The Kahler form ωwp is given by [14]

ωwp = ίϊ2*Ric(Λ),

where Ric(ϊ)= -ddlnh. (11.20)

The Hodge property is not the only condition on the scalars' metric coming
from N = 2 supergravity. The most interesting properties of N = 2 metrics stem
from the physical fact that the vector multiplet contains a propagating vector. The
scalars' kinetic terms are related by SUSY to the vectors' kinetic terms. We shall
see that they are specified by the period map. The expression of the WP metric in
terms of the period map, Eq. (11.20), is nothing else than the N = 2 relation between
the scalars' and vectors' kinetic terms. Conversely, any N = 2 SUGRA has the
above form for some formal period map.

Infinitesimal Period Relations for a CY 3-fold: Contact Systems and Legendre
Manifolds [10]. A contact manifold is a complex manifold M of dimension 2m -f 1
together with a holomorphic line sub-bundle Lc T*(M) such that if ω is a local
generator of 5(L) c Ω^, then

ω Λ (dω)m Φ 0.

Given a contact manifold (M, L) a Legendre manifold is given by an m-dimensional
complex manifold S together with an immersion

f:S-+M
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such that

/*(ω) = 0.

We can choose local holomorphic coordinates (ql,...9q
m,S,pί9...9pm) for M

such that

ω = dS-j>A< . (11.21)

Then a general Legendre manifold is given parametrically by

q -> (q, S(q)9 p(q)\ p{ = -—r- [S(q) holomorphic]. (11.22)
Off

From a (C-space //(dim/f = 2m + 2) equipped with a skew-symmetric form β,

Q:H®H->(C, (11.23)

we construct a canonical contact system. Let P = JPH πPIC2"1*1. Consider the
projection

π:(#\{0})->P. (11.24)

Let s be a local holomorphic section of this bundle. We set [10]

ω = s*ρ(dz,z). (11.25)

Since β(z,z) = 0,ω is well-defined (up to a multiple).
By infinitesimal Torelli [28], the classical period map

is an immersion. The universal deformation space S, together with the period map
β, is a Legendre manifold for the canonical contact structure induced by the form
Q in Eq. (II.4). In fact, the infinitesimal period relations read

dv(s)
(11.27)

where v(s)eFp(s) and s1, _,sm are local holomorphic coordinates on S.
Let 0^z(s)eF3(s). Then δz(s)/δs'eF2(s), which by Eq. (II.6) implies

0 = Σ β( ¥r > *(*)) dsi = Ω*s*Q(dz, z). (11.28)
i \ OS J

Since dim S = m, S is a Legendre manifold. Given that Ω is an immersion,

(,,.29,

Then (see thejemark after Eq. (II.6)), the full period map Ω is determined by the
classical one Ω(s) = {z(s)}eJPH. I.e. the period map Ω is the first prolongation [10]
of the Legendre manifold Ω:S^JPH. Conversely, any m-dimensional submanifold
of D, satisfying the differential system (11.27), arises as the first prolongation of
such a Legendre manifold [10].
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Let us summarize what we have learned. One starts with a vector space H
equipped with a symplectic form Q. From these data we construct the canonical
contact structure (JP/f,L), where L is generated (locally) by s*<2(dz,z). Let (S,Ω)
be one of its Legendre submanifolds. The WP Kahler form on S has the explicit form

cowp = - iddΩ*s* In [ - iβ(z, £)] (11.30)

and is independent of the particular local section s. [In physical terms, s is a choice
of superconformal gauge.]

We shall see below that Eq. (11.30) describes all N = 2 supergravity theories
coupled to m vector-multiplets.

Given this identification for the Kahler metric of N = 2 sugra, we can re-state
the known properties of the WP metric as supergravity theorems.

For instance, from Eq. (11.30) we see that the WP metric is the pullback via Ω
of a GR-invariant metric on D. This implies [29] that the holomorphic sectional
curvatures of the WP metric (and hence of all N = 2 SUGRA metrics) are negative
and bounded away from zero. Then by Ahlfors lemma [30], if f:Δ->S is a
holomorphic map (Δ is the unit disk)

where (dsp) is the Poincare metric and C some positive constant. This distance-
decreasing property holds for any N = 2 supergravity. One can also show that all
these metrics are complete [14b]. These properties are crucial for the physical
consistency of N = 2 supergravity.

