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Abstract. The authors study the eigenvalue branches of the Schrodinger
operator H— AW in a gap of o(H). In particular, they consider questions of
asymptotic distribution of eigenvalues and bounds on the number of branches.
They also address the completeness problem.

Introduction

Let V(x), W(x) be real bounded functions on R" satisfing

(a) Vix)z1,
(b) lim W(x)=0.
x| = o0

Let H denote the self-adjoint operator — A+ V on LA(R").
This paper is devoted to the study of three questions concerning the eigenvalue
branches of the family of Schrodinger operators H + AW, in a gap of o(H):

(1) For W =0 we consider the asymptotics of the number of branches which cross
an cnergy E in the gap and which emerge from below. To be more precise, we
compute the number of branches of H + W which cross the level E € R —a(H) for
O<pu<i,as A—oc.

(2) When W =0 and supp W is contained in By, the ball of radius R, we prove a
semi-classical phase-space type bound on the number of eigenvalue branches of
the family H+ W, />0, which cross a given level E in the gap. In particular, we
show that the total number of such branches is finite and is bounded by the volume
of the ball By, . . ] o
4 {branches E (%) which cross E} <C(R",

where C, is independent of We L*(By), W =0, so long as supp W C By,

(3) We address the “completeness problem” (cf. Deift and Hempel [DH]) for W
which change sign; ie., for each E in the gap, does therc exist a />0 so that
Eeo(H — W)
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Problems involving eigenvalues in a spectral gap of a Schrodinger operator as
above arise naturally in the investigation of impurity levels in the one-electron
model of solids, and in particular in the theory of the color of crystals. We refer the
reader to [BP, DH, H1, GHKSV], for example, for more information. Partial
results on these questions have been obtained in [KI, DH, H1, and GS].

One may think of questions 1-3 above in terms of the so-called generalized (or
weighted) eigenvalue problem: given W and E ¢ o(H), we seek 4 >0 and ue [*(R")
so that

(H—Eu=+/iWu.

As E lies in a gap, H — E is not a positive operator, and the eigenvalue problem is
called “left indefinite”. If, in addition, W changes sign, the problem is also called
“right indefinite”, and the existence and asymptotic distribution of (real) gen-
eralized eigenvalues no longer follow directly from classical methods; for further
information on (left and right) indefinite problems, see [AM, DH, FL, GHKSV].

As a “folk theorem,” the asymptotic distribution of eigenvalues is related to the
rate of growth of certain volumes in phase space associated with the classical
energy of the quantum system. The symbol of the operator H, viewed as a classical
Hamiltonian, determines a region in phase space in which a classical particle with
given energy is allowed to move. The uncertainty principle, however, demands that
each bound state (eigenvector) requires a cube of volume (27)" in phase space, and
therefore the total number of bound states is approximately equal to this volume
(see [RS, F]).

Define the cigenvalue distribution functions,

N H—E W):=4{0</,<2; Eca(HF ,W)},

ie., N (4, H—E, W)is the number of eigenvalue branches which cross E for 0 < 4;
</ and emerge from above (respectively below). Hempel [H1, H2] has proven
that for 0 W(x) < c(1 +|x|) ™% «> 2, the phase space volume correctly predicts the
growth of N, (A, H—E, W):

lim N (A, H—E, W).~"?

iaded

=(2m) " lim A7* Vol{(x,p)eR?; 0<p*+V—E<iW}

A=

= o [ W),

A
S
3

a

<
=
<

where w, is the volume of the unit ball in R”.
We will prove that if W(x)=0 and W(x)~c|x|™* as |x|—> oo for some ¢, o>0,

then
E

lim N_(J, H—E, W). "= [ do(t)- Vol{yeR"; —c|y| *<t—E<O0},
0

A=
where g(-) denotes the integrated density of states for H,

o(E):= lim (Vol(Q))~' 4 {eigenvalues E;<E of H in the cube Q.
Q) o

Vo
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As we will see, this result is not in general in agreement with the corresponding
phase space volume,

(2m)™" lim A~*Vol{(x,p)eR*; —iW <p*+V —E<0}.

Ao

As
E
[ do(t)- Vol{xeR"; —c|x| *<t<E<0}
(0]

E
= lim 27" [ do(t) Vol{xeR"; —AW(x)<t—E<0},
piaded 0
we see that the correct asymptotics for N _ are obtained by replacing p* + V' —t and
(2n) " ¥dp—do(t) in the phase space volume. The quantum states which contribute
to N _ have bounded kinetic energy and so it is no surprise that the folk theorem
fails; nevertheless, the phase space picture suggests useful bounds for related
problems which can be made rigorous, as in problem (2) above, and also in [H1]
where the author derives phase space bounds for N (4, H—E, W).

The paper is organized as follows:

In Sect. 1, we provide some notations and basic results on Birman-Schwinger
kernels and on the exponential localization of cigenfunctions of H—AW. Most
propositions are stated without proof; more details may be found in [H1, H2].

In Sect. 2, we study the asymptotics of N (4, H—E, W) for W=0 with the
prescribed asymptotic behavior W(x)~c|x|™* as |x|]—>o0. We will also discuss
briefly the situation where W(x) satisfies different asymptotics as |x|— oo, for
example W(x)~e "~ n>0.

Section 3 treats the case where W =0 is supported in a finite ball B;. We
present two entirely different approaches for obtaining the phase space estimate

sup N _(LH—E,W)=<C,R", (%)
A>0
the first based on exponential localization of eigenfunctions and the other using
Dirichlet decoupling and trace estimates. The estimate (*) is crucial in solving the
“completeness” problem of Sect. 4.

In Sect. 4 we consider W=W, —W_, W, =0, and under mild and natural

assumptions on the decay rate of W_,

OsW.(x)scl+[x)™™,  a>2,

we prove that, for cach E in the gap, there is indeed a A=A(E)>0 with
Eea(H—AW). This result completes the work begun by Deift and Hempel [DH]
and continued in [H1]; for a different approach to the “completeness” problem,
sce [GS].

1. Preliminaries

In this section, we introduce the approximating operators and present some of the
theorems which we will use throughout the paper. In most cases, the proofs have
been omitted, and the reader is referred to an appropriate source.
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General Notation. If A is a self-adjoint operator, {P (A4), 4 a Borel set} denotes its
spectral decomposition.

First, let H denote the self-adjoint operator — A+ V for 1 < Ve L*(R"), acting
on I[AR) with domain H*RR"). Our analysis of the operator H will rely upon
comparisons with Schrodinger operators on bounded regions in R, so we
introduce:

Definition 1.1. Let QCR" be a domain with piecewise C* boundary.

(1) The Dirichlet Laplacian, — A9, acting in [*(€) is the unique self-adjoint
operator associated with the closure of the quadratic form g(u, v)= [ V5 Vu with
domain Cg(Q).

(2) The Neumann Laplacian, — 4Y, acting in L*(Q) is the unique self-adjoint
operator associated with the form g(u, v)= [ V5 Vu with domain H'(<Q).

We also define the operators
H,=—A3 +V (1.1)

for B, the ball of radius n>0, and note that H,> — A5 .

The following estimate (see [H1, H2]) on the growth of the spectrum of — A7 is
a simple consequence of Weyl’s Law:

Proposition 1.2. There exist constants c,, ¢,, ¢3>0 so that
en'p?—c, <dimP o (—Ap)Scesn'w? +c,
for all u>0 and n>0.
The Birman-Schwinger Principle implies the following result.

Theorem 1.3. Let T be a self-adjoint operator and E € R —o(T). Suppose A=0is a
bounded operator with A(T—E)™" compact. Then the Birman-Schwinger kernel
K:=AYXT—E)"'A'? is compact and the following are equivalent :

(1) E is an eigenvalue of T— 24 of multiplicity m;

(2) 27" is an eigenvalue of K of multiplicity m.

Definition 1.4. (a) For K compact and />0, define
ny (4, K)y=dimP;-1 . (K)
n_(s,K)y:=dimP_, _, (K)
(b) Let T, A, E be as in Theorem 1.3. Then define
N4, T—E A):=n, (4, A"(T—E)" 'A"%), 1>0.

By the Birman-Schwinger Principle, N (4, T—E, A) counts the number of
(generalized) eigenvalues /; of the cigenvalue problem (T — E)u; = + /,Au; which
satisfy 0 </, < /.

The advantage of introducing the Birman-Schwinger kernel in our context is
that it permits the direct application of min-max methods to infer information
about eigenvalues which lie in the gaps of o(H). For example, one may prove the
following monotonicity property for N, (cf. [Kl, H1, H2]):
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Theorem 1.5. Let T be self-adjoint with [E,E'1Co(T) and let A=0 be a bounded
operator with A(T—E)~! compact. Then for any />0,

N.(,T—E, A)<N .(J, T—E, A),
N_(,T—E,A=N_(,,T—E, A).

