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Abstract. The conformal constraint equations on space-like hypersurfaces are
discussed near points which represent either time-like or spatial infinity for an
asymptotically flat solution of Einstein's vacuum field equations. In the case
of time-like infinity a certain "radiativily condition," is derived which must be
satisfied by the data at that point. The case of space-like infinity is analysed
in detail for static space-times with non-vanishing mass. It is shown that the
conformal structure implied here on a slice of constant Killing time, which
extends analytically through infinity, satisfies at spatial infinity the radiativity
condition. Thus to any static solution exists a certain "radiative solution" which
has a smooth structure at past null infinity and is regular at past time-like
infinity. A characterization of these solutions by their "free data" is given and
non-symmetry properties are discussed.

1. Introduction

In article [9] the hyperboloidal initial value problem for Einstein's field equations
was introduced. Here the prospective solution space-time is envisioned as having
a smooth structure at future null infinity and data are given such that they represent
the first and second fundamental forms on a space-like hypersurface which
intersects null infinity in a space-like 2-sphere. In [12] has been shown that
such "hyperboloidal initial data," if they are sufficiently close to Minkowskian
hyperboloidal initial data, evolve into a solution of Einstein's equations which is
future null geodesically complete, has in the future of the initial surface a smooth
structure at null infinity, and is regular at future time-like infinity in the sense that
in a suitable conformal extension of the solution a point i+ exists, representing
future time-like infinity, such that the past directed null geodesies through ί +

generate future null infinity for the solution space-time.
This result reduces the question whether there exist non-trivial "purely radiative

space-times," that is smooth solutions of Einstein's vacuum field equations which
have a smooth and complete structure at past null infinity ./~ and future null
infinity J>+ and which are regular at past time-like infinity i~ and future time-like
infinity i +, to the analysis of the behaviour of the solutions of the standard Cauchy
problem near spatial infinity. In the following spatial infinity will be thought of
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as a point i° in a suitable conformal extension of the spacetime. The key problem
("z°-problem") now is to characterize those asymptotically flat Cauchy data which
have an evolution "near z°" that allows "pieces" of smooth ./~,</ + near ί°, and
to get control on the limit behaviour of«/ ~,,/ +, if these data approach Minkowski
data.

From the point of view of PDE theory one is asking here an extreme question.
First of all one wants to solve a problem of a global nature, namely show for
suitable data the existence of an evolution for which the outgoing null geodesies
are complete. But on top of that one needs to derive estimates on the fall-off
behaviour of the fields along these null geodesies which are so sharp and so precisely
related to the structure of the initial data that they allow one to decide under
which conditions on the data the solutions permit a smooth structure at null infinity.

The semiglobal results on the hyperboloidal initial value problem have been
obtained by working entirely in the conformal picture. The use of the regular
conformal field equations, which for positive conformal factor are equivalent to
Einstein's field equations, allows, at least mathematically, a much broader view
on the subject. To say that "the conformal fields propagate into the non-physical
region" suddenly makes sense, since the regular conformal field equations are
hyperbolic for any value of the conformal factor.

From this point of view one may look at the /°-problem as follows. At the
point i° the conformal fields which represent the conformal initial data on the
hypersurface S = Su{z°}, where S is a Cauchy surface for the physical space-time,
are partly non-smooth and partly even unbounded if the mass of the physical
space-time is to be positive. In particular the rescaled Weyl tensor shows a very
specific singular behaviour at i° (see e.g. Eq. (4.19) and the subsequent remarks).
If we could inspect all possible (not necessarily unique) solutions of the regular
conformal field equations pertaining to the given data, we could find one of the
following possibilities to be true. Either the singularity at z° spreads by necessity
along the characteristics of the equations in such a way that at null infinity (referring
always to the physical space-time) no smooth structure can be defined, or there
are solutions which extend in a sufficiently smooth way through null infinity and
develop a (in a suitable sense) time-like singularity through z° in the non-physical
region.

The first possibility appears very likely in view of the hyperbolic nature of the
regular conformal field equations. However, there are available a few results, which
will be discussed in the following, where the situation is understood exactly and
in sufficient detail. They suggest that there may exist a large class of data for which
the second possibility will occur.

The vacuum Bianchi identities for the Weyl tensor, rewritten in terms of the
conformal space-time and the rescaled Weyl tensor, form part of the regular
conformal field equations (see Eq. (2.5)). If the latter are linearized at the Einstein
cosmos (say, to stay in the conformal picture) one obtains from Eq. (2.5) the "linear
spin-2 equations" on the Einstein cosmos for a tensor field with the symmetries
of the conformal Weyl tensor. On the Einstein cosmos we choose now an analytic
space-like Cauchy surface S and on S a point z'°, which is thought of as representing
spatial infinity for the conformally embedded Minkowski space. On S\i° we
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prescribe analytic initial data for the linear spin-2 equations (which satisfy in
particular the constraints implied on S by those equations). At the point i° we
require the data to become singular so that they reflect in an appropriate way the
singular behaviour of the rescaled Weyl tensor referred to above. If one studies
now the solutions of the linear spin-2 equations for this type of singular data, one
finds that for a large class of data the singularity at z'° does not spread along the
null cone at ?°, which also represents the characteristic cone of the equations at
z° and also </ + , J~ for the embedded Minkowski space. Instead the solutions
extend smoothly as solutions of the spin-2 equations through the null cone into
the future of i°.

This fact has been known for a long time. However, it is surprising that the
specific structural properties of the equations which are responsible for this peculiar
behaviour of its solutions have never been identified and used in a direct
constructive way. Consequently nothing is known about the possible implications
of these properties in the nonlinear case.

The only general class of solutions of Einstein's equations for which the
asymptotic behaviour is fairly well understood is provided by static or stationary
space-times. Here it can be shown that the conformal fields extend smoothly
through past and future null infinity as solutions of the regular conformal field
equations. But also in this case our understanding follows not so much from a
general insight into the specific propagation mechanism provided by the equations
but rather from our knowledge about the exact form of the solutions and their
behaviour at space-like infinity. Needed instead is a much more detailed under-
standing of the behaviour of the fields near i° together with a deeper insight into
the effects of the constraint equations and the propagation equations and in
particular into the "interaction" of these two sets of equations near the singularity
at i°.

Further progress into this direction is hampered to a large extent by the absence
of sufficiently general illustrative examples. Exact solutions of Einstein's field
equations are required for possible generalization which not only allow a smooth
structure at null infinity but which have also a positive mass and non-vanishing
radiation fields. The fact that such solutions have not been found yet has sometimes
been regarded as an argument against the concept of asymptotic simplicity. It is
well known, however, that the requirement of asymptotic simplicity together with
the presence of more than one symmetry of the field, has very strong implications
on the structure of the solutions (see the discussion in Sect. 5). If an exact solution
of the type asked for above is to be found, it may at most allow one (space-like)
Killing vector field. It is hard to come by such solutions and not many of them
are available. Moreover, one will hardly feel tempted to embark on the complicated
exploration of the asymptotic structure of a solution of low or no symmetry unless
one has a clue for which particular solution to expect a positive result.