Infinitesimal Deformations of Hodge Structures and the Cubic Form ( = Yukawa
Couplings). There is another aspect of deformation theory which is relevant to
physics: the cubic form Ξ [10]. Its physical interpretation is the following.
Compactify on X the heterotic string [1 1], Then the cubic form is just the effective
superpotential for the antifamilies of E6. Hodge deformation theory implies that
there is a simple relation between this superpotential and the Kahler potential for
the IIB string.

Combining the Kodaira-Spencer map [31], ps:Ts(S)-^H1(Xs, Θ\ and the cup
product map

ka:H*(X39θs)-+ © Hom{H> <(X,),H>-*«+l(Xa)}9 (11.31)
p + q=3

we get a map

Xs\Hp-^ + ί(Xs)}^TΩ(s)(D). (11.32)

δs is the differential of the period map, δs = Ω^(s). [Compare with Eq. (11.27).]
Let T= T0(S), and δ = δ0. δ has two fundamental properties: (i) δ(ξ) and δ(η)

commute; (ii) δ preserves the form Q.
The data {Hz,H

p'q,Q, T,<5} (satisfying i,ii) are called an infinitesimal variation
of Hodge structure. A variation of Hodge structure has no algebraic invariants,
since GR is transitive in D. Instead, an infinitesimal variation of Hodge structure
has many invariants. Physically, they are the Yukawa couplings.
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The infinitesimal variation δ induces three maps [10]
1-*//2'1*, T®//2'1*-*//3'0*,

the first being an isomorphism, the last its dual map and the middle one symmetric.
Combining the three maps we get

(5(3): T® Γ® Γ-* ® 2//°'3 = C, (11.33)

(5(3) is symmetric by (i). The cubic form Ξ associated to the given infinitesimal
variation δ is just δ(3) restricted to the symmetric product Sym3 T. Ξ contains all
the algebraic invariants of δ.

For each seS we have a cubic form Ξ(s). For ξ = Σξ^/ds'eT^S} we have [10]

Ξ(s) is well defined. In the geometrical case, T « Hl(X9 Θ) and the map Ξ is given
explicitly by

det ( θf—j ® dzj } = det || θf || Λ ' ̂  ® Λ jdzj. (11.35)
\ J όz J J oz

The isomorphism λ:H 3(X, K*) -» C is given by J [(-) J ε] Λ ε, where ε - z(0)eH3'°(X).

Then g = λ[det( )] is the superpotential for the antifamilies. See refs. [18, 19].

III. Geometry of N= 2 Supergravity and Legendre Manifolds

In this section we show that the N = 2 Kahler σ-models correspond to Legendre
manifolds for the canonical contact structure and that their Kahler metric is given
by Eq. (11.30).

For didactical reasons, we begin with the simpler case of N = 2 rigid SUSY
[32]. In this case, the vector field-strength Fμv is contained in an N = 2 chiral
superfield X,

Di

aX = Q. (III.l)

However, a generic N = 2 chiral multiplet does not describe a vector-multiplet.
Indeed, the tensor appearing in its ^-expansion needs not to be the curl of a real
vector field Aμ: one has to impose the Abelian Bianchi identity dμ*Fμv = 0. At the
superfield level, this identity reads

where D0 = DfDja.
Just as in the N = 1 case, the first components of the chiral multiplets XA

(A = 1, _,m) can be seen as holomorphic coordinates on a complex manifold M.
Although a holomorphic function f(XA) is still a chiral multiplet, in general it
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does not satisfy the Bianchi identity, Eq. (III.2). Thus on M there exist preferred
complex coordinates, those satisfying the Bianchi identity. The preferred coordinates
induce canonically a structure on M which is consistent only with special Kahler
metrics.

Naively, it appears that the N = 2 formalism is covariant only under real linear
transformations of the XA. However, it is not so. The point is that in XA we have
the field-strengths FA

V rather than the gauge-potentials. At the level of field-
strengths, there is still the possibility of duality transformations [24]. To appreciate
the intrinsic geometry of N = 2 SUSY one should work in a manifestly duality-
invariant first-order formalism.