The proof is a consequence of the fact that the eigenvalues of the Birman-
Schwinger kernel are increasing with E,

(%(A”Z(T—E)‘1A1/2)=A‘/2(T~E)’ 2412 20.

In addition, there is monotonicity with respect to A:

Proposition 1.6. Let T be self-adjoint, 0€ o(T). Let A, B be bounded operators with
AT™' and BT™' compact, satisfying 0<AZB, and let o;=0,>...>0,
B2 pB,=...>0 denote the positive eigenvalues of A>T~ 'AY* and BY*T~'B'/?
respectively. Then

%, < Py

Proof. Let A,:=A+e¢, B;=B+¢ for 0<e<1 and let K ,(¢):= A>T~ '4}* and
K y(e):=B*T~'B}/?. We denote the (min-max) eigenvalues of K ,(¢) and K 4(¢) by
ae) and B,(e) respectively. Now, for ¢ >0, A}/ (and B!/?) are continuous bijections
and

1A4;72— A2 -0

as ¢—0 by the spectral theorem. Consequently, ||K 4(¢)— K ,(0)||—~0 as |0, and
o(e)—a; as €l0, for each fixed i. (Note that for ¢ >0, K , is no longer compact, but its
spectrum in (y(e), oo) is discrete, where y(e) > 0 and y(¢) |0 as ¢ 0.) Similarly, f(e)— f3;
as ¢}0. Therefore, it is sufficient to show that

Ble)zale), O<e=g

for any i fixed and some ¢;>0.
By min-max, we have

. T—IAI/Z ’AI/Z
ofe)= inf su ( : uz aal ,
0,-1 ue0; - flull

with O, denoting any k-dimensional subspace. Now the (non-singular)
substitution

vi=B'?A} P

transforms (T~ ' A}?u, A}*u)into (T ~ ' B!/?v, B}/*v). Furthermore, the assumption
A < Bimplies that ||v|| < ||u] ; for, inserting x = B, /2y into (4}/?y, y) <(B}/?y, y), we
get |AY*B; Y?| <1, and taking adjoints we have ||B, 24}?|| < 1.
Finally, the condition ueO;f_, is equivalent to ve(BY?4]'?0,_,)*, and
Bl24;7 1170, _, ranges over all (i— 1)-dimensional subspaces if O,_, does.
Therefore, we obtain

< inf sup ——EL--F- &),
B2 o ool TIE pie)
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and we are done. (Note that as o,(e)>0, sup (T 'A4}%u, Al%u)
)iu|}2>0also.> N ve0l

Since we may replace T by — T in Proposition 1.6, we have the following
Corollary.

Corollary 1.7. Under the assumptions of Theorem 1.6, we have
N (L TB=N,(4T4), i>0.

The main technical device that we employ in this paper is to replace the
operator H with approximating operators H, acting on balls or cubes of size n, and
compare their respective Birman-Schwinger kernels. If the Birman-Schwinger
kernels are close enough, then the following simple lemma ([H1, H2]) assures us
that the counting functions for the H, will give a good approximation for the
counting function N (., H—E, W):

Lemma 1.8. Let K and K’ be compact self-adjoint operators. Let 0 <g =1 be given,
and suppose that for some 2>0 we have ||K—K'|| <¢/2.. Then

na((1 462 KN Zna(h K) =,y ((1 — ;) A, K’) .

The essential ingredient in obtaining the bound necessary to apply Lemm 1.8 is
the following statement of exponential localization for the operator H:

Proposition 1.9 (Hempel [H1, H2]). Suppose that M C C is an open bounded set so

that M Co(H). Then there exist constants ¢, k>0 so that for allm=1/v/2 and n>m
we have,

lznlH —2)" (1= )| Sen ™ tem e
forall ze M, where y,, is the characteristic function of the ball ( or cube ) of radius m.

Proposition 1.9 gives exponential decay for the resolvent of H in the I*-sense;
for results on the pointwise exponential decay of the integral kernel (H —z) ™ '(x, y),
see Simon [S3].

Consider the Birman-Schwinger kernels

K:=W'H—E)~'W'?,
K= Wil2(H—E) Wi,

where Wg:=W -y, and y, is the characteristic function of the cube
Cr:=[—R,R]". As a first application of Proposition 1.9, (see [H1, H2]) we have

Lemma 1.10. Suppose W satisfies 0 < W(x)<c(1+1|x])™% for constants ¢ and «>0.
Then there exists a constant ¢, so that

[K—=Kgl=co(1+R)™7,
and there exists a ¢, >0 so that for all R=R(),&)=c,(1/e)''* we have

N, H—E W)<N.(\,H—E W)<N (14 H—E, Wpy).
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(Note that the lower bound
N (ALH—EW)EN,.(ALH—E, W)

follows from monotonicity, Corollary 1.7.)

Finally, we introduce the localized operators HY:=—A2 +V and
Hy:=—AY +V acting on L*C,) for the cube C,=[—n,n]". Using standard
truncation methods and Proposition 1.9, the resolvent kernel of H may be
approximated by ther kernels of the localized operators H? and HY.

Proposition 1.11. Let b>a be so that [a,b] Co(H), and suppose E €(a, b). Then there
exist E; e[E,b) and E, €(a, E] so that EF ¢ 6(HP) and so that

Il (H = E5) ™ = (HP = Eff) "l <en®texm
Sfor [/WZi<m< n, with ¢, k >0 independent of m, n. ( A similar bound holds for HY.)

Applying Lemma 1.8 again, the desired approximation by localized operators
is achieved:

Lemma 1.12. Let a, b, E} be as in Proposition 1.11, and let ¢ >0 be given. Suppose W
satisfies 0 S W(x) < co(1+|x|)~* for some cq, 2> 0. Then, there exists ¢, > 0 so that if
R>c(4/e)'* and n=2R, we have

Ni <<1 - §>)*> HnD_‘En;a WR) éNi()"7H_Ea WR)éNi(U +8))“> HnD_Eni> WR)
The following well-known estimate will be useful when W is compactly

supported (see [S3] for a more general version):

Lemma 1.13. Let QCR" be open, U e L*(Q) a real valued function, and suppose
e HE (Q) satisfies

—Af+Uf=0.
Then for any pe CP(2; RY) we have:
- V2= dp) A+ 11U Lupplloo) 1 il 5
where U _=max(— U,0) and
d(p): =341 o + 1% -

From the exponential decay of the resolvent (Proposition 1.9) and the above
bound we obtain the following (technical) lemma:

Lemma 1.14. Ler QCR" be an open ( possibly unbounded) set, and let fe H*Q)
satisfy (—A+V —E)f =0. Furthermore, let ¢ € C*(Q) and suppose supp ¢ CQ and
I':=suppVo is compact in Q. Then, if K is a measurable subset of {x€Q; p(x)=1}
we have

xS S H—=E) el e S
where d(@):= | A@| ,+2(d(V9))*(1 + E) and d(¢) is as in Lemma 1.13.
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Finally, we shall need a restatement of exponential localization for compactly
supported potentials. Choose ¢, € CF(B;)so that 0= ¢,(x) <1 and ¢,(x)=1 for all
x€ By ,, and define ¢ (x):=@,(x/k). The following lemma is due to Hempel:

Lemma 1.15. Suppose that [a,b]na(H)=0. Then, for R>0 fixed, there exist
constants ko, ¢, €>0 with the following property: if 0= f e D(H) satisfies an
equation

(H-E)f=Uf,
with some U e L*(R"), suppU C By, and E€[a,b], then we have
I(H—=E=U)(pi) <ce ™[ f 1, (1.2)
(=@ fl<ce ™[ f] (1.3)

Jfor k=k,.
Proof. We want to apply Lemma 1.14, making the identifications Q:=R"— B,
¢:=1—@,, I''=suppV @, CB,— By, and K:=R"— B,,. As dist(I", K)= k and the
constant d(1 —@,)<cok ™!, we obtain
”f‘nv‘mk” Scok™ ! I xx(H—E)~ 1Xr” A
Sek 2Ry T e I

for k= k, by Proposition 1.9. As a consequence, there is a constant ¢} >0 so that
(letting R:=1r/4, k,:=4k,)

1 flre-pol Scie ™S, kzk;. (1.4)

Using (1 —¢,)(H—E)f =0, k>2R (and applying Lemma 1.13 with p:=Vg,) we
have
IH=EY1 =) S =21V VI + 1 fApll S ek~ flp, - .l
<ok flon, | Sexe ML, kZh 2R, (LS)

by (1.4). As y:=dist([a, b],a(H))>0, it follows from (1.5) that

It =@dfIl=n  {H-E)1=@)f|=n teze ™| 1,
for k=k,. Now (1.3) follows from (1.2) and the estimate

IH=U=E) (o SIH-U=Ef|+I(H-=U—-E)(1—-pJ/f]|
SIH-E)(I—e)fll, k>2R. [J

2. Asymptotics for N_(1, H—E, W)

In this section, we calculate the asymptotic distribution of the negative coupling
constants for non-negative potentials W with appropriate asymptotic decay
properties.