In view of all these difficulties and open problems it is of no use to be fascinated
by generality. At present the most important and delicate problem seems to me
to develop simplifying assumptions on the data, which allow one to analyse the
i°-problem in sufficient depth but which at the same time are general enough to
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identify those properties of the data and the equations which govern the asymptotic
behaviour of the fields.

The results reported in this paper have been obtained in the course of an
investigation of some of the problems outlined above. Though they are of interest
in themself, the result appear to be particularly remarkable for a number of
possibilities offered for further progress.

The conformal constraint equations, that is the constraint equations implied
by the regular conformal field equations, are analysed on a space-like hypersurface
5 near a point i of S, which is distinguished by the requirement that at i not only
the conformal factor but also its differential vanishes, while its Hessian is not
degenerate. For calculational convenience it is assumed that the first fundamental
form h on S is analytic at i and the second fundamental form of S vanishes
identically. Depending on further conditions on the data on S the point i pertains
to different possible geometric and physical situations.

If the evolution of the data on S by the regular conformal field equations is
required to be smooth (here for simplicity in fact analytic) near /, the physical
metric obtained on the time-like future I + (ί) of i in this evolution is a solution of
Einstein's vacuum field equations with a smooth structure at past null infinity, for
which the point i represents a regular past time-like infinity i~. Since such solutions
are candidates for purely radiative space-times, they will be called "radiative
space-times." It is found under the assumptions above that the conformal initial
data on S are determined uniquely, once the interior metric h on S is known.
However, at the point i the metric /z, or more precisely the conformal structure
defined by it, must satisfy a specific set of conditions (Theorem (3.1)), which will
be called "radiativity condition" since any such metric determines a unique radiative
space-time.

The other possible meaning of the point i results from restricting attention to
the points of the evolution of the data which are space-like related to i. Here again
we have a solution of Einstein's field equations, for which f now represents the
point spatial infinity i°. As mentioned before, the fields on S will not be smooth
at i° if this space-time is required to have non-vanishing mass. This situation is
analysed in some detail in the particular case of static asymptotically flat solutions
with non-vanishing mass, for which the 3-dimensional conformal structures implied
on the slices of constant Killing time extend analytically to spatial infinity. It turns
out that at spatial infinity these conformal structures all satisfy the radiativity
condition (Theorem (4.4)).

This result gives rise to some interesting questions, has a number of direct
consequences, and opens new prospects on the possibility to provide the desired
"empirical material."

First of all we have a statement about the asymptotic behaviour of static fields.
Whether the somewhat surprising fact that 3-dimensional metrics provided by
static space-times satisfy the radiativity condition is accidental or of deeper
significance is not clear yet. It should be of interest to translate this fact into a
statement about the structure of the fields near spatial infinity i° in the 4-
dimensional space-time and relate it to the behaviour of the solution near null
infinity. It is conceivable that a condition on the data like the radiativity condition
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is a prerequisite for the existence of a smooth structure at null infinity.
As an immediate consequence of Theorem (4.4) any static-time of the type

considered here supplies a "radiative initial data set" and implies consequently the
existence (Theorem (5.1)) of a radiative space-time (which, incidentally, entails the
existence of hyperboloidal initial data, but still another argument is available for
that). That the class of these solutions is indeed quite large, is indicated by a certain
characterization of the static and thus also of the associated radiative space-times
in terms of their "free" expansion coefficients (Theorem (4.2)). It should be of interest
to relate this to the general discussion of radiative space-times in terms of their
radiation fields on null infinity as given in [10]. For a simply way to translate
results on radiative space-times from the conformal to the physical picture the
reader may consult [13].

In constructing the radiative space-time as suggested by Theorem (5.1), the
static Killing field is discarded. It is, however, conceivable that this Killing field is
systematically replaced by another type of Killing field, which in the worst case
may force the generators of past null infinity of the analytically extended radiative
space-time to be incomplete. It is therefore shown in Theorem (5.3) that under
simple conditions on the first few free expansion coefficients of the static space-time
the associated radiative space-time allows no Killing field at all.

To come to a deeper understanding of the situation, one would like to generalize
the investigation carried out here. It would be of interest to have available more
general classes of metrics satisfying the radiativity condition and to extend the
investigation to the case of non-vanishing second fundamental form. Such a
generalization is necessary for the study of the evolution of the radiative initial
data. Of some interest here is also the question whether stationary solutions have
a similar behaviour at spatial infinity and determine in a similar way radiative
space-times as the static solutions. A positive answer may lead to explicitly known
radiative initial data with conformal Weyl tensors of the various Petrov types.

The most important problem, however, is to obtain more information on the
evolution and possibly about the analytic extension of the radiative space-times,
to answer questions about the completeness of past null infinity, the structure of
spatial infinity, and eventually about the smoothness of future null infinity. Here
it may be promising to employ a combination of general methods and techniques
used in the study of exact solutions to take full advantage of the known information:
the, possibly explicit, knowledge of the initial data, their symmetry, Petrov type,
and the fact that they are derived from solutions of the static equations. Once the
relation between static (respectively stationary) and radiative space-times has been
established by using the regular conformal field equations, it may be useful to look
at the situation from a different angle. The evolution of the radiative data by the
regular conformal field equations determines not only the radiative solution in the
future of the point i but also in the set of points which are space-like related to ί
an asymptotically flat solution of Einstein's vacuum field equations with smooth
structure at null infinity and vanishing mass. If for specific data this space-time
could be identified as one of the known exact solutions, the radiative space-time
could be obtained by conformal and analytic extension.

If the overall structure of the radiative space-time is to be understood properly
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it may turn out necessary to study the situation from an even more general point
of view. There are certain asymptotically flat static solutions, for which the metric
induced on a slice of constant Killing time has two "spatial infinities" and a ring-like
singularity [23]. Going to the associated radiative data, the spatial infinities become
"past time-like infinities" i[", i^ . The evolution of these data yields a solution of
the regular conformal field equations near the initial surface, which contains a
singularity and separated from it and from each other the sets I + (iϊ), / + 07) on
which two "physical" radiative space-times come into existence. In the transition
from the static to the radiative data the latter acquire a reflection symmetry which
would not be recognized if attention were focussed onto the neighbourhood of
one of the points time-like infinity alone. The use of such additional properties of
the overall picture may be decisive to find the answer to the crucial question: If
the evolution of the radiative data develops further in time, does the singularity
eventually penetrate into the radiative solutions or does it stay apart and possibly
just "touches" them at their corresponding spatial infinities? However this may be,
it is seen that the overall conformal picture offers quite new possibilities to think
about a problem posed, though possibly not answered correctly, by Einstein [7]:
Is a solution of the vacuum field equations generated necessarily by a matter source
or a ("physical") space-time singularity?

2. The Conformal Constraint Equations

The object of the subsequent discussions is the construction of a 4-dimensional
Lorentz-space with manifold M and metric g from data which are given on a
3-dimensional manifold 5. The initial data surface S is thought of as being smoothly
embedded into M as a space-like hypersurface. The metric g will be obtained as
part of a solution of the regular conformal field equations. In this section the
constraint equations and a procedure to construct solutions to the constraint
equations will be studied. Finally the structure and the meaning of these solutions
is discussed for two different types of assumptions on their asymptotic behaviour.
All calculations refer to the conformally rescaled space-time, which for the situations
considered here provides in fact the only appropriate point of view.