The N = 2 Lagrangian for a system of m Abelian vector-multiplets is

L = i f F(JT *, . . . , Xm)d4θ + h.α, (III.3)

where F is a holomorphic function of its arguments and \d*θ is the integration
over chiral superspace.

We introduce dual chiral multiplets PA by

2dχA> -•••>-

We use ωΛ(Λ = l , _ , 2m) as a shorthand for (XA,PA). All the ωΛ are chiral
superfields, since F is holomorphic. This notation unifies the equations of motion
with the Bianchi identities into a single equation [32]

These equations are covariant under arbitrary real linear transformations of the
ωΛ On the space of the ωΛ we have a natural symplectic form dX1 Λ dPj. In fact,
this symplectic structure is induced by the physical energy-momentum tensor.
This is more easily seen at the component level. The dual multiplets Pl contain
as 2-form components the dual field-strengths GAμv = 3L/dFA

v. Defining

(<ZF \T^(pA r* \
(^μv) — iΛμv^Bμvλ

the energy momentum reads

σv + terms at most linear in

This is the physical origin of the symplectic structure. Sp(2w,R) is the maximal
symmetry group of the energy-momentum tensor. Only the linear transformations
which leave invariant this form are true invariances of the formalism [24].

Now we turn to the much more interesting case pf local N = 2 susy. The idea
is to use the superconformal approach [33]. One constructs a theory which is
invariant under a larger gauge group - the superconformal group 5(7(2,2)2) - and
then xeliminates the "spurious" gauge invariances Sί/(2,2|2)/[superPoincare] by a
suitable gauge fixing. At the superconformal level, dilatation and jR-symmetry are
gauge invariances. The action of these two symmetries on the vector-multiplets
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X1 is fixed by the gauge algebra itself. On the first components it reads

X*(x) -> e*(x)+Wx>X'(x) (III.7)

with α(x) and β(x) arbitrary. Then, the two scalar field configurations (X^x)} and
{λ(x)X*(x)} are physically equivalent, being related by a gauge symmetry. In
particular, this implies that to have m physical vector-multiplets we need m + 1
superfields X1, since one of their scalars components can be gauged away. Instead
all m + 1 vectors are physical (the additional one is the "graviphoton"). We
work in a first order formalism. Let P/(/ = 0, _,m) be the dual superfields and
ωπ = (X1, Pj). Consistency of gauge with duality transformations requires the scalar
field configurations {ωπ(x)} and {λ(x)ωπ(x)} to be identified.

ω77 can be seen as the coordinates in a complex vector space H (dim H = 2m + 2).
The above gauge-invariances imply that the physically relevant space is not H but
P = ΊPH.

Again, on the vector space H we have a symplectic form

Q = x1

 Λ Pj (III.8)

defined by the energy-momentum tensor, i.e. by the sρin-1 kinetic terms.
From the data (H,Q) we construct the canonical complex contact manifold

(P,L) as in Sect. II. Recall that Θ(L) is locally generated by s*Q(dω,ω), with s any
(local) holomorphic section. Note that s is just a gauge slice for dilatation and
R-symmetry.

P has complex dimension 2m + 1, whereas physically we have just m (complex)
scalar fields. Thus, the (physical) scalars' sigma-model should be an m-dimensional
complex submanifold of P. In fact it is a Legendre submanifold for the contact
structure (P, L).

To see this, recall the definition of the dual vector-multiplets P/, Eq. (III.4).
Since P/ and X1 transform in the same way under R and scale invariances, F
should be homogeneous of degree 2 in the X*'s [33].

Let Σ be the submanifold of H defined by the Eq. (IΠ.4), and let

iΣ:Σ-+H (111.9)

be the corresponding immersion. We denote by 5° the image of Σ under the
projection π:H-+P.S° has dimension m. The physical scalar manifold S is an open
subset of the manifold S°. Which subset will be clear in a moment. Since

Q(dω, ω) = PjdX1 - X1dPI

we have

ij Q(dω9ω) = - l-(FI - XJFn)dX* = 0, (111.10)

since F is homogeneous of degree 2. Equation (III. 10) shows that 5° is a Legendre
manifold for our contact structure. Thus, the physical scalars' manifold is (open
in) a Legendre submanifold, as claimed.