The asymptotic behavior of the positive eigenvalues, N , (4), has already been
calculated by Hempel ([H1, H2]), in the case that 0 < W(x)<¢(1 +]x|)”* for some
¢>0and a<2:

lim N, (LH—EW)2?=w,2r)" [ (W) *dx,

Ao RY
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pZ

E-VIx)+AW(x)
Uﬂul E-Vi(x)

Fig. 1. The volume in phase space associated with N ,

WMWE-V(X)
Lt T s L e T (U «

E-VIx)-Aw(x)

Fig. 2. The volume in phase space associated with N _

where w, is the volume of the unit ball in R”. If W satisfies 0 < W(x) < c(1 +|x|) ~*for
o>v, then this limit may be expressed in terms of the associated semi-classical
phase space volume, (see Fig. 1):

N (A)~@2m)~" Vol{(x,p)e R*"; 0< p* + V(x) - E<AW(x)}

as A— 0.

If one assumes that W(x)~ c|x| ~*for some ¢ >0and o > v (see Remark 2 below)
as |x]— oo, and V(x) is periodic with period module I1, then the phase space volume
associated with N _ is given by:

Vol{(x,p)eR?"; —AW(x)<p*+V—E<0}
~ A" Vol{(x,p)eR?": —W(x)<p*+ V(.'*x)— E <0}
(see Fig. 2). Expanding the y-periodic function
fE)=(E=V) )2~ (E-V(y)—W(x),)"?
= T e ke

kell*
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in its Fourier series, one sees ([A]) that as A— oo,
Vol{(x,p)eR*; — W(x)<p?+ V(i'*x)— E <0}
d| (II] E=Vy) )" —(E=V()—W(x),)" 2]dy> dx. (2.0)

The folk-theorem then suggests that lim N _(4, H—E, W)J.~*/* exists and equals
A=

the right-hand side of (2.0). As we will see (Theorem 2.1 and calculation below) this
limit does indeed exist, but is not equal to the above expression.

Assumption (A). The integrated density of states for H,
o(E)= lim (Vol(Q))"'dimP_ , z(H,)

VolQ— w0

Jor Q a cube, exists independently of the boundary condition imposed on H.

This condition holds for almost periodic (and, in particular, periodic) potentials
as well as for a wide class of random potentials —see [KM]. Note also that g(E) is a
monotone function. We have:

Theorem 2.1. Suppose W(x)=0 is a continuous function on R* so that

lim W(x)|x|*=c¢>0,

%]~ oc

for some o>0. Then under assumption (A) we have:

hm N_(/Ay, H - E, VV))v Tvie = llm /1_ v/e fj dQ(l) : Z{XGR"; *).W(x)<t—E<O}d'\‘

yaded) s
E
= [do(t)- Vol{yeR"; —c|y| *<t— E<0}.
0
Remark. A simple calculation shows that the two expressions for the limit of
N _(4, H—E, W)L~V are equal, and therefore, as noted before, we see that the

correct asymptotics are obtained by setting p> + V(x)—t and (2r)*dp—dp(t) in the
classical phase space formula.

Proof. By hypothesis, given ¢> 0 there exists R, so that for every |x|= R, we have:
(1—e/2)c|x|"* W) S (1 +e)e]x| ™ *. (2.1
By Lemma 1.10, there is a ¢; so that if R=R(1)=c,(//¢)"/* then
N_(1+¢AH—E WQ)=N _(ALH—E,W)=N (L, H—E, W),

where Wy = Wy, and C, denotes the cube (— R, R)". In what follows, we consider
only Z sufficiently large so that R(1)=R,,.

Fix 6 >0 with (E— 6, E+ ) Co(H). Applying Lemma 1.12 with (a,b)=(E—0, E
+0), and n==2R, we localize H to the cubes C,:

N_(1+e), H—E; , Wo)ZN _(J,H—E,Wg) =N _((1 —¢/2)2, H) —E,, Wg),
where the E," lie in the interval [E, E+6), and E, e(E—§, E].
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We shall first prove the following lower bound on N_(4, H—E, W):
liminf N_(2, H—E, W), "*> fd@(t) Vol{yeR": —cly| *<t—E<0}.
A0

Now, as (H?+ AWy) has purely discrete spectrum, its eigenvalue branches are
globally defined, strictly monotonically increasing functions of 1. Thus, an
eigenvalue branch of (H}) + AWy) crosses the level E," at some ;< Aif and only if it
lies below the level E, at =0 and above the level E; at /. Therefore, we have

N (L H—EW)zdimP_, , (H)—dimP_, ,, (H?+(1 —&/2).W,)
>dimP_, p(H?)—dimP_ ., (H? +(1 — /22 Wy). (2.2)
But, as n=2c,(1/e)'"*,
llm A7VEdim P, o (HD)=Vol(Cy, - 12)0(E)., (2.3)

so it remains to calculate the second term. By min-max,
dimP_, poo(Hy, +(1—¢/2)2Wp) Sdim P w.p 4o (HY +(1—¢/2)2Wp)
sdimP_, pio(HE, ¢y
+dimP_, pio(Hey—c, +(1—¢/2)2 W)
+dimP 4 6)(Hgm_CRD +(1—¢/2)AWy)
+dimP_, gy o(Hy,+(1—2/2)AWy), (2.4)

where

_ (1 —¢/2)*cI\'"*
ey 172
m:.=y < Ero <R

for ¢ sufficiently small, and m> R, for / sufficiently large. Treating each term in
(2.4) separately, we first have:

dimP _, g +a)(Hgo+(1 —&)iWy)=dimP - oo.E+b)(I{I[¥0)§C2 (2.5)

for some ¢, >0 as R, is a fixed constant. Also, if xe C,,— Cg,, then Ry < x| =< ]ﬂm
and, by (2.1), (1 —¢/2)AWi(x)= E+ 9, so:
dim P gy 5(HE, —cpy+ (1 —6/2AWR)=0, (2.6)

The first term of the sum in (2.4) satisfies (cf. (2.3))
Tim 27 dim P, gy o(HE, —¢,) = VOUCoryo- 1= Copem1ado(E46). (27)
A=
All that remains is to calculate the second term of the sum in (2.4). Let
_ (1—¢/2)%c i
= 12 (E——‘—é‘— 5 qg:=cqt 1 >p. (28)

Given s>0, divide the region C,—C,, into finitely many cubes {Q;} with each Q;
satisfying VolQ; <s". Denote the vertices of these cubes {xy}. Then, Q}:=2"%Q; are
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cubes which cover Cr— C,,. Denote their vertices {x;}. Note that VolQ;— 0 as
A— 0.

For each j, let x; be a vertex of Q; for which |x, |=|x| for all xeQ;. Then
x;(J::/IV/“ka is a vertex of Q) for which |x; |z |x| for all x’e Q). By Neumann
bracketing,

lim 272 dim P, o (HY, . +(1—&/2)AWg)

A= 0

< lim A7FAmP s (HY e, + (1 —8/2)2 x| %)

A0

< lim 27y dimP oy (HY, +(1—8/2)7Aclx; | %)

A= J

=2 VOIQ,‘}E? (VOIQ})_IdimP(~oo,E+a—(1»e/2>2c|xkjra)(Hg;)
j L= 00

=3 VolQ; o(E+5—(1 -—8/2)26|ka|_").
J

Taking s—0, (recall that ¢(-) is monotone), we obtain:

lim 27" dimP s (HY -, (1 —6/2AWy)

A= ©

< | oE+d—(1—¢/2)%c|x|”"dx. 2.9)

Cq=Cp
So, applying (2.3), (2.5), (2.6), (2.7), and (2.9) to (2.2) and (2.4), we obtain:
lim A7*N_(4L, H—E, W)= Vol(C,,) o(E)—Vol(C,,— C,) o(E+0)

A=

i

= [ oE+0—(1—e/2)clx]dx,

Cy=Cp
and taking first 6—0,
lim 27N _(AL,H—E,W)2Vol(C,): o(E)— | o(E—(1—¢/2)%c|x|”*)dx

e q p

= Cj (0(E)—o(E—(1—¢/2)%c|x| " *)dx
(note that (1 —¢/2)%c|x| "*>E if |x|<p), and then if e—0, we obtain:
lim A™"*N (4, H—E, W)= | (o(E)—o(E—clx|™*)dx
A= o0 RVY

and the form of the limit in the statement of the thcorem may be obtained by
changing the order of integration.
The proof of the upper bound

E
limsup N _(4, H—E,W)A™"*< [ do(t)- Vol{yeR"; —c|y| *<t—E<0}
A0 0

uses Dirichlet bracketing instead of Neumann bracketing, but is otherwise
identical, and is left to the reader. []
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Remarks. 1. The condition on the asymptotic behavior of W(x) may be weakened
somewhat to allow for angular dependence. Without significantly changing the
above proof, the condition W(x)|x|™*—c¢ may be replaced by:

lim t*W(t&)=c(&)>0

t—

uniformly for |£|=1. In this case,

E
lim N_(L, H—E,W).7""= [ do(t)- Vol{yeR"; —c(y/|y) [y| *<t—E<O0}.
A0 0

2. Unlike the N, result, where the decay rate o must satisfy «> 2, the above
theorem for N _ holds for all «>0. In addition, note that for the phase space
volume to exist, the integrability condition «>v must be imposed. Thus, the
asymptotic formulae for both N, and N _ hold even when the phase space volume
is not finite for finite values of 4.