It will be convenient to express all fields with respect to an orthonormal frame
ek (indices i, fc, j, l . . . w i l l take values 0, 1,...,3, the summation convention is
assumed), such that gik = g(ei9 ek) = diag(—1,1,1,1). In the following (M,g) will be
assumed time oriented and e0 as future directed. We shall denote by V f the covariant
torsion free derivative defined by g in the direction of et and by r l

j k l , cl

jkl, rjh r the
curvature tensor, the conformal Weyl tensor, the Ricci tensor and the Ricci scalar
of g, respectively. The regular conformal field equation forms a system of partial
differential equations for a set of tensor fields which comprises besides the metric
g the "conformal factor" Ω, its differential Σi = VtΩ, the function s = i Vyί2, the
symmetric trace-free tensor stj = ̂  (^j~4 r#ij) and the rescaled Weyl tensor
dljki = Ω ~1cljkl. The equations are given by

(2.1)

(2.2)
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(2.3)

- A0Λ Z Vk] r, (2.4)

jkZ = 0, (2.5)
2r = 0. (2.6)

The function r is considered here as an arbitrary smooth function of the space-time
coordinates xμ, μ = 0, . . . ,3.

In the region M = (xeM|ί2(x) > 0}, Eqs. (2.1)-(2.6) are equivalent to Einstein's
field equations Ric [0] = 0 for the "physical metric" g = Ω~2g. However, the
equations generalize Einstein's equation by being meaningful also where Ω vanishes
or becomes negative (in which case g defines again a solution of Einstein's
field equations!). This makes the equation particularly useful in the analysis
of the asymptotic behaviour of solutions of Einstein's field equations, the set
J> = {xeM\Ω(x) = Q,dΩ(x) / 0} representing null conformal infinity for the solution
(M,0). In [8,9, 11, 12] Eqs. (2.1)-(2.6) have been used to study the existence and
properties of solutions to Einstein's equations which have a smooth structure at
null conformal infinity and the reader is referred to those articles for a detailed
discussion of the regular conformal field equations.

In this paper situations will be investigated where on the initial manifold S is
a point i at which not only Ω but also its differential vanishes while the Hessian
of Ω is non-degenerate. The first step of such an analysis requires the study of the
properties of the fields on the initial surface S. In the following the "conformal
constraint equations" implied by the system (2.1)-(2.6) on S will be discussed and
the procedure developed by Lichnerowicz, Choquet-Bruhat, and York [6] to
provide solutions to the vacuum constraints is described in terms of the conformal
fields.

Let the frame ek be chosen with e0 normal to 5, such that ea, a = 1, 2, 3, represents
a frame on S. In the following tensor fields intrinsic to S will be expressed with
respect to this frame, indices a,b,c,... take values 1, 2, 3, and the summation rule
is assumed for these indices. The interior metric h implied on S by g has components
hab = Qab = δab

 an^ all index operations will be performed with this metric. Let Da

denote the covariant torsion-free derivation in the direction of ea defined by h. In
contrast to space-time curvature fields curvature derived from the 3-dimensional
metric /i, such as the curvature tensor Ra

bcd, the Ricci tensor Rab, its trace-free part
Sab, its trace R and the Bach tensor Bcab = D[aRb]c-^ D[aRhb]c will be denoted by
upper case letters. By χab = g(VaeQ,eb) will be denoted the second fundamental form
of S. We shall consider Σa = DaΩ, Σ=ΣQ,sa~ saυ, sab, dah = daobo, dabc = daobc as
components of tensor fields on S (shunting by this remark a lengthy discussion of
a projection formalism). These fields have the algebraic properties

s°a — soo? dab = d(ab}, d
a

a — 0, dacb = — dabc, d[abc] ~ 0,

da

ac = 0, deabc = 2{he[bdc]a + ha[cdb]e}.

The constraint equations implied by Eqs. (2.1)-(2.6) on S are given by [9, 11]

Reabc = - 2χe[bXφ + Ω deabc + 2{he[bsc]a + ha[csb]e} + ̂ rhe[bhφ9 (2.7)
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ca ~ Dcχba = Ω dahc + 2ha[bsc]9 (2.8)

DaΣb = Σχab-Ωsab + shab9 (2.9)

DaΣ = Σcχca-Ωsa9 (2.10)

Das = Σsa-Σ csca -&Σa-iiΩ Dar9 (2. 1 1)

Dasb - Dbsa = 2χ[a

csb]c + Σcdcab, (2.12)

Dasbc - Dbsac = 2χc[ash] + Σ dcab + Σ edecab + -^ hc[aDb] r, (2, 1 3)

Dcdcab = 2dc[aχ
c

bl, (2.14)

Dcdac = χcddcad9 (2.15)

0 - 6Ωs + 3Σ2 - 3ΣaΣ
a+$Ω2r. (2.16)

Since in 3 dimensions the curvature tensor can always be expressed in terms of
the Ricci-tensor, Eq. (2.7) is equivalent to

&ab = ~ ϊϊclab + XCaIcb + Ω dab + Sab + (±Γ + SQQ)hab . (2.17)

We shall now derive two equations which correspond to the Hamiltonian and
the momentum constraint for the physical fields. Using Eq. (2.16) and the contracted
forms of Eqs. (2.9), (2.17) we obtain

where A = DaD
a denotes the Laplacian. Contracting (2.8) and using (2.10) to

eliminate sa yields

Db(Ω~2χJ = Ω-2{Da(χc

c) - 2Ω ~ ̂ DaΣ}. (2.19)

If hab, Xab denote the first and the second fundamental form on S with respect to
the physical metric (expressed in the frame ea\ we have the transformation law

which implies for the traces χ = habχab, χ = habχab, the transformation law

Ωχ = χ + 3Σ.

We are free to choose Σ on S. Therefore the assumption

χc

c = 0, Σ = 0 on S, (2.20)

which will be made in the following just means that we require S to be a maximal
hypersurface for the physical as well as for the unphysical metric. With (2.20)
Eqs. (2.18), (2.19) simplify to

(Δ - I R)θ= - ±χahχabθ with θ = Ω ~ l'2, (2.21)

Db(Ω-2χba) = Q. (2.22)

A solution to the constraint equations (2.7)-(2.17) can now be constructed in
the following way:

i) assume a metric h is given on S and \j/ab is a symmetric trace-free (with respect
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to h) tensor which satisfies

Daιl/ab = OonS9

ii) set χab = θ~4φab in (2.21) and find a positive solution θ of

iii) solve the contracted form of Eq. (2.8) for sα, Eq. (2.16) for s, Eq. (2.9) for sab,
Eq. (2.8) for dflbc and Eq. (2.17) for dabί and calculate subsequently all fields
from hab, χab, Ω. For the particular choice r = 0 on S it follows from a system
of differential identities given in [9] that in fact all the equations (2.7)-(2.17)
are satisfied now. For arbitrary r this follows in a similar way.