Conversely, (using Pfaff-Darboux) one shows that a general Legendre manifold
of (P, L) is associated to an N = 2 supergravity coupled to m vector-multiplets.
The association is one-to-one.
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In perfect analogy with Sect. II, we define the open set D c P (the "classical
period domain") to be the projection in P of the open set

{ω6fl|-iβ(ω,ώ)>0}. (III.ll)

Let S be the restriction of the Legendre manifold 5° to the open set D a P9 and
Ωs the corresponding immersion. The map Ωs has all the formal properties of the
period map for a CY 3-fold (see Sect. II) except one: its first prolongation

ap:$^ΰ9
whereas the Griffiths period map (=l s t prolongation of the classical period
map) has D as target space. In other words, Ω(

S

1} needs not to satisfy the 2nd

Riemann-Hodge relation. D is open in D. Let S be the largest open set in S such that

and let Ω= Ωs\s be the corresponding immersion. Ω has all the properties required
by formal Hodge theory.

We claim that:
i) S is the target manifold for the (physical) scalars' σ-model.
ii) the Kahler metric on S predicted by local JV = 2 SUSY is the Weil-Peterson
metric.

We show ii) before. We have

ωwp = - iΩ*s*ddln [ - ίβ(ω, ώ)]

J)]|s, (111.13)

where Z1 = X'/X°9 (Z° = 1), and Γ(Z,Z) is defined by

\X°\2Y(Z9Z) = ̂ {XIFI + XIFI}. (111.14)

The last line of Eq. (III. 13) is exactly the usual expression for the Kahler metric
in JV = 2 sugra, ref. [33]. To show i), we recall that in SUGRA the physical σ-model
is defined to be the "positivity domain," i.e. domain in C" where Y > 0 (positivity
of spin-2 kinetic terms) and GWP > 0 (positivity of spin-0 kinetic terms). Together,
these conditions are equivalent to the 2nd bilinear relation (compare with Eq. (11.18)).
Then, (i) is the definition of S.

S may be interpreted as the formal "moduli space" associated to the variation
of Hodge structures which defines the given JV = 2 SUGRA model.

Up to now we have studied only the formal aspects of supergravity and shown
that the emerging geometrical structure is that of deformation theory for weight
3 Hodge structures with Λ3'0 = 1 (formal "Calabi-Yau spaces"). At this level, it
may seem that the relationships between the two subjects are purely formal. But
it is not so. Our next point is to explain physically the emergence of the period
map as well as its close relationships with superstring theory.

The connection between supergravity and period maps is more general than
JV = 2 sugra. The well known fact that for Abelian varieties and K3 surfaces there
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are no infinitesimal period relations, corresponds in physics to the well known fact
that for N = 4, 8 only one scalar manifold is consistent with local SUSY. In fact,
in the presence of differential constraints, the general solution contains arbitrary
functions encoding the boundary conditions for the differential equations. The free
function F(X) of N = 2 supergravity arises just in this way.

IV. The Graviphoton as the Classical Period Map

The classical period map specifies the subspace H3'0^) in H*(X,(C) as a function
of the moduli. Here we show that, in physical terms, this is equivalent to specify
what vector is the "graviphoton."

The "graviphoton" field-strength Zμv is defined by the susy transformation of
the gravitino

δφl

μ = 2Dμε
l + εlJσ»σγμZ;σεj + (IV.I)

(Z*v are the (anti-)self-dual part of Zμv). If susy is unbroken and A = 0, the flux at
spatial infinity of the 2-form Z has the physical interpretation of a central charge.
Oil-shell, Zμv is the same as the auxiliary field Tμv of N = 2 supergravity [33]. So,
the period map is just the equation of motion for Tμv.

In N = 2 supergravity, coupled to m vector-multiplets, we have m+ 1 spin-1
particles. Let Fμv (I = 0, _,m) be the corresponding (Abelian) field-strengths. The
field-strengths

^^ = (F'μv, GJμv) [Λ = 0,1, _,2m + 1]

can be seen as a two-form taking value in a vector space H. Defining the
multiplication by the imaginary unit ί as the Hodge dual, H becomes a complex
vector space. In fact, it is just the space H introduced in Sect. Ill, as it can be seen
by expanding the chiral multiplets in components. It is also identified with the
space H of the corresponding formal Hodge variation (Sect. II).