3. The number of negative eigenvalues is (to first order) unaffected by the
behavior of W(x) on compact sets, as only the asymptotic form of W appears in the
limiting expression.

4. Furthermore, we note that for a>2, the number of negative eigenvalue
grows more slowly than the number of positive eigenvalues. To understand this,
recall that ;< Aiscountedin N , () if E € o(H ¥ /;W), so one is counting how many
eigenvalue branches of H F AW cross the level E. When we speak of positive 4, we
are counting branches pulied down from higher energy bands by an attractive
potential — AW, for the negative A, the branches are being pushed up from lower
energy bands by a repulsive potential AW. But there should be “more” eigen-states
in the (infinitely many) bands above E than there are in the (finitely many) bands
below E, and hence it is not surprising that N, grows faster than N _.

5. Bounds on N, (4) as well as the asymptotics for N (1) were proven in the
one-dimensional case in [DH], and in v>1 dimensions in [H1, H2].

Now, we consider a one-dimensional example and show that the asymptotic
limit of N _(/, H— E, W) is not in agrecement with the phase space volume. Define

, 1= T o
AE):= Tim [ IY(E=VEx), = (E= V0 —gx), Jdx,

where g(x):=|x|"% a>2, (here ¢c=1), and compare A(E) with the actual leading
order term for N _(A) which we computed above,

o E
B(E):= J fl{—g(x)<s~1~:<0}dQ(5)dx-

« 0

As noted in the introduction, using Fourier analysis A(E) may be evaluated as

[ TDAE=VO), ) (E- V) —gx) Jdydx. @10

Consider the following periodic potential on R:

0, for k<x<k+3 keN
V(x)= N ]
1, for k+3<x=Zk+1,keN.
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and let H= —d?/dx*+V on I*(— oo, o). It is well known that all the gaps in o(H)
for this potential (Kronig-Penny model) are all open. Let [E,, E,] be the lowest
band in g(H), and suppose that E> E, lies in the first spectral gap. By Floquet
theory, E, is the first periodic eigenvalue and E| the first anti-periodic eigenvalue.
Since E (H)SEy—d*/dx*+1)=1 and E(H)=E,(—d?*/dx*)=n* we have
1e[Eyp E] and Ex1=[IV].

Formula (2.10) for A(E) may be rewritten as:

1 w0 ©
A(E 5‘ JOL (J) (I (s— /2Z{s> V(y)}dy> X{—g(x)<s—E<O}dex
= _j (I)X{~q(x)<s~E<0)dh(5)dx (2.11)
1 1
for dh(s)= 7 [j (s—=V()~ ”2;((S>V(v))dy} ds. By direct calculation, we have
; :
1,
o 1/5 , for O0<s<1
hs)=1 " (2.12)

| —
Eg(l/g‘l’l/gwl), for 1<s.

(Note that h(s) ~ _nl/i ~ o(s) for s> 1,> Applying (2.12) to (2.11), we have:

1 « 0 ds 0 ds
A(E) 2_ »f {.{ KE>s>E-gx) -/~ + j KE>s>E—g(x)} o A] dx
0 21/.; 1 S

LT ds
- 27;5( ] Z{|x|<(Efs)—1/a}dX>_

2y

Uil N\ ds
* E { <_-fOC X“x|<(E—s)’l/a}dx) 27

s—1
1E ds 1E ds
— (E— )fl/av__]L_i (E’—S)kl/a el _
7T§) 21/ s ﬂj; 21/s—1
Now the first term above,
E ds Lol dt
(E—9) 1o =B = (10
] s ) i

is continuously differentiable in E >0 for all « > 2. Fixing y with 1 <y < E; we have

that j (E—s)”Y*s—1)"12ds is continuously differentiable for E near E, and
1

fE—y e B g g
R e A
¥ 2)/s—1 J/E 2)/Et—1

is also C' near E=E,. In particular, A(E) is a C' function for E near E,.
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Now, consider B(E). If A(4) is the Hill’s discriminant for H — 2, then for se o(H),
do 1 A(s)

ds w W_A(S)Z
(sec e.g. [M].) As o(s)=0 in the gap (E,, E),

o« Eji

B(E)= f j"/{»p gtnd@(s)dx = 2§ ) dols).

For E> E, we differentiate to obtain:

== [ (E=9)7' gl

2 E A(s) o
— | === (E—s) "' "ds
T £y ]/4t A(s)?

e e N (AR A

by monotone convergence. But, A(E,)=0, as all gaps are open, so this integral is
clearly infinite, so B(E)is not C! near E,, and thus A(E)+ B(E) for all E lying in the

gap.
Finally, we remark that if W(x)~ ce "l then the asymptotic formula as 2 — oo,

N_(2 H—E, W)~ [({do(0)" 1w <o)dx~ % o(E)(log2)',

where o, is the volume of the unit ball in R", is again valid. The proof (see [A])
follows the proof of Theorem 4.1 but with some modifications depending on
whether n =k or y <k, where k appears in Proposition 1.9 (x is essentially the
exponential decay rate of the Green’s function (H — E) ™ }(x, y) as |x — y|— ). It is
an open conjecture that

N_ (i H—E W)~ {({do(t) 7 sw<i—p<o)dx
for all bounded W(x)>0, W(x)—0 as |x|— 0.

3. An Upper Bound on N_(4) for W of Compact Support

The aim of this section is to prove the estimate

sup N_(AL, H—E,W)<cR",

>0

provided supp W C By, with a constant ¢ independent of W and R. This result is
suggested by the phase space formula: if supp W C Bg, then

if Z{‘),W’<pz+V(X)‘E<O)dpdx:j‘dQ | 15<R Ai— 2w <p2+ V(x)~E<O;dX§C0nSt-RV~
x|'=

The above estimate will also be of crucial importance in solving the completeness
problem in Sect. 4.
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We shall present two rather different proofs of this bound: the first proof is a
refinement of the approach used in [ H1] where a weaker result was obtained, while
the second uses ideas from [ DS] on decoupling via Dirichlet boundary conditions.

For later purposes, note that as Ve L*, Proposition 1.2 provides the estimate

dimP gy (H)SCpk™, k=1, (3.1)
for some constant Cj.

Theorem 3.1. Let 1<VelL*R), Hi=— A4V, and EeR—a(H). Let C;; be as in
(3.1) and Cy:=2-3"- Cy. Then there is a constant R, so that for all R=R,,

N _ (LH—E, yi)<CyR". (3.2)
Together with Corollary 1.7, this gives:
Corollary 3.2. Suppose W(x)=0 is bounded with supp W C Bg. Then
N_(4,,H—E W)<C,R*, RZ=R,.

Proof of Theorem 3.1. Choose a, bR so that a<E<b and [a,b]no(H)=0. Let
N_=supN_(LH—E,yg) and Np=min(N_, 2C,R"). Denote by {ef/)} the

2>0
eigenvalue branches of (H + Zyz) which cross the level E for some 2>0. To be
precise, for each branch e; there exists an interval I;:=[c,7;] so that ¢; is defined
and continuous for Z€1; and so that e(«))=a and ¢j(y,) = E. In addition, we order
the ¢; so that y, <y, <.... We also define f=%(E—a) and

E=E—fY 72, i=12... (3.3)
=1

Note that E; is monotone decreasing and E;>a for all i.