To avoid the lengthy algebraic calculations in this procedure, we shall assume in
the following that

χ β f c Ξ θ o n S , (2.23)

which implies by (2.10), (2.8),

s f l Ξ0, dabc = Oo*S. (2.24)

A solution of the constraint equations which satisfies (2.20), (2.23), (2.24) and thus
consists of the fields

dab = Ω -2(DaDbΩ-±ΔΩhab) + Ω ~X (2.25)

will be called a "time symmetric initial data set."
In solving (2.21) one will in general assume some boundary conditions to be

satisfied. We choose a point ieS, which will represent (spatial, say) infinity of the
physical fields. To simplify the following considerations we assume that the metric
h is smooth everywhere on S and real analytic in some neighbourhood V of ί in
S. Suppose that xa, α = 1,2,3 is a system of normal coordinates for h centered at

the point i, set x2 = Σ(x«)2, \x =(x2)1/2, y* = \y\~2x*, \y\ = (y2)1/2> etc. Let haβ be
the expression of the metric h = Ω~2h in the coordinates y*. In order that i
represents (spatial) infinity for the metric h and the "usual" fall-off conditions

I-^ = 0( i l ) for |^oo

are satisfied, we need to have

= θ{-~ I f o r
x\

The solutions of the conformally invariant Laplace equation

(Δ-%R)Θ = Q (2.26)
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on S\i, which satisfy lim (\x\θ) = 1, have near i the following structure (see e.g. [14])
|x|->0

with functions [/, W which are real analytic at i and such that

i) W is a smooth solution of (2.26),
oo

ii) U = Σ Uk x|2k, Uk real analytic at i,

l/0 = l + 0 ( | x | 2 ) f o r |x|->0.

The function Ω is thus given by

(127)

The mass of the metric h is given by m — 2W(i). If S is the 3-dimensional sphere
iS3 and Ω required to be smooth and positive everywhere on S3 V, we have W(ϊ) > 0
by the positive mass theorem unless h is flat [20]. Therefore one might be tempted
to discard conformal factors of the form (2.27), defined near / and such that W
vanishes at i up to a certain order or altogether, as physically uninteresting. But
this is not necessarily true.

Assume that Ω as well as the initial data set (2.25) is smooth in a neighbourhood
of i. Then the regular conformal field equations determine an evolution (M,g,Ω)
of these data, which defines in fact two different solutions of Einstein's vacuum
field equations. Denote by I + (i) respectively I~(ί) the time-like future respectively
past of πn (M, g) and by N^ respectively JVf the cone generated by the null geodesies
which leave the point i into the future respectively into the past. From (2.27) and
the properties of U it follows that Ω has a non-degenerate critical point at i. This
and Eqs. (2.1)-(2.6) imply (possibly after restricting M suitably) that i is the only
critical point of Ω and that the zero set of Ω coincides with the set Nt~ uNt

+ (see
[12] for the details of the argument). On the set M\{I+(i)vNt

+ uΓφuN^} the
metric g = Ω ~2g is a solution of Einstein's field equations for which i represents
spatial infinity and which has vanishing mass. However, on the set /+(/) the metric
g also represents a solution of Einstein's vacuum field equations, for which the
point i now represents past time-like infinity and the set J~ =Nt\i past null
infinity. We shall refer to the fact that </" can be obtained as a null cone of a
point in the conformal extension as to the "regularity of the point past time-like
infinity." A solution of Einstein's field equation, which is regular at past time-
like infinity, is a candidate for a space-time representing pure selfinteracting
gravitational radiation [10], and therefore of considerable physical interest. In the
following we shall be interested to provide time-symmetric initial data sets which
lead to smooth solutions of the type (I+(ϊ),g).

3. The Radiativity Condition

If we assume W = 0 in the expression (2.27) the function Ω will be real analytic.
However the fields sab, dah will in general not show the same degree of smoothness.
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It is the purpose of the present section to show that the metric h must behave in
a very specific way near ί to ensure the analyticity of the data (2.25).

In the following only conformal factors of the form (2.27) for which W vanishes
identically will be considered. In a certain neighbourhood of z, which we assume
to coincide with F, the function Ω is real analytic and satisfies

2ΩΔΩ = W2ΩDaΩ-±Ω2R, (3.1)

ΛI^O, DaΩ\t = ̂  DaDbΩ\i = 2habi. (3.2)

The conformal factor is fixed uniquely by (3.1), (3.2) and the requirement of
analyticity.

We shall now derive conditions on the metric /z, which ensure that the fields
sab, dab given in (2.25) will also be analytic at z. Allow the normal coordinates xy

to take values in a neighbourhood Vc of the origin of C3 which is chosen such
that the fields /ι, ea, Ω extend by analyticity to holomorphic fields on Fc.
Furthermore, we assume that the point z = {xα = 0} is the only critical point of Ω
in Vc and that the null cone generated by the complex null geodesies of h through
i is given by the analytic set Nc = (xαeFc | £ (χa)2 = ty. It follows from (2.27) or

α = l

from (3.1), (3.2) that the zero set oϊΩ in Fc coincides with Nc. Since Nc is irreducible
and Ω coincides up to a non-vanishing factor with x2 we have the following fact,
which will be used repeatedly: If / is a holomorphic function on Fc with f\Nc = 0,
then there exists a holomorphic function g, defined on a neighbourhood of z in
Fc, such that f=Ωg (see e.g. [17]).

By (2.25) the field dab extends to a holomorphic function on FC\7VC such that

Ω2dab = DaDbΩ-±ΔΩhab + ΩSab. (3.3)

If dab were holomorphic on Fc, this equation would imply

(Dc\DaDbΩ - %ΔΩhab + ΩSab})\Nc = 0. (3.4)

Conversely the relation (3.4) implies the existence of holomorphic functions fabc

near z such that
Dc{DaDbΩ-±ΔΩhab + ΩSab}=Ωfabc. (3.5)

Transvecting this equation with Dc Ω and restricting to a null generator of Nc

yields an ordinary differential equation for the term in curly brackets, which allows
one to conclude that this term is constant along the generators and thus vanishes
on Nc, since it vanishes at z. Consequently we have a relation

near ί with holomorphic functions fab. Differentiating this equation and comparing
the result with (3.5) gives (DcΩfab)\Nj, = 0. Since DCΩ^O in Fc\z, it follows that
fab = Ω dab with some holomorphic functions dab which coincide in VC\NC near /
with dab.