Here we want to show that this identification is geometrical when the N = 2
model arises as the low-energy limit of a ΠB superstring compactified on a CY
space X. This is already clear at the field-theoretic level. In this case, the 5-form
field-strength of 10D, ΠB supergravity is given by

2m+ 2

jf = £ J^Λ ΨΛ, (IV.2)
Λ = l

where the harmonic 3-forms ΨA form a basis for H3(X9(C). The identification
H = H3(X, C) then follows from the isomorphism H3(X, C)* « H3(X, C) given by
the non-degenerate pairing Q. In particular, the holomorphic (3,0) form ε gets
identified with the graviphoton field-strength Zμv. More precisely, ε (respectively
ε) corresponds to the anti-self-dual (respectively self-dual) part of Zμv. Then using
the equations of motion for Tμv, we get the identifications

ε<->ιZμ- = -F,Fμv- - X'GΓμv,

ε~ - fZ;v = - l- F,Fμv

+ - X'G/MV (IV.3)
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(cf. Eq. (3.35) of ref. [33a]). The other two Sp(2m + 2, R)-invariant combinations
vanish identically

i

as a consequence of the definition of GIμv.
The Tμv equations of motion associate to a scalar field configuration ZA the

field-strength Z~v (up to a multiple). Given the above correspondence between
field-strengths and lines in H3pf,C), this map is nothing else but the classical
period map for the family of CY treefolds Xs. It is manifest that the period map
is holomorphic.

Moreover, from its explicit from—Eq. (IV.3)—we see that in this case the
geometrical period map is equal to the "formal" period map associated to the
corresponding 4D low-energy theory (Sect. III).

Thus, in the case of a superstring compactified on a Calabi-Yau manifold, the
period map arises from geometry, i.e. it is a solution of the Schottky problem. In
particular, the relationship between the period map and the Weil-Peterson metric
is understood as the supersymmetry relation between the vectors' and the scalars'
kinetic terms.

We emphasize that these results are exact (non-perturbative) even if Calabi-Yau
compactifications are only approximate solutions to the string equations of motion
[34].

In our language this can be seen as follows (for alternative arguments, see refs.
[35]). CY compactifications become exact solutions in the weak coupling limit for
the 2d sigma-model. This is the infinite volume limit for the internal manifold X
[36]. But the volume of X is simply Vx = jω3, where ω is the reference Kahler
form. Thus Vx depends only on the reference Kahler class. We can go to the infinite
volume limit just by rescaling it, [ω] -»/ί[ω], λ-> oo.

We saw in Sect. II that the moduli of the Kahler class are independent from
the moduli of complex structures. The moduli of the Kahler class correspond to
hypermultiplets not to vector-multiplets. In N = 2 supergravity, the scalars' manifold
is the direct product of the hypermultiplets' quaternionic manifold with a Kahler
space parameterized by the vector scalars. The limit λ-*oo affects only the
hypermultiplet sector and has no effect on the Kahler geometry. Thus—in type IIB
strings—the field-theoretical results are at best approximate in the hypermultiplet
sector, but they are exact, even non-perturbatively, in the vector-multiplet
sector.

In the infinite volume regime, all Calabi-Yau spaces solve the string equations.
Since the vector-multiplet kinetic terms are independent from the volume, this
means that all the WP metrics arising from geometry can appear as Kahler metrics
for the effective Lagrangian of some 4D type IIB superstring. For a detailed
discussion see ref. [37]. We can rephrase this observation as follows. To each N = 2
model we can associate, in a unique way, a "formal" period map. Consider the
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N = 2 sugras which arise as low-energy limits of type ΠB superstrings. Then, the
associated period maps contain all the solutions to the Schottky problem.

In this language, the Gepner conjecture [21] can be restated in a nice way:
Under the correspondence between N = 2 supergravities and variations of Hodge

structures, the solution to the Schottky problem for the algebraic 3-fold with trivial
canonical bundle (and bί=Q) is given by the set of all N = 2 supergravities which
arise as low-energy limits of4D, type I IB superstrings (compactified on (2,2) super-
conformal systems).