Step 1. We organize the branches ey, ..., ey, into disjoint collections.
First, define 2,:=7,,

Soi={e;idoel, E\Seflig) SE, 1SS Ny}

and ny:= #S,. Now assume that A, <...<4;_4, Sq, ..., S;_y, and ng, ..., n; _; have
already been chosen. Let /; be the smallest 2>/, ; so that ej(4)=E; for some
JE Ny Let

Si=le;: el E Sef2)SE, 1SS Ny

and n;:=#S, Clearly, after a finite number of steps, the above process will
terminate, and monotonicity assures us that the S; are disjoint. In fact, if we denote
the number of the sets S; by J(R), we have

JR)=NR=2CR

and, as cach branch ej-) meets each E; at some A>0, the S; must nccessarily
exhaust the branches ey, ...,ey,, ¢,

. (3.4)
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Step 2. We now consider an approximation of our problem, where H is replaced
by H,, for a suitable k (see (1.1)):

Let x>0 be given by Lemma 1.15, k:=3R>k,, e:=e~*®. Letting h® denote
the eigenvalue branches of the family H, + 4yg, >0, we define

S0 = (h9: E,, | —e<hP(l)<E,+é)},
d¥:=#8S®  i=0,....,J(R)—1.
Clearly,
dP=dimPy, 5+ o(Het 2itr)- (3.5)
Consider {S$}. AS E,; 1 —E;; 1, =PRi+2) = ¢'R™*", for suitable ¢’ and R>1,
we can find R; >0 so that
Eyiv1—Ey,226=2e7"%,  RZ=R,,

for each 2i < J(R)—1; as a consequence, none of the intervals (E,;,  —¢, E5; 4, +¢€)
intersect for 2i<J(R)—1. Therefore, by monotonicity, all branches A" in US%)
must be distinct, and hence:

#50= Y AP<#{W; WPO)SE+1}
2i<J(R)—1 2i<J(R)— 1
SdimP_, p. 1 (H)<3'CLRY (3.6a)

for R=R,, by (3.1). Similarly,
#S5%, | S3'CLR". (3.6b)

2i+1<J(R)—1
In Step 3 below, we shall show that there exists R, >0 so that (recall k=3R)
m<=d®, i=0,..,J(R)—1, R=R,. (3.7)
From (3.4), and (3.7) we obtain (with Ry:=max{R,R,}),
Nyg= 2 n= 2 AP <2-3"CyR

0<i<J(R)—1 0<i<J(R)—1
for R=R,. As Ny=min{N,, 4-3"C,R"}, it follows that N _ <2-3"C.R", R=R,,
and we are finished.

Step 3. Suppose the statement of (3.7) were not true. Then, there exists a sequence
of values of R tending to infinity, for which (3.7) is violated. We denote this
sequence by Z. Then for Re Z, we may find 0<i(R)<J(R)—1 and uy,...,u,
(here, and in the sequel, we write i =i(R), d;: =d®, k=3R) which are orthonormal
cigenfunctions for (H + A;) with eigenvalues ¢}, ..., e} ., satisfying E,, ; <e'<E,
for j=1,....d;+1. Let p e C5(B,) be so that ¢(x)=1for xe B, , and 0< p(x)<1;
define ¢@(x): = @(x/k). Consider the truncated functions, {¢,u;}. We show first that
there is an R; >0 so that the functions

{(pku);jz 1) "'adi+ 1}
are linearly independent, provided R=R;, Re %,
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d,+1
Suppose Z aju;p,=0 with a; not all zero. Without loss, assume that |a/

<a,=1. Then takmg the scalar product with u,, we find for R=k,/3, Re %,

(11, peuy)l = _22 la,| - [(@uy, upl= ‘ZZ lajl - (1 = @iuy, u)l
J= J=
d,+1
'Zz H(l—»(pk)ul1t§dic1e_3KR§c2R“e“3”R, (3.8)
I=
where we have used u,; Luj, the estimate (1.3) and
di+1:=dPP +1<c,R. (3.9
But, by (1.3) again,
(uy, @rur)l = | 2oz 1= [[(1 =@ u, | 21 —cie 3K, (3.10)

But clearly Egs. (3.8) and (3.10) are incompatible for large values of R in the set Z.
Thus, it must follows that, for some Ry, {u;¢};~1. 4 are independent, for
R2R,, ReA.

Now, as the {u;p,} span a (d;+ 1) dimensional space, it follows that there is a

di+1
= '21 bjul(Pk:':O,
=
which is perpendicular to RanPy, ., g o (H,+4;zg)- Let
E:%(Ei+Ei+1)5 5:%(Ei“Ei+1)-
By the spectral theorem and the choice of v we obtain (assuming R=R,, Re %),
[(Hi+ 2iqr— Bl > > (0 + ) |o]]2. (3.11)
On the other hand, applying (1.2) and (1.3), we have:
I(Hy+ iz — E)l

di+1 ' R
= Zl (Hk+)°iXR—e;'>(bjuj(pk)+ Z (e;—E)bjujCDk)
i= i=
di+1 d+1
= Z byl |(Hy 4 L —€)) (w00l + Z U
=1 =
drto d+1 ‘
+ Z ( E)bjuj(1 — Q| = ‘Zx ij| H(H+)ViXR_e;') (”j@k)”
=

d,+1

d+1 1/2 '
< (ef—E)*|b; |2> + :;1 [b,{011(1 — @Ju,ll
2 b

+
L1 1/2 di+1

< > cqe ""—H)( Y ibj|2> +5< Y ij[> ce "k
i=1 j=1

é < Z 2> [c3Rv/2€—3KR+(3], (3.12)

I\

as Z bl <[(di+ DY 1b*1"2 =, R[L b1 by (3.9).
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d,+1
Now we provide a bound for Y |b|*: We have
j=1

d,+1 d,+1

Z ij|2 = Z b_lbj(ula “j)
Jj=1 Jil
= IZ b_lbj[((l — @y, )+ (@, (1 — @ u;) + (@, @) ]
sJ
=|vl® + ZI Blbj[(m — Qug, uy) +(@rup, (1 — @pu)]
Js
di+1
=< [’Uilz‘*‘zcxegkk 2 Iblbjl
Lij
d,+1
<|v|*+2¢,Rve™ 3k < Y |bj|2>.
i=1
Thus,
di+1
Y P = ol (1 —2¢,R%e ™) 7,
i=1
or,
d+1 1/2
< ¥ lbj-IZ) <|lvfi (1 +4c,Re™3*K) (3.13)
=1
for R> R, R e % chosen sufficiently large that 2¢,R%e **R <1 Applying (3.13) to
(3.12) yields:

I(Hy A+ 2ixr — EWll S [0] 0+ caRe™ ) < [lu] (0 +cqpe™ ) (3.14)

for R=R¢ =R, ReZ, with Ry chosen large enough that Rje **Re <™ 2xRs,
From (3.11) and (3.14) we obtain

ol (6+e™ ) = |[v] (0 +cse™ 2K,
which is incompatible for large R. The proof of Theorem 3.1 is now complete.[]

We now present an entirely different approach for estimating N _(2, H—E, yg)
using Dirichlet decoupling in the spirit of [DS]. We will obtain an estimate of the
form (3.2), but with a different constant C,, and for all R = 1. Here we shall think of
Ayr, A—>00 as a potential barrier whose repulsive effect is less than that of a
Dirichlet boundary condition on ¢By in the sense that

H+/”LZR§—A.€LBR+V, />0.

We will need some definitions: write Hgi=—A4 +Vl]g,, and
Hy oi=—A8v 5o+ Vg5, s0 that Hy@Hy  is just — A+ V with a Dirichlet
boundary condition on 0By, and

H<H,®Hg .
We define
JR::H_I'"(HR@HR,oo)flr jR3:JR+H§1,
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so that, in particular,

H '=Hy ,+Jg,
and

0<JgSJ<H .

For 1<p<oo let 4, be the p™ Schatten ideal, i.c., %, is the class of all compact
operators K for which ) uf < co, where the u; are the eigenvalues of the operator
|K|=(K*K)'?. (See, e.g. [S2].) The norm on £, is given by

1K |, := ().
The following properites of J, are basic to our approach:
Lemma 3.3. For p>v/2we have J € %, and there is a constant ¢,» independent of R,
so that
trace(JR) = | Jgl5, <c,R”,  R=1.

We defer the proof of this lemma to the end of the second and proceed to the
second proof of Theorem 3.1.

Proof of Theorem 3.1.

Step 1. Instead of considering H and H, @ H},_ . directly, we pass to their inverses:
defining

Ke(u)y:=H '"—(H+puzp)™ ", u>0,
Br(u):=Kg(w'"*(H ' —E~ ") 'Ky(w'"?

(so that Kg(u) and Bg(u) are compact; note that (H~'—E~ ")~ ! is bounded) we
shall show in this step that

N_(Z,H=E, yp)=n.(1; Bp(4), 4>0. (3.16)

(3.15)

We first observe as before that the eigenvalue branches of H+ puyy are strictly
monotonically increasing. We also note that the operators Kg(u) depend
monotonically on u; we have

OgKR(.u')éKR(.u/)éjka Ospsw (3.17)

as H+pyprsH+Wyr<Hpg . for Ospsy.