Thus the analyticity of dab near z is equivalent to the relation (3.4). Since the
tensor Ω2dab given by (3.3) is a conformal density condition (3.4) is in fact a
condition on the conformal class of h. From (2.25) if follows immediately that sab

is analytic, if dab is analytic.
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There is another interesting relation which imposes conditions on the conformal
class of h, if dab is analytic. We set Lab = Rab — ̂ Rhab and write Eq. (3.3) in the form

Ω2dab (3.6)

in V\L Applying the operator Dc and contracting on a and c gives

DbΔ Ω + ίDb(RΩ) + 3DcΩLcb = 3ΩDcΩdcb (3.7)

if the constraint Eq. (2.15) is taken into account. Applying again Dc to (3.6) and
antisymmetrizing gives

0 = Λ {DcLab - DaLcb -Ω(Dcdab - Dadcb) - 2(DcΩdab - DaΩdcb}}

- ±gab{DcA Ω + $DC(RΩ) + WdΩLdc]

+ %gbc{DaΔ Ω + ±Da(RΩ) + WdΩLda },

where the expression of Rabcd in terms of Lab, which holds in 3 dimensions, has
been used. Using (3.7) to simplify yields the following expression for the conformally
invariant Bach-tensor:

Bcab = D[aLb]c = 2D[aΩ db]c + DdΩ dd[ahb]c + Ω D[adb]c . (3-8)

It is worthwhile pointing out that in the derivation of this relation on V\ί the
assumption that Ω be analytic at / has not been used. Thus (3.8) is true in V\i for
any choice of W in the expression (2.27) of Ω. It is remarkable that the particular
combination of Ω, dab and their derivations on the right of (3.8) is independent of
W and extends to an analytic function at i even if dab is not analytic at ί.

The consequences of the relations (3.4) and (3.8) are worked out most easily in
terms of space spinors (defined with respect to the normal β0 on S) [21]. Not only
is this spinor formalism particularly well adapted to the complex null-geometry,
but also has the operator

*aι...aq ^f l ι . . . f lpl * a i... ap ap + 1 ...aq) >

which maps the tensor Γfll αg on S onto its part which is symmetric and trace-free
in the indices α1 ; . . . ,ap, (p ̂  q), a particularly simple representation in the spinor
formalism.

If TAlBl AqBq = T(AlBί]^ι(AqBq} is the space spinor representation of the tensor T,
then the tensor CpT is represented simply by T(AιBι...A β μ f l j j B +1 A B As we shall
see, the operator C is crucial for expressing the condition that certain functions
vanish on the complex null cone in terms of the real structures we started with.

If BABCD is ^ne space spinor representation of the tensor Bab = \Baef&
ef

b (where
ε i23 — 1> εabc — £[abc])> which contains all the information on the Bach tensor and
is symmetric and trace-free, then Eq. (3.8) takes in spatial spinor notation the form

BABCD = 2DE(AΩ dBCD]

E + Ω DE(AdBCD)

E. (3.9)

Assume now that dABCD is analytic at i and all fields are extended by analyticity
to Vc. Let KΛ be a spinor at /, denote by CBM t-» κ(u)eNc the null geodesic through
i = κ(0) with tangent vector KAKB at i and extend KA along κ(u) by parallel transport.
Then κADABΩ = 0 along κ(u) and (3.9) yields

κAκBκcκDBABCD(κ(u)) = 0 for u near 0. (3.10)
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Applying repeatedly the operator κAκBDAB to this equation, evaluating at i and
taking into account that KA was chosen arbitrarily, we obtain a condition in terms
of structures on F, which is equivalent to (3.10)

D{AnBn...AίBβABCD)(i) = Q> " = 0 , 1 , 2 , . . . . (3.11)

This is a necessary condition on the conformal class of h for dab to be analytic at
i. In tensor language it is written

Can..Mιab(Da_DaίBab)(i) = 0 n = 0, 1,2, . . . . (3.12)

Translating in the same way (3.4) into an equivalent condition on structures on
V we arrive at

Theorem (3.1). Assume that the metric h and the conformal factor Ω satisfying (3.1),
(3.2) are analytic on a neighbourhood V ofίeS. Then the time symmetric initial data
set (2.25) is analytic on V if and only if h is such that the "radiativity condition"

i)}=^ n = 0,1,2,.. . . (3.13)

is satisfied. If the radiatiυity condition holds, the Bach tensor ofh satisfies the relation
(3.12).

Remarks. The condition (3.13) appears much stronger than (3.12). It would be
interesting to understand to what extent this is true.

As long as we are interested in analytic data and analytic solutions to the
propagation equations, the conditions (3.4) and (3.13) may be used alternatively.
If we want to restrict, however, the assumptions on the data and the evolution to
the Cfe-case, only a formulation of the radiativity condition of the type (3.13) (with
n up to a suitable order) is appropriate.

We shall call a time symmetric initial data set (2.25) which is analytic at i a
"radiative initial data set."

4. On Static Space-Times

The most important question now is whether there exist non-trivial metrics for
which the condition (3.13) is satisfied. After some unsuccessful attempts to set up
a differential system which would supply as solutions metrics satisfying the
radiativity condition, it turned out that such a system has been available for some
time and is, somewhat surprisingly, provided by the static field equations and their
conformal extension as discussed by Beig and Simon [3],

If a space-time with physical metric g admits a time-like hypersurface-
orthogonal Killing vector field, i.e. if g is static, one can choose coordinates x°, xα,
α = 1,2,3, such that the metric takes the form

g=- ew(dx°)2 + e~2Uhaβdx«dxβ

with ^-independent functions U, h^β. Einstein's vacuum field equations for such
a metric reduce to the quasilinear (in a suitable gauge elliptic) system of equations

Rap = 2DaUDpU9 (4.1)

0 (4.2)
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for the function U and the Riemannian metric h. The covariant operator D, the
Laplacian Δ and the Ricci-tensor Raβ are defined here with respect to h. Tn the
following solutions of these equations will be considered which exist with U φ 0
on some 3-dimensional manifold S (representing a slice {.x° = const}) which is
diffeomorphic to (R3 minus a closed non-empty ball. The solution will be required
to be asymptotically flat and we shall be concerned mainly with its behaviour near
spatial infinity (with respect to (h,S)). This behaviour has been analysed in
considerable detail. Beig and Simon [3] showed for asymptotically flat solutions
of (4.1), (4.2) with non-vanishing mass M0 that the rescaled metric

h«β = ω2haβwithω = M0-
2U2, M0^0, (4.3)

if expressed in suitable coordinates, extends to a real analytic metric on a manifold
S — Su{i}, which is obtained by attaching a point i (representing spatial infinity
for h) to S such that S is diffeomorphic to an open ball in U3. The basic step in
their analysis was the derivation of a quasilinear elliptic system of differential
equations, implied by (4.1), (4.2) for the conformal fields. The analyticity of the
solutions of this system then followed from weak smoothness assumptions on the
extension of haβ, ω to S and from standard results on elliptic equations. The
argument will not be repeated here and the equations for the conformal fields will
be written in a form suitable to the following discussion. Furthermore, the
analyticity of the solutions at i will be assumed throughout.

We express again all fields in an orthonormal frame ea, a= 1,2, 3, for h on S.
The conformal-static equations form a system of partial differential equations for
the metric h, a symmetric trace-free tensor Sab and functions ω, ί, R. If Rab denotes
the Ricci-tensor of h, the equations are given by

Rab = Sab + ̂ Rhab9 (4.4)

M 2

DaDbω = thab - ωRab + ^~DaωDbω, (4.5)

Dat = Ddω(%Rhda-Sda), (4.6)

DaR = MQ

2Ddω(%Rhda-Sda), (4.7)
/ R \

D[cSa]h = MQ

2Ddω( %Sd[cha]b-±Sb[cha]d-—hd[cha}b , (4.8)
\ A° /

and thus unknowns are required to satisfy the conditions

ω = 0, Dαω = 0, ΐ = 2, R = M0

2t at the point ίeS (4.9)

in order that the physical metric e~2Uhaβ satisfy the asymptotic flatness conditions
at infinity. For a discussion of assumptions (4.9) the reader may consult [3]. Before
explaining how Eqs. (4.5)-(4.8) are obtained it is convenient to note a few
consequences.