Two remarks are in order: i) the precise statement of the conjecture is not clear.
However, the above statement requires only a rather weak form of it. It is enough
that the model is continuously connected to weak coupling, or that the Yukawa
couplings for the antifamilies are the "topological" ones (since we can reconstruct
the period map from these couplings). This last condition was explicitly checked
by Gepner in some model [38], ii) one datum, the lattice /ίz, is difficult to reconstruct
from supergravity arguments. However, it is likely that even this lattice can be
found by a more stringy analysis. (Hz is likely to require quantum arguments.)

The above considerations lead us to an explicit formula for the 4D effective
Lagrangian for the ΠB superstring compactified on a CY space X,

L = i[F(*')],ast component density + h.C., (I V.5)

where the function F(XI) is given as follows. We work with the canonical
coordinates on H3(X,<C) introduced in Sect. II. Comparing Eqs. (IV.2) with the
results of Sect. II, we get the following identifications for the superconformal fields
X1 and Pj:

*'=ίφ), P,= ~F,(X)=fε(s), (IV.6)
Λ/ £ hi

where ε(s) is Λ/ry generator of H3'°(XS\ seS and (al9bj) is a canonical homology
basis. By homogeneity F(X) = X'Fj/2. Then

X1 = J ε(s), F(X) = i f f φ) f φ). (IV.7)
βj / — 0 flj b j

The conformal gauge acts in Eq. (IV.6) as a change of the generator ε(s) of
H3'°(XS). Then from Eqs. (IV.7) it is obvious that F(X) is holomorphic and
homogeneous of degree 2.

We give a simple formula for the scalars' Kahler form

ωwp(s, s)= — iddln i J ε(s) A ε(s) . (IV.8)

This is just Eq. (11.30). In fact in the geometrical case the Q form is just the
intersection matrix and (X1, Pj) are the coordinates of the (3,0) from ε(s) in H3'°(XS).
In Eq. (IV.8) the map s->ε(s) is chosen holomorphic. The advantage of Eq. (IV.8)
is that it is valid independently of the local complex coordinates we use on S. This
should be contrasted with most of the formulae in N = 2 SUGRA which are
manageable enough only in complex coordinates adapted to the contact structure.
In practical computations it may be difficult to construct these preferred coordi-
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nates. So it is convenient to have a formula which is valid for arbitrary complex
coordinates.

The relation between the graviphotons and the period map is more general
than N = 2 4D supergravity. In the 4D, N = 4 case this can be understood also in
terms of the equations of motion for the auxiliary fields Tj/v. Let us see how this
connection arises in the cases relevant for type II strings. The simplest way to
make contact with complex geometry is by compactifying the 10D type ΠB
superstring on the relevant complex manifold. The argument is analogous to that
for the N = 2 case. Since for N > 2 there are no infinitesimal period relations (e.g.
for K3 we have A. Todorov's surjectivity theorem for the period map [15]), we
recover two well-known results:

i) In the low-energy theory the scalars' manifold is a coset space.
ii) The 2d σ-model is conformal (i.e. hyper Kahler supersymmetric σ-models are
finite).

Superpotential in the Heterotic string. We have already seen that the superpotential
for the E6 antifamilies of the heterotic string (compactified on X) is given by the
cubic form Ξ(s\

σv.9)

In particular, if X is a complete intersection of polynomials in PC" these couplings
can be computed using the Grothendieck residue symbol [39] (for a physicist's
review of this method see ref. [19]).

What we want to show is that the knowledge of the Yukawa couplings allows
(at least in principle) to reconstruct the associated period map, i.e. the function
F(X). Using our canonical coordinates X1 and Pj and putting X° = 1 as a choice
of section (conformal gauge), we have

(IV. 10)

Then, (ij,/c = l,...,m),

Ξ(Z)[δX] = --Fij^δX^X^X^ (IV.ll)

Thus, once given Ξ(s) we reconstruct F(X) modulo a term of the form ^
ηu real.