Now let 0< /4, £4,<... denote the coupling constants where the branches of
H + pyg, >0 cross the level E. Suppose that m eigenvalue branches cross E at
some fi€ {4;}. Then there are m eigenvalue branches of H ™' — K (1) = (H + pyz) ™'
which cross the level E™! at u=j, ie., E”' is an eigenvalue of multiplicity m of
H ™' — K(f1), and by the Birman-Schwinger Principle (and (3.15)), it follows that 1
is an eigenvalue of Bg(j1) of multiplicity m. Conversely, if 1 is an eigenvalue of Bg(u')
for some ' >0 then Eca(H + 1’y g) and has the same multiplicity. From (3.17) and
Proposition 1.6 we conclude that the eigenvalue branches of Bg(u) are non-
decreasing functions of > 0. Furthermore, they cannot be locally constant =1, as
the eigenvalue branches of H + py are strictly monotonically increasing.
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As a consequence, at each u=/; a (non-decreasing) eigenvalue branch of By(u)
crosses (strictly) the level 1, and we therefore see that

{4 <2i=n.(1, Bg(4),
and (3.16) follows.
Step 2. By (3.17) we have 0< K (1) < Jx, 2>0, and Proposition 1.6, applied to the

Birman-Schwinger kernel Bg(4) in Eq. (3.16) yields
N_(H=E, ) <n (1LJAH ' —E~) T2
S|JRPHT —ETY) TG, (3.18)

Note that the right-hand side of (3.18) is independent of 2. Now we fix some
peN, p>v/2 and put q:=2p. As 4B, <[ A4, Bl for any A€ %, and B
bounded (see [S2]) we obtain from (3.18)

N (2 H=E, 70 S [ TRlla,LI(H ™ = E7) 71| 1T g)17].

Since |[(H™'—E~')"!| is independent of R and ||J;|| < |[H '] <1, there exists a
constant ¢, independent of A and R such that

N_(2,H—E, yg)Sc, - trace(JR) < c, R’
by Lemma 3.3 and we are done.[]
Proof of Lemma 34.

Step 1. Let Vi=V—-120, Hi= A4V, —A:=—A8 .., and H:=—A+T.
Then, the integral kernels of the semi-groups e "# and e ™' satisfy the estimate

0<e (x,y)—e H(x,y) < (2nt) "2 W Ryl R4 (3.19)

for x, y ¢ Bg and t > 0. This inequality is proven in [S 1] for the case I7~= 0; however,
by the Feynman-Kac formula, (3.19) still holds true if we include V'>0.

Step 2. Applying the Laplace transform, we obtain

0<Jp(x,y)= (j; e e x,y)—e M(x, p)]dt,
so that
JR(X,y).S_Cle*”le"vl_zmv X,y ¢ Bgiy

with constant ¢, independent of R. As Hg '(x,y)=0 for x¢ Bg,, or y¢ B, , it
follows that

Tr(x,y) Sy e W20y v By
On the other hand, for all x, y we have
0SJp(x (= 4+ 17 (x.y),
so that

P

0=JRx )=S(—4+1)7P(x,y), x,yeR”
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for any positive integer p. Using the representation
(—A+1)72x,y)=c, | e le TP TRy
0

one casily shows that
Calx—y| "0 eI for  y>2p
TR, )= ca(l +lloglx —ylhe™ ™72, for v=2p
]kcse"’"‘“", for v<2p
for suitable constants c;, ¢,, ¢, and 7>0.
Choosing 0 <#'<n we finally obtain
0 TR, ) Sce M IHTI=2RT 0y By, (3.20)
0<Jp(x, ) Sclx—y| % "3 yx, yeE’, (3.21)
where a=0a(p)>0 for v=2p and z=a(p)=0 for v<2p. (Note that for v=2p any
a=o0(v/2)>0 will do.)
Step 3. Here we show that for R=1 and any integer p=1,
0 TRSc(pe " NFPITORY x pg By,
This is true for p=1. Assume by induction that the result is true for p. Then for x, y

¢ Bgr .y, we have

Rluns k(X 2) gz, p)dz+ [ JR(x, 2)J g(z, y)dz
|zl <R+p |z]ZR+p
e NUxl+IyI-2R=2p) (el 5 1] 215 —4R)
— 7 ¢ e~ Ix Iy 20z —4R) g,
sy ooz P L

—'(|x|+|y{ = 2R) pv
gcge 7' (] + [yl )R‘,

where we have used (3.21) for the integral over |z|<R~+p and (3.20) and the
induction hypothesis for the integral over |z| = R + p. This completes the induction.

Step 4. The estimates in Step 3 imply that for p>v/2, J% has a (continuous) kernel
satisfying

O<Ap( . ce XL for x,yeR’
= X, = - C A
STRGYIZ | sl bl=2RRy  for X VEBga,.

As Jh is positive as an operator, we conclude that it is trace class and satisfies
the estimate trace(J})=c,R", for R=1. This completes the proof of the
Lemma. []

We do not provide lower bounds for N_(4), but we wish to mention some results
concerning the extreme cases, where supp W is either very small or very large.

If the support of W is very small, the phase space volume calculation suggests
that there may be no negative eigenvalues at all: N _(2)=0 for all 2>0. This is true
if the dimension is at least two:



Eigenvalue Branches of the Schrédinger Operator 313

Theorem 3.4 (Hempel [H1]). Let v=2,1<VeL*R"), and H= — A+ V on [*R").
Suppose E € R —a(H). Then there is a 6>0 independent of W so that

N_(LH—E, W)=0
for all non-negative W e L*(R") with support in B,.
Combining the above theorem with Theorem 3.1 we have

Corollary 3.5. Let v=2,1<VeL”(R"),and H=—A+V on [*(R"). Suppose E€R
—a(H). Then, there is a ¢, >0 so that

N_(L,H—E,W)<c¢,R®
for all non-negative W e L*(R”) with support in B, R=0.

Remark. In dimension v=1, the theorem above does not in general hold. The

question of whether sup N_(2)>0 or not depends crucially upon the location of
2>0
supp W in relation to the zeros of the Green’s function (H — E)™ !(x, x). For more

details, see [H1; Theorem 8.1 and 8.2].

Remark. Theorem 3.1 depends critically on the fact that E lies in a gap of o(H). For
example if E>0 and H= — A4}, then (3.2) cannot hold for any constant ¢,; for
details see [A], and also [Ki].

Conversely, one might expect that if supp Wis “large enough,” that there will be
infinitely many negative eigenvalues. In fact, one has:

Proposition 3.6 (Alama[A]). Suppose Ve L*(R") is periodic, and H= —A+V.
Suppose E€R —a(H), with E> u=infa(H), and W a continuous function which
satisfies W(x)>0 for all xe R, and W(x)—0 as |x|]—oc. Then, sup N _(A)= 0.

s

4. Completeness in R"

Up to this point, the assumption W(x) =0 was fundamental for our investigations.
We shall now use results and methods of the preceding sections to study the
cigenvaluc problem

(H— E)u=/Wu,
where
W=w,-w_, W,z=0,
restricting our efforts to the problem of completeness, as formulated in [DH]:

Question. For any given EeR—a(H), does there cxist a real / such that
Eeo(H—/W)?

To be more precise, we say the triple (H, W, S), where S is a subset of R, is
complete if for any Ee R —o(H) there exists a A€ S so that Eea(H—AW).

So we merely ask if there exists at least one eigenvalue branch of H— AW which
crosses the level E. The paper of Deift and Hempel [ DH] is entirely devoted to this
question; the basic v-dimensional result in [DH], Theorem 1, asserts under rather
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general conditions that the triple (H, W,R ) is essentially complete, i.e., the
eigenvalue branches of H — AW, u> 0 cover the spectral gaps of H with the possible
exception of one level E, per gap, which is dubbed an “exceptional level.” While
[DH] has no results on completeness in RY, v=2, the paper contains three
theorems on completeness in the ODE case. Subsequent progress was made by
Hempel [H1] when W_ =min(— W, 0) has compact support, and by Gesztesy and
Simon [GS], in the case where W has compact support.
Our main result reads as follows.

Theorem 4.1. Let 1<V eL*R") and H= — A+ V. Suppose W e L*(R") satisfies:
(1) W(x)—0 as |x]—>c0;
(2) There exist constants ¢>0 and «>2 so that

0SW_(x)<c(l +x|) . (4.1)

(3) There exists g, n>0 so that W(x)=n for all xe B,
Then (H, W,R ) is complete.