Lemma (4.1). A smooth solution of(4A)-(4.9) also satisfies

DaDbω\ί = 2habi, (4.10)

R = M0

2t, (4.11)
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(4.12)

Λ/f ^
ωΛ = --°-/>βω/>*ω, (4-13)

2ωΔω = 3DaωDaω. (4.14)

Evaluation of (4.5) at z gives in view of (4.9) Eq. (4.10). Equation (4.11) follows
immediately by comparing (4.6), (4.7) and noting (4.9). Applying the operator Dc

to (4.5), commuting Dc, Da on the left, contracting with respect to indices b, c and
using (4.4)-(4.7) to simplify, we obtain the equation

Da(Δ ω - 3ί) = M0

2Daω(Δ ω - 3ί),

which implies because of (4.10) that t = ̂ Δω and by (4.1 1) also (4.12). By contraction
of (4.5), (4.13) follows now, which together with (4.12) implies (4.14).

We see that in fact either (4.6) or (4.7) is redundant if we assume (4.1 1). However
in some manipulations it is convenient to make a formal distinction between

t = ̂ Aω and R.
On a neighbourhood V of i such that on V\i the function ω is positive the

equivalence of Eqs. (4.1), (4.2) with (4.4)-(4.8), if (4.9) is assumed, can be seen as
follows. Equation (4.14) is just Eq. (4.2) expressed in terms of ω and h. Using (4.14),
Eq. (4.5) is obtained by writing Eq. (4.1) in terms of ω and h and introducing the
notation t = ̂ Δω. Equation (4.6) follows from (4.5) by taking a covariant derivative,
commuting operators, contracting and observing (4.5) to simplify again. Equations

(4.6), (4.7) are identical in view of (4.9) and Eq. (4.8) follows from (4.5) by taking
a covariant derivative and antisymmetrizing.

For various purposes it is convenient to have available the characterization of
the analytic solutions of (4.4)-(4.9), which is given in the following theorem.

Assume h is analytic near f, xa are normal coordinates for h centered at i, and
the orthonormal frame ea for h near / is parallel propagated along the geodesies
through i and such that ea = ea* d/dxa with e*a = δa

a at ί. We write xa = δa

ax
a. If T

is an analytic tensor field defined near /, it is well known that its components

Tal\'.'.a9

p with respect to the frame ea can be obtained near i as a convergent power
series of the following form:

τbι b* = Y _ v c f c . . . γ C l C D .. ./) τbl' ' b q ( ι ] } Ϊ415)1 αι . . .α p Z^ / i Λ Λ v^Ck ucι 2 αι.. .α p W / \^'1J)

ke^Kl

Theorem (4.2). A sequence cr f l l... f l p, peM, p §; 2, of symmetric trace-free tensors at ί
determines a unique formal-expansion type solution of(4.4)-(4.9), with expansions of
ω, ί, R, Sah of the form (4,15), such that the coefficients of the expansion ofSab satisfy

Caί...ap(Dap ' ' ' Daβa2aί(
i)} = σβl...βp, P - 2, 3, . . . .

Writing Eqs. (4.4)-(4.8) in the space spinor formalism, where in particular (4.8)
takes the form

M 2 M 2

^ A^BCDE — ~~7^ ω lεA(
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Therefore (4.2) is obtained as an immediate application of the theory of "exact set
of fields" discussed in [18]. If a formal expansion of the curvature fields Sab, R is
given, a formal expansion of the frame coefficients ea

a and the connection coefficients
with respect to ea can be obtained from the well known expression of the structure
equations in geodesic polar coordinates.

In the case that the formal expansions considered in Theorem (4.2) represent
in fact convergent power series and thus define an analytic solution of (4.4)-(4.9),
we may extend again the field SABCD by analyticity to some neighbourhood of the
origin of C3. Using the notation employed in (3.10), we see from Theorem (4.2)
that an analytic solution of (4.4)-(4.9) is determined uniquely by the function

KA H> κAκBκcκDSABCD(κ(l)l

which may be considered as a function on the complex null cone through i.
The content of Theorem (4.2) is not entirely new. A characterization of the

solutions of (4.1), (4.2) with non-vanishing mass in terms of "multipole moments"
[3] has been given before. These moments have been introduced because of
their "nice" transformation behaviour under conformal rescalings [15]. They are
related in a one-to-one though non-linear fashion to the quantities M0 and
C(Dap. . -Da3Sa2aι(ί)). Thus both sets of data are equivalent. It may be pointed out
however, that the use of the theory of exact sets of fields not only shows that the
static solutions are characterized uniquely by the multipole moments but also that
these moments are algebraically independent. Moreover, it appears that the
characterization given here is more amenable to a convergence proof. Growth
conditions on the σαι αg which ensure convergence of the series considered in
Theorem (4.2) will be considered elsewhere. There are sufficiently many exact
solutions of (4.4)-(4.9) available such that the following results are of interest.
Moreover, the existence of a large class of asymptotically flat static solutions has
been established recently from quite a different point of view [19].

Any solution of (4.4)- (4. 9) provides a time symmetric initial data set of the form
(2.25) with metric h and conformal factor Ωs = ωe~M°^ω (where the minus sign is
introduced to have a positive mass for the physical fields if M0 > 0). However,
from the same solution other initial data sets can be derived.

Theorem (4.3). Suppose the function ω and the metric h are obtained as part of an
analytic solution of (4.4)-(4.9). Then all solutions (3.1), (3.2) of the form Ω = Ω(ω)
are given by

β = ω j α c o s h ( — ^/ω ) + £ sinh ( ̂  ^/ω H (4.16)

with suitable real numbers α, b. In particular the unique analytic solution of (3.1),
(3.2) is given by

. (4.17)

Setting Ω = Ω(ώ) in Eq. (3.1) and writing Ω ' = dΩ/dω etc, gives in view of (4.4)-(4.6)
the ordinary differential equation
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M 2

2ωΩΩ" + 3ΩΩ' - 3ω(Ω')2 + — Q—Ω2 = 0. (4.18)

It can be checked immediately that (4.16) is the general not identically vanishing
solution of this equation. Analyticity of (4.16) requires b = 0, conditions (3.2) imply
0=1.

However, the form (4.17) of the analytic conformal factor may be deduced
without solving the complicated equation (4.18). By (2.27) we must have

with some analytic solution W of (2.26). With Ωs = ωe~M°v/ω this can be rewritten

T,/ l ιYMo Γ\W --- ^smh -—Jω =

Extending ω, ΩA by analyticity to a neighbourhood of the origin in C3, we find
from (4.9), (4.10), (4.14) and from (3.1), (3.2) that the zero sets of ω and ΩA coincide
near i and that the term in curly brackets on the right extends to an analytic
function at i. Similarly the term on the left extends to an analytic function
at i. Because of the factor ω~1/2 on the right this can only be the case if

PΓ = ω~1/2sinh((M0/2)v/ω) and ΩA is given by (4.17).
Having at our disposal the function ΩA, we can show

Theorem (4.4). Suppose the metric h is obtained as part of an analytic solution of
the conformal static equations (4.4}-(4.9}. Then it satisfies the radiatiυity condition
(3.13} at the point i = {ω = 0}.