Notice that although (x) 2#°'3(AΓS) » <C, there is no natural isomorphism. In
other words, the Yukawa coupling are not normalized in a natural way. However,
picking out a particular isomorphism is a choice of superconformal gauge. Since
the observables are gauge-independent, the particular choice of normalization is
physically irrelevant. This is the good news. The bad news is that the superpotential
Ξ(s)(δX) is simply related to the function F only in the above canonical coordinates.
In generic complex coordinates this relation is messy. Usually we have the Yukawa
couplings in coordinates whose relation with the canonical ones is rather involved.
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Thus, in many practical situations it is not easy to reconstruct the N = 2 effective
Lagrangian from Ξ(s).

V. Simple Examples of String Effective Lagrangians

Finally we apply the above discussion to the computation of the low-energy effective
Lagrangian for type IIB superstrings compactified on Calabi-Yau manifolds.

First of all, we check the results of ref. [40] for the untwisted sectors of the
Zjy-orbifolds. In these cases the moduli spaces and period maps are just truncations
of the well known ones for the complex tori. However, it is convenient to analyze
them using the general method above. In the ZN-orbifold we have at most one
untwisted (2,1) form dz1 Λ dz2 Λ dz3 surviving the 2ZN-projection. Calling 5 the
moduli, the solution to the Kodaira-Spencer structure equation [31]

(s)] (V.I)

corresponding to the Kuranishi family is

-ϊ (V.2)

The germs of holomorphic functions fs(z) on Xs satisfy [31]

(V.3)

From Eq. (V.2) we get the following expression for the (3,0) holomorphic form:

ε(s) = dz1 Λ dz2 Λ dz3 + sdz1 Λ dz2 Λ dz3. (V.4)

We choose as the canonical homology basis the dual basis to

α0 = Re(dz* Λ dz2 Λ dz3), βQ = - Im^z1 Λ dz2 Λ dz3),

αj = Re(dz* Λ dz2 Λ dz3), β1 = Imfdz1 Λ dz2 Λ dz3). (V.5)

Then the classical period map is

Ω(s) = (1, s, - i, is)eD c PC3, (V.6)

or, multiplying by X° and putting X1 = sXQ,

czPC3 (V.7)9 9 --~

with F(X°, X1) = (X0)2 - (X1)2. This is "minimal coupling" of one vector multiple!
to N = 2 SUGRA. In this case the "natural" coordinate s is also adapted to the
contact structure and so the period map has the simple canonical form of Eq. (V.7).

For the Z2®Z2 orbifold of ref. [40] the vector multiplets correspond to the
three (2, 1) harmonic forms

ί^Λ^Λdz 3 , ^Λdz^Λdz 3 , d^Λ^Λdz 3 , (V.8)

and then

ε(s\ s2, s3) = (dz1 + sW) Λ (dz2 + 52dz2) Λ (dz3 + 53dz3). (V.9)
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Unfortunately these natural coordinates are not adapted to the symplectic
structure. Therefore we use our formula Eq. (IV.8) for the Kahler potential which
holds in arbitrary complex coordinates. Then

so the Kahler manifold is [Sl/(l, 1)/(7(1)]3, in agreement with ref. [40].
The other Calabi-Yau spaces we want to discuss are the complete intersections

of N polynomials P1,P2,-9P
N in PC^*3.

To compute the Kahler potential G we have to evaluate

JΦ)Λε-(s), (V.ll)

where ε(s) is the (3,0) holomorphic form written as a (holomorphic) function of the
moduli parameters s\ [The particular choice of ε(s) is irrelevant as long as it is
holomorphic]. We can choose as coordinates s1 some of the coefficients in the
polynomials Pα(Z, s) defining the space.

The idea is to convert the integral over X in Eq. (V.ll) into an integral over
all PC*+ 3. We can write

From the definition of ε(s) as a residue, one has the identity [19]

φ) Λ dPl Λ -. Λ dP» = cowt.eAίA2...AN + 4Z
A>dZA* A ... Λ dZA»"9 (V.13)

so we get

*-<*.*> = const. J \8AlA2...AN + 4Z
A>dZA* Λ ... ΛdZAN + <\2 Π <5(2)[P?(Z)].

p^tf + 3 α = l

(V.14)

The explicit computation of this expression implies the integrals of higher
transcendental functions, so it seems of little practical use.
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