Our proof uses the original strategy of [DH] to consider approximating
problems

(H,~E) fu= 2., (4.2)

where the operators H, act in I*(B,) and have a spectral gap around E. Following
rather closely the proof of [H1: Theorem 9.1], we show that we can find solutions
of (4.2) with 0 </, < const. Then, letting n tend to infinity, we arrive at a solution of
(H — E)u= ME)Wu.

In order to solve (4.2) with 0 < 4, < A, we simply show that H, — A, W has more
eigenvalues below E than H,, for some 4, independent of n. Here, the main
difficulty arises from the competition between the potential well — AW, and the
potential barrier AW_, as 4 increases, and we have to employ the estimate (3.2) to
control the repulsive effect of the barrier created by AW_.

For the proof of Theorem 4.1 we need several definitions and lemmas which we
present first, postponing their proof to the end of this section.

As always, we assume 1<VelL*R"), H=—-A+V and Ee€R—g(H), in the
sequel. Also, we fix numbers a' <a<b<b'so that [a',b"]Co(H) and E€(a,b). For
n=1, let again H,= —A?+ V|, and let

M= Py (Ha) (4.3)

the projection on the subspace spanned by the eigenfunctions of H, associated
with the eigenvalues in the interval (a’, b'). Let o € C'(Bs6) so that 0 S @(x) <1 for
all x, and ¢(x)=1 for xe€ B, ,; define ¢, C7(B,) by

@x):=o(x/n).
Let p,(x):=1—¢,(x) and consider the operators
Hn::Hn+COU)anlpn’ (44)

where ¢y:=b"— a’; compare the slighgly different definition of H=H, +cIl, in
[DH]. Clearly, H, is self-adjoint on D(H,)=D(H,), and H, = H,. The basic spectral
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properties of H, are a consequence of the following two lemmas which exploit the
fact that eigenfunctions of H, associated with eigenvalues in (a', ) are exponenti-
ally localized near 0B,.

Lemma 4.2. Let I1, be defined as in (4.3). Then there exist constants & >0 and no e N

so that .
“Hn(Pn“§efKn, n;nO'

Lemma 4.3. There is an n so that
o(A,)n[d,b]=0
for all nzn,.

Remark. The point of Lemma 4.3 is that we have an (essentially) n-independent
spectral gap of H, around E. In contrast to the operators H, used in [DH], the
non-local part o, I, of H, is now restricted to B, — B, ,; this fact will be crucial
later on, as Dirichlet-Neumann bracketing is applicable to local operators only.

We need yet another pair of operators with Dirichlet boundary conditions:
For 0<R<n/2,let Hy ;= — A} _ .+ Vlg, - 5g» and

FIR,nzzHR,n_l—COwanwn' (45)
Now, since 1, y,l;2,,, =0, and H, <H,®Hy ,, it follows that
HnéHR@HR,n—‘—Cownnnwn:HR@HR,n (46)

for 0 <R <n/2; this direct decomposition would not have been possible with the
operators H, in [DH]. Writing
M,:=dimP_ , (), (4.7)
My o=dimP_ , p(Hg.,), (4.8)
where E,:=(a+ E)/2, we have the following estimate.

Lemma 4.4. Let R, be as in Theorem 3.1, M,, M, as in (4.7), (4.8). Then for any
RZ=R,, there exists n(R)=2R such that

Mg ,z2M,—koR", nzn(R),
with a constant k, independent of R and n.
Remark. Lemma 4.4 says that taking the ball By out of B, (and introducing an
additional Dirichlet boundary condition on 0Bj) will shift at most a {inite number

(less that kyR") of eigenvalues of H, beyond the level E . Although this result is very
intuitive, its proof is the hardest step in obtaining Theorem 4.1.

Proof of Theorem 4.1. Step 1. In this step, we solve the approximating problems

(4.2) with uniformly bounded coupling constants 2,>0, for n large.
By Eq. (4.6), we have for n>2R,

Ay AW S (Hy— W )@ (H g~ W g, ).

Discarding the annular region B; — B, we first estimate H , — AW|Bgy < H,— Ay, for
/.>0,as W|B,=n by hypothesis (3) of Theorem 4.1 (without restriction, we assume
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R zmax(R,, ¢)in the sequel.) Next, on the region B, — By we use the bound (4.1) on
W_ to the effect that

Hy =Wy, g <Hpg ,+2c(1+R)"*
Now we tie R to >0 by setting

R=R(/):=max[(c//(E—E )" R,]
(recall that E,:=(a+ E)/2); in particular, we have
Hy =Wy, -y <Hp,+E—E,.

Conscquently, we obtain for 1>0,

H, =Wy, <(H,~ ) ®(Hy , + E—E,)
for n=2R(4), whence

dimP_ , p(H,— Wl )=dimP _ , p(H,~n)+dimP_  z (H ),

for >0, R=R(2), and n>2R. By Proposition 1.2, we can find constants ¢;, ¢, >0
so that
dlmP(— oo,E)(HQ";WI)?_dlmP(~ w0, E~ || V]| %+;_,,>(— Aé))?_—ﬁ)»vlz —Cy.

By Lemma 4.4, we have a constant k, such that
dimP_ , 5 (Hg )ZM,—koR*, n>n(R)=2R,

so that
dimP_  p(H,— W)= M,—kR'+c 2 —c,

for R=R(%)and n>n(R)=2R. As R~ A% with o> 2, it is clear that we can find a
A,>0 so that
e Ay —c, —koR(Ao) 21
whence
dimP o, ~ AWl ZdimP ., n([,)+1
for n=ny:=n(R(4,)). Therefore, regular perturbation theory implies that an
eigenvalue branch of the family H, —uW/|, , 1> 0 must have crossed the level E at

some i = 2,€(0, Ay] for n=n,. In other words, for n = n, there exist 4, € (0, 4,] and
f,€D(H,), | f,l =1, such that (4.2) holds.

Step 2. (Convergence step). As 0< 1, <4, we may suppose that
Iy Ap,  HDOD
for some A;=0. Furthermore, as H,IZH — AP we have

Extending f, by zero outside B, it follows by Rellich’s compactness theorem that
there exists f e H'(R") so that (a subsequence of) f,—f weakly in H'(R") and
strongly in L%,.. As W decays and 4,—/2;, we see that

|2 Wiy — 2 WS 1| 0.
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As (a,b)na(H,)=0, n=n,, by Lemma 4.3 and E € (a, b), we have a constant y >0 so
that, for n=n,,
2]l = I(H,— E) f,|| 2 disW(E, o(H )} = 7,

whence [[AWf||= lim A, Wf | >0, and it follows that f+0 and 1;%0. To

conclude the proof, let g € CJ(R*) and r >0 with suppg C B,. Then for n>2r we have
H,g=Hg, and hence, for n>2r,

0=(H,—E—2,W)},2)=(1,(H,~ E)g)—(2,W},.g)
=(fw (H=E)g)— (2, W}, 8),
so that
(L(H=E—/,W)g)=0, geCyR
as f,—f weakly and 7, Wf,— WS strongly. By the essential self-adjointness of
H|cy vy, it is clear that fe D(H) and (H —E)f = /;Wf and we are done.[]
It remains to prove Lemmas 4.2--4.4.

Proof of Lemma4.2. Let u,, i=1,...,i, denote a complete set of (normalized)
cigenfunctions of H, associated with eigenvalues E,; in the interval (a,b’). By
Proposition 1.2 and using V = 1, we see that i, < ¢,n". Defining a sequence of cut-off
functions {,e C&(B,) by
S =J12* An-1>

(where j,, ¢ >0 denotes the standard Friedrichs mollifier and y, is the characteristic
function of B,), and applying Lemma 1.14 (with I,:=suppV{,CB,—B,._,), we
obtain

HXSn/6uniH ég(Cn)HZSnw(H_ Eni) /(I"n” =c ‘./571/6(H Em) (1 —Xn—2)H
éc/nv—le—x(;ﬁz-Sn/é)écve xn’ I’lél’lo

by Proposition 1.9 (here we have also used that d({,) < ¢, and that [, b']na(H) =0,
so that the estimate in Proposition 1.9 is uniform for E,; e(a’, b’)).