Remarks. Since only a particular application of this result will be discussed in the
next section, it may be emphasized here that Theorem (4.4) is first of all a statement
about the structure of static space-times near spatial infinity. While Theorem (4.3)
shows that the conformal factor Ωs may be considered as a function of the conformal
factor ΩA, the present theorem shows that the metric h must have a very special
behaviour at the point ί. Though these two facts are not needed to demonstrate
the existence of an (analytic) conformal extension of the static solution through
null infinity, they may be of significance if one seeks a detailed understanding of
the point spatial infinity in the 4-dimensional space-time picture.

By Theorem (4.2) the result above implies that the Bach-tensor of the solution
h of the conformal static equation (4.4)-(4.9) satisfies the conditions (3.12). This
has been noted independently by R. Beig [4].

To prove the theorem, we may use the expression (4.17) for ΩA and Eqs.
(4.4)-(4.9) to check by straightforward calculation that the condition (3.4) is satisfied.
For later use it is however more convenient to calculate instead the explicit
expression for the tensor dab derived from h and the conformal factor

= ωίco8h/^/^ + &sinhf^Ω

We obtain

dab = P(ω)Sab + q(ω) {DaωDbω ~ % habD
cωDcω}> (4.19)
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where, with the notation z = (M0/2) ̂ /ω, we have

bM0

2. U2 . U2 (l + b2)M0

2 smhz
p = --(cosh2 z + smh2 z) + --cosh z ,

4z 4 z

q = ~ {4z cosh z sinh z — (3 + 4z2)(cosh2 z + sinh2 z)}
8z

Q _|-52s)j\/f 2

H -g—— {3z(cosh2 z + sinh2 z) — (3 + 4z2) cosh z sinh z}.
8z

It follows that dab = 0(ω~3/2) for ω-^0 if b / 0, while the functions p(ω), g(ω) are
analytic with

M 2 2M 2

lim p(ω) - —-, lim q(ω) = — if b = 0. (4.20)

5. On Radiative Space-Times

Theorem (4.4) is particularly interesting, because it shows a way to construct

radiative initial data sets.

Theorem (5.1). Suppose the metric h and the function ω are part of an analytic
solution of the conformal static field equations (4.4)-(4.9). Then the radiative initial
data set derived according to (2.25) from h and the analytic function ΩA given by
(4.17) determines a solution of Einstein's field equation Ric \_g~\ = 0 (unique near past
time-like infinity) which has a smooth structure at past null infinity and is regular
and analytic at past time-like infinity.

The solutions of Einstein's field equations considered in the theorem, which
will be referred to as "radiative space-times" in the following, are obtained as
follows. The methods and results discussed in [9] imply the existence of a unique
solution comprising a metric g and a conformal factor Ω of the regular conformal
field equations on some manifold M. The metric g = Ω ~2g on the manifold I + (i)
constitutes the radiative space-time. A discussion similar to that given in the case
of the hyperboloidal initial value problem [12] shows that past null infinity of the
solution (I + (i\g) is smooth.

There are a few questions which may come up at first sight of Theorem (5.1).

We shall discuss some of them now.
One may wonder whether at least on some parts of M where Ω / 0 the metric

g = Ω'2g is conformal to a static metric. It is essentially a consequence of

Brinkmann's theorem (see [16] and the literature given there) and follows easily
from Eqs. (2.2)-(2.6), that this cannot be the case unless g is flat. If we assume that
gμv = Θ2gμv for suitable θ > 0 is a static solution of Einstein's vacuum field equations,
we may apply the regular conformal field equations to this situation. Since Rμv = 0,
Eq. (2.3) implies that S^^V^Θ = s0 = const, and therefore by (2.2), (2.4), (2.6),

ViVkθ = SQgik, (5.1)

V ί0V ί0 = 20£0, (5.2)

V 0Cί ,, = 0 (53)v ι(7^x jkl ^'' \ J ~'J
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If 5 0/0, then V'0 is time- or space-like everywhere by (5.2), and (5.3) implies
Cl

jkι = 0 (seen immediately in the spinor formalism). If SQ = 0 but Vβ ^ 0 and
Cl

jkl Φ 0, then (5.3) would imply that g is of Petrov type N. However, this cannot
be the case if g is static. It follows that either g is conformally flat or that
θ = Θ0 = const, whence g is static. As we shall see below this can only be the case
if g is flat.

The question whether there is actually radiation present in the "radiative
space-times" discussed here may be settled by looking at the identity (3.8). It shows
that unless the metric h is conformally flat the conformal Weyl curvature of the
metric g cannot vanish near past time-like infinity. Therefore the radiation field
on </" cannot vanish identically near past time-like infinity by the uniqueness
result of [10].

As illustrated by the Schwarzschild solution and the discussion of (3.8), this
identity does not allow one to conclude that the conformal Weyl curvature of g
vanishes on the initial surface if the metric is conformally flat. If, however, Ω is
analytic and the radiativity condition is satisfied at i, then the left-hand side of
(3.8) vanishes if and only if dab vanishes near i.

It is well known that the assumptions of asymptotic simplicity and of the
existence of Killing fields together have very strong implications on the structure
of the space-time [1,2]. This is likely to be the source of the difficulties in finding
exact solutions which represent purely radiative space-times (if these exist). But in
the case of Einstein's field equations with positive cosmologίcal constant the
implications are equally strong, nevertheless it has been shown that "asymptotic
simplicity" describes correctly the asymptotic behaviour in that case [11, 12]). In
fact, in the case of the boost-rotation symmetric solutions which are regular at
past time-like infinity the generators of,/" are not complete [5]. In constructing
the radiative solutions as suggested by Theorem (5.1) we loose the static Killing
field (see below). However, it may well be that we just trade one symmetry for
another, which possibly forces some generators of «/" to be incomplete (if the
analytic extension of the solution is considered). It is one of the purposes of the
following discussion of Killing fields on the radiative space-times to show that this
is not necessarily true.

Suppose Kμ is a Killing vector field for the radiative metric gμv on I + (i). If we
set Kμ = Kμ, Kβ = #μv K

v = Ω2gμvK\ then with respect to the metric g the field K
satisfies the conformal Killing equations

(5.4)
with

Φ = \ VjKj = Ω~ lKjVjΩ. (5.5)

Setting Φj = Vjφ, the following conditions are satisfied by the conformal Killing
field K (see e.g. [22])

V/ V j K , = - K?rpilj + Φi9ίl + Φj9li - Φιg.i9 (5.6)

(5.7)

(5.8)
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^x( Vqj. - i V^) = - Φ"Ckjil9 (5.9)

where S£κ denotes the Lie-derivative with respect to X.
Equations (5.4), (5.6), (5.7) imply along any given smooth curve an ordinary

linear homogeneous differential equation for the "conformal Killing data" KJ9 Φ,
φtj = V[t-K7-j, Φj. This implies that the field K is analytic near past time-like infinity
and may in fact be extended to an analytic conformal Killing field on a
neighbourhood of the point z. We will again denote this extension by K.

Since K is a Killing vector field for the physical metric on /+(z), its flow maps
the past endpoints of the physical null geodesies, represented by the points of Nt

 +

again into such endpoints. Therefore K is tangent to Nt. In particular we have

K = 0, φ = 0 a t z . (5.10)

This may also be deduced formally by evaluating (5.5) on {Ω = 0} and the first
and second covariant derivative of (5.5) at i. By (5.10) the freedom to give conformal
Killing data is reduced to the dimension of the Poincare group.

As mentioned before, we have

Theorem (5.2). If a radiative space-time admits a time-like Killing vector field, it is
flat.

If y is a null geodesic for g, then the scalar product g(y'9 K) is constant along
y. Since K is time-like on 7+(z), it follows that K Φ 0 at all points of M which can
be reached from I+(i) by a null geodesic, ΐn particular K Φ 0 on Ni + \i. Choosing
normal coordinates xj = δj

μx
μ and a normal frame eμ

k(d/dxμ) (with eμ

k — δμ

k at i)
centered at z, we may expand Kj in the form considered in (4.15). In view of (5.10),
(5.6) this gives

Kj(xp) = x'V^'ίO + (xzΦz(i)xJ' -τxlXιΦj(ΐ)) + 0(W3). (5.11)

Since Kj is time-like on I+(i) and tangent to Nt

 +

 9 it must be null on Nt

 + . If V Φ 0
is a future directed null vector at i it follows that

KJ(λl*)=f(λ)ljϊoτλ^Q (5.12)

with some analytic function /, which may depend on /, such that f(λ) > 0 for
λ>09 /(0) = 0 (assuming K as future directed on I + (ΐ)). Expanding f(λ) =
f,λ + f2λ

2 + 0(λ3) we find from (5.11), (5.12),

fJJ = lkVkKW, (5.13)

f2V = lkΦk(ΐ)V. (5.14)

By (5.4), (5.10) V'X/i) is a generator of the Lorentz group, which by (5.13) has any
null vector as an eigenvector, whence

V^ ^ O a t z , /!=0. (5.15)

Since Φ7 (z) is the remaining conformal Killing datum of K at i and KjKj < 0 on
7+(ι), we conclude in view of (5.11)

Φ/0 Φ 0, ΦjΦj ^ 0 at z, /2 - ΐΦk(i\ (5.16)
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We shall now show that Eq. (5.8), which can be rewritten

^κ(dίjkl)=Φdίjkl, (5.17)

implies that the null datum for dίjkl on Nt vanishes. Choose lk as before with
lkφk(i) φ 0. At a point γ(λ0\ λ0 > 0 of the generator yk(λ) = λlk of JV f

 + choose vectors
V1

9 Wl tangent to Nt

+ such that

g(V9 V] = g(W, W); g(V9 W) = 0; K W, K are linear independent, (5.18)

and extend the fields F, W along y by requiring &κ 7 = 0, ̂ KW = 0. The relations
(5.18) will then be preserved along y since K is a conformal Killing vector field.

Set Mj = Vj + Λ/—T Wj. Up to a non-vanishing factor the null datum of the field
diljk is given by d = dίljkK

lMlKjMk at y(λ\ λ > 0. Equations (5.17), (5.12) imply along

~d = Φd,
dλ

which may be rewritten, using (5.10), (5.15), (5.16) in the form

^-(λ-ld)
dλ

with some function h(λ) which is continuous for λ^O. Since Mj = 0(λ\ Kj = 0(λ)
for λ-+Q the function λ~ld extends to a C1 function of λ for λ ̂  0, which vanishes
at λ = 0 and thus by the last equation everywhere on the generator y. Since the
null datum of dijkl vanishes on Nt

 + , the metric g on I+(i) is flat by the uniqueness
result of [10].

The question whether the radiative solutions admit necessarily a Killing vector
field finds an answer by

Theorem (5.3). Let Sab be the traceless part of the Ricci tensor of the metric h
considered in Theorem (5.1). If the corresponding space spinor field is not of the
algebraically special form.

SABcD = ̂ AocBβcβD) at i (5.19)

with some spinors %c,βc, and satisfies

D(ABSCDEF^ = Oati, (5.20)

the radiative space-time determined from h admits no Killing field.

Remark. The conditions on Sab stated here are conditions on the first free data in
the characterization discussed in Theorem (4.2) and leave open the choice of an
infinite number of free data. Since we can have real space spinors of the form
^ABCD = ^(Aββyc^D) with pairwise linear independent spinors α^, βB, yc, δD, this
suggests that the class of radiative space-times without any symmetry is indeed
quite large.

To prove our assertion let φABCD be the rescaled Weyl spinor which is the
(space-time) spinor representation of the tensor dίjkl. Since d0abc = 0 on S and
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d0a0b = M0

2/4 Sab at i by (4.19,4.20), we have

ΨABCD — ~~Λ

Because of (5.10), Eq. (5.17) reduces at the point i to an algebraic relation for the
tensors dίjkl and V^ . Expressed in terms of space- time spinors it reads in view
of (5.21),

9F(ASBCD)F ^ 0 at z,

where φAB = ̂ VAF'KB

F' is symmetric because of (5.10). Writing φAB = φAB -f ipAB

with (uniquely determined) real space spinors ψAB, ρAB and observing that SABCD

is a real space spinor, Eq. (5.22) splits into

*A (A$BCD)F = 0, p (A$BCD}F = 0 at ί.

If ί/^β has components ^00 = 0, */Ίι=0, ΨQI = ΨIO=\ one finds by direct
calculation that the first of the relations (5.23) can only be satisfied if SABCD =
ctt(AaBβcβD) with some ceC and spinors α^, βB with components α0 = β1 = 0,
α1 = j80 = 1. Since the group 5(7(2) acts transitively on the directions at i, the
relations (5.23) can always be reduced to this case unless \j/AB = 0, pAB = 0. By the
assumptions of the theorem it follows that necessarily V7 KZ = 0 at i and the
remaining conformal Killing datum at i is given by Φ7 . By (5.6) the second covariant
derivative is determined by Φj at i. From (5.20), (4.8), (4.9) we get DcSab = 0 at /,
which allows one with (4.19), (4.20) to conclude that Dcdab = 0 at z. Therefore the
evaluation of the conformal vacuum Bianchi identity (2.5) at z yields in view of
(2.23), (2.24) that V^jkίm = 0 at z. Consequently one obtains an algebraic relation
for Φk and dijkl if one takes a covariant derivative of (5.17) and evaluates at z. From
this we get the spinor relation

DΦEE' + 2εE(AφBCD}F ΦF

E, -f 2φE(ABCΦD)E, = 0 at i,

which upon contraction with &DE yields

Since we have forbidden the form (5.19) this cannot be true if ΦAA, = JAJA> /O.
However ΦAA'ΦAA,^Q would imply SABCD = 0 at z which contradicts our
assumptions.
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