Now, as

Hnnq)nf H =

\ '{:21 (uniq)n’f)unz é ;Zn:l “um‘(pn“ ”f” é .I_Zn:l ”uniXSn/é)H ”fH’

for fe *(R"), we obtain
”Hn(pnll § inc”efkn é Clnvcne_,—m ;
for n=n,, and the result follows. [

Proof of Lemma 4.3. From the definition of IT,, it is immediate that H, + (b —a')II,,
has no eigenvalues in the interval (a', b"). Expandmg

Hn = (pnnn + wnnnqon + lpnnnlpn 2
we obtain

HHn—wanwnH éz”nn(/)n\‘[ éc/e—’—m
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for n=n, by the preceding Lemma 4.2. Therefore, the distance between the spectra
of H,=H, + (b —d'yp,,p, and H,+(b'—a')II, cannot exceed (b’ —a')c’e ™. As
H +(b/ a')I1, has no spectrum in (a, b), and [a,b] C(d', b’), there exists some n,
such that A, has no spectrum in (a, b) for n=n,, and the lemma is proven. []

Inorder to reduce Lemma 4.4 to Theorem 3.1, we employ two different types of
approximation: first, we use the fact that the eigenvalues of H,+ uyz converge
(from below) to the eigenvalues of i ,, as u— 0. Second, we obtain information
on the spectrum of H,+ uyy in (a, b) by comparison with the operators H + iy,
which have been studied in Sect. 3; this will be the object of Lemma 4.5.

Proof of Lemma4.4. Recall that E, =(a+E)/2 and let E,:=(a+E, )2,
Ey:=(a+E,)/2. We approx1mate the operators Hy , by H,+ uyg, u—oo: as H,
+ uyg converge to Hp , in norm resolvent sense (see e.g., [Ka2, Kal; Chap. 8,
Theorem 3.5]), we have

MR,n:dimP(*w,El)(HRAn)g lim dimP(*oo,Ez)(ﬁn—,—AuXR)‘ (4.9)
=0

By regular perturbation theory, the eigenvalues of H, + uyg, u>0, form smooth
branches which are strictly increasing functions of u. (We note that in a gap of o(H,)
all eigenvalue branches of H,+ uy, have positive derivative.)

Therefore, whenever a branch crosses the level E;, the number of eigenvalues
below E; is diminished by 1, so we have

N_(uwH,—Eszp)=dimP_, ; (H)—dimP_ . (A, +pyze), (410)

for u>0. As - N
dimP(*m,E;)(Hn):dimP(—m«E)(Hn):Mn’

we see by (4.10) that

dim P, g (H,+pgp) Zdim P g (A, +pye)=M,—N _(u, H,— E3, 7s).
Returning to (4.9), we therefore obtain

Mg, 2M,— lim N _(x, H;I‘EssZR)gMn“kon
n— o

for n=n(R) by Lemma 4.5 below (applied with 4:= E;), and we are done. []

The aim of Lemma 4.5 is to show that the e§timate of Theorem 3.1 on
N _(u, H—E, yp) still holds true if we replace H by H,, for n sufficiently large. A
related problem has been studied by Kirsch [Ki]; onc should note, however, that
the eigenvalues counted by N _(u, H,— E, ) must travel the whole distance from

the gap edge to the level E, while in the Kirsch paper no gap is present and
eigenvalues sitting just below E must move only a “little bit.”

Lemma 4.5, Let Ae(a,b)Co(H) be fixed. For R=R,, there exists n(R) and k
independent of R and n so that

sup N _(u, H,— 4, 1) <koR®

u>0

for n=n(R).
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Proof. Step 1. By Theorem 3.1 we have a constant k, depending on a only so that

sup N _(p, H—a, y ) S koR". 4.11)

u>0
Since the eigenvalue branches of H + uy, for u>0 are monotonically increasing,
these branches will either eventually cross the level b or they will asymptotically
approach some level E'=b. By (4.11), only a finite number of branches can cross
the level a, and so there may only be a finite number of such asymptotic levels in
[a, b]. Consequently, there exists a 4>0 and constants o, f with aLa<ff< A4 so
that the interval (o, ) is free of eigenvalues of H 4 uyy for u> A. (Of course, , 5, 4
all depend on R.)

Let Ay:=(o+ f)/2. Our aim (in Step 1) is to show that, for n sufficiently large, no
eigenvalue branch of H,+ iy crosses A, at a u> 4, i.e., there exists ny(R) so that
for all n=ny(R): _ N

igrgN-(u»Hn—Ao,xR)éNg(A,Her,xR)' (4.12)
To prove (4.12), suppose for a contradiction that there exist ;> 4, n;eN, n; =2,
and fjeD(fI,,]) satisfying || f;| =1 and

(HnJ—Ao)sz —,Ujlkfj (4.13)
for all je N. Let the cut-off functions ¢; and y;:=1—¢; be as before; in particular,
®j2y;=0. Using n; = j and

Hnj(%;zfj)=Hnj((/);/zf;): (Pj/ZHn,-fj_"zV(f)j/z ) ij'A(Pj/zfj
= ‘ijzﬁnjf}‘zv‘!’j/z V=49, f;
by the definition of H,, we obtain from (4.13)
“(ﬁnj‘*‘llle"Ao) (‘Pj,fzfi)” 2| V‘Pj,/z ) ijn + HA‘Pj/zu © Hf/ilw Scj !t (419

for all j sufficiently large, using Lemma 1.13.
Now, ¢, fi+;..f;= [; together with (4.13) implies for j large,

]i(ﬁnj — A (w2 )l = ”(gnj +1izr—Ao) (W, fi)l
= H(ﬁn_,_{_:uiXR_AO)((pi/ij)“ Scj!
by (4.14). Since (a, b)mo'(lflnj) = () for j sufficiently large, and A, e (a, b) is independ-
ent of n;, there exists y>0 so that
[ ‘/’,nzf,‘“ =7‘5‘(ﬁn,'Ao)(ll)j/zf,'w -0

as j— oo, whence (@, f;l|=1 as j—oc. Therefore, returning to (4.14), we finally
obtain

”(ﬁnj + g — A (@, ) <2¢,j gl Qi Sl

for jsufficiently large, and it follows (noting again that FI,,J(q)i/zfj) =H(¢p;, f})), that
the operator H + 1,7 has an eigenvalue in the interval (4, —2¢,j ™", Ag+2¢,j ")
for j sufficiently large. But, for j sufficiently large, this contradicts the fact that no
eigenvalue branch of H + uyg, 1> A, lives in the interval (o, ff). This concludes the
proof of (4.12).
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Step 2. Now let A, be as in Step 1, and let E,” €(a, Ao) be as in Proposition 1.11.
Then, by the second resolvent equation, we have (recall that E,” € 6(H,) for n=n,
by Lemma 4.3),

(ﬁn_Env)v ! :(Hn—‘Enf)* ! ﬁ(ﬁn—En‘)— l(cwnnnwn)(Hn—El:)-l 5
which gives
el (A, = E;) " —(H—E) " Iza
= xl(H,— E;) ™ = (H~E)) " Ty 2ul, = E)) " e L) H —E.) ™ 7
_XR(Hn - En_)_ 1(Cwnnnwn)Xn(Hn_En_)_1XR
+ZR(Hn’"Env)— I(Cwnnnwn)xn(H_Eni)* IXRa
where we have used I1,y,=I1,3,p,= I,y By Proposition 1.11,
“XR[(Hn—'E;)— ! —(H*Err)vl:l;{R“ g “Xn[(Hn_Enﬁ)Al_(H~E);)71]XR([_)O
as n— oo, and by Proposition 1.9,
I H—E;) " 2xll =0

as n—co. As |[(H,—E;) ' Sdist(E, ,o(A,) '<Scy, and [p, |1 [IL[I£1, it
follows that 5

el (H,—E) " —(H—E;)” gl =0 (4.15)
as n—oo.
Step 3. By (4.12), we have an no(R)>0 so that, for n>ny(R),

sup N—()"a }Nln~A0» ZR)§N*(AO7 Hn_A07 XR)éNA(AO’ Hn_En_’XR)

u>0
as E, <A, (E, asin Step 2). By (4.15), we can Eind n(R) 2 ny(R), so that the norm
difference of the Birman-Schwinger kernels yx(H, — E, )~ 'yg and yx(H—E, )" 'y
is less than 1/(24,), provided n=n(R). By Lemma 1.8, this implies that
N—(AO> Hn—Err’ %R)éN—(2A0>H_En—a XR)é Sup N*(.“* H_aa XR)ékORv7
u>0
with the constant k, from (4.11). Finally, monotonicity implies that
sup N ~(/~ta Hn - Ar XR) é sup N*(:ua Hn - AOa XR) é kORV

n>0 n>0
for n=n(R), and we are done. [

An interesting problem which arises from Lemma 4.4 is the question of
whether the same sort of bound holds for Schrodinger operators other than H, and
in particular for — 4. In fact, the bound in Lemma 4.4 does not hold for general
operators, but only in our “gap” situation; for the Laplacian, we have (see [A]; cf.
also [Ki]):

Proposition 4.6. In dimension v=2, we have

sup [dimP_, p(—Ap)—dimP_  x(—A4p 5 ]=00

n>R

for each fixed R>0.
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