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Abstract. We establish conditions under which all trajectories of a mechanical
system have a regular scattering behavior. Applications to the many-body
problems on the line and to the systems with exponential cone potentials are
worked out.

1. Introduction

To motivate our study let us consider the classical motion of n d-dimensional
particles with pairwise interactions. We consider the situation where the forces of
interaction are central, conservative and repulsive. Denote by xi,...,X, the
positions and by X;,..., %, the velocities of the particles. Let m,...,m, be their
masses and v;; = 0, 1 £i < j <n, the potentials of interaction. Then the total energy
is

1 n
E(x,x)=§Z mill %112 + 3 vyl x; = ;). (L.1)

i=1 i<j

It is known [1, 9] that any motion {x;(t),...,x,(t); — o0 <t < oo} has asymptotic
velocities at infinity

Xi(o0) = lim x;(t), i=1,...,n (1.2)
t— o
Assume that the pair potentials satisfy the fast decay condition

T v(r)dr < co. (1.3)

It was shown in [2] that the motions with distinct asymptotic velocities

Xq(00) # -+ # X,(0) (1.4)
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have the asymptotics
x(t) =x;(c0)t +a;+0(1), i=1,...,n (1.5

Such motions are called asymptotically uniform.
Presumably, (1.4) is satisfied for a dense open set D . = R?*" of initial data which
defines the mapping

W,:D, — R2n

assigning, by (1.5), to a point (x(0), x(0)) in D, the asymptotic data (%(o0)), a) of
the corresponding trajectory. The operator W, and its counterpart at minus infinity

W_:D_— R?*"

allow us to define the scattering S = W, W1,

The study of the W, and S is inconvenienced by the fact that, in general,
D, # D_ # R?>" which is related to the phenomenon that not all trajectories satisfy
(1.4). It is natural to call motions satisfying (1.4) and (1.5) regular.

However, it was discovered in the course of investigation of integrable many-
body problems that some of them have only regular trajectories. For instance,
such is the Calogero—Moser system of n particles on thé line interacting via the
x~ 2 potential and the Toda lattice [8].

In this paper we, developing an idea of [8], establish sufficient conditions for
a scattering problem to have only regular trajectories. Applying these conditions
we show that for many natural classes of scattering problems all motions are
regular. This is true, in particular, for exponential potentials (Corollary 3) and for
one-dimensional many-body problems (Theorems 5 and 6). A different approach
to the regularity of trajectories for the many-body scattering in one dimension is
developed by A. Hubacher [7], see remark at the end of Sect. 3.

2. Conditions for Regularity

We consider Newton’s equation of motion

M3 =F(x), * 2.1
where x = x(t)eRY, M > 0 is the mass matrix and
F(x)= — grad V(x) (2.2

is the conservative force corresponding to the potential V. The present work relies
to some extent on [3-6] where only the case M =1 was considered. It will be
shown in this section how to remove this restriction, so the results of [3—6] remain
valid for any positive mass matrix M.

We need to establish some terminology and notation. The cone spanned by
vectors ¢;eRY, iel, is the closure of the set {x =) c;e, i€l,c; = 0} as opposed to
the subspace spanned by e;, iel. A cone C in R¥ is called proper if it does not
contain a straight line. Let {x, y) be the scalar product in R". The dual cone C*
of C is defined by C* = {y:{y, x> 2 0 for all xeC}. A closed convex cone is proper
if and only if C* spans R". By Int X we denote the interior of X.
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We consider potentials ¥ that satisfy the following conditions.

C.1. V 20 is defined and continuously differentiable in a convex open domain £.
The vectors — grad V(x), xeQ, span a proper cone C. Domain Q is closed under
x—-x+ C*.

C.2. For any 0 # eeC there is | = — oo such that for xe,{x,e) >l and {x,e)—1
implies V(x)— co. The function | grad V(x)| is bounded away from zero in any
domain {xe2:{x,e) {L,0#eeC}.

C.3. Let e¥eC* and let Cy = {eeC:{e,e*) =0}. For any e*eC* there is a closed
convex cone C, < C such that e*elnt C¥, and the decomposition

V=Vy+V,, (2.3)
where —grad Vy(x)eC,, —grad V(x)eC, and
[ Vila+re*)dr < (2.4)
0
for any aeQ.

Potentials satisfying C.1 were dubbed in [4] the cone potentials.

Theorem 1. Let potential V satisfy C.1, C.2 and C.3. Then
i) for any trajectory x(t) — oo <t < o, of (2.1) the asymptotic velocity %(o0) =
lim X(t) exists and X(co)elnt C*.
t— 0
i) Any trajectory is asymptotically uniform, i.e. it has the asymptotics as t — oo,
x(t) = X(o0)t + a + o(1). (2.5)

ili) The asymptotic velocity x(— oo) exists for any trajectory and X(— o0)
e — Int C. Every motion is asymptotically uniform at t -» — 0.

Proof. Assume first that M = 1. By [3], for any trajectory x(t) the limit X(c0)
exists and x(o0)eC*. If x(oc0)elnt C* then, by Theorem 1 of [4], (2.5) holds. Hence,
it remains to show that X(co)elnt C* for any trajectory.

Assume the opposite and denote X(o0) by e*. Consider the cones C, and C;
and the decomposition (2.3). Set F, = — grad V,,, F, = — grad V,. Rewrite (2.1) as

X(t) = Fo(x(t)) + F 1 (x(t)). (2:6)
Since e*elnt C¥, there is a positive constant a such that for any e;€C,,
eyl = aey, e*). @7

Note that inequality (2.7) is equivalent to e*elnt C*.
Since X(t) - e* for any & > 0 there exists ¢, such that || x(t) — e*|| <& for t > t,,.
For any vector e;eC; and t > ¢,

e, (%(t) — €%/2)> =3 ey, e*) + Cep, X(1) — €% ) 2 5 ey, €% ) — [y, X(t) — €|

1 1
giuelu—sne1||=(%—a>ue1u. 28)
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Choose ¢ < 1/2a. By (2.8), for t > t,, X(t) — se*elnt C¥ and

Cen 50> > 3en ey 2 5 e, 29
Applying inequality (2.9) to e, = F(x(t)), we have, for t, <t < o0,

1(X(T

o < T | Fy(x(0) | dt < 2a | {Fy(x(2)), %(x) Y de

=—2a T %)—) —dt =2aV(x(t)).

t

Thus the integral
G,(t)= | Fi(x(x))dt (2.10)

converges absolutely and, for ¢t > ¢,
1G1(0)]| < const V(x(1)). (2.11)

Since F,(x)eC,, for any two vectors a, b such that b — aeC¥, we have
Vi(a@)— Vy(b) = [(F (a+s(b—a)),b—adyds=0. (2.12)
Set a =%e*(t — ty) + x(to), b = x(t). Then
t d L t .
b—a= fa [x(t) —ze*(t —ty) — x(ty)JdT = f [x(t) — $e*]dr. (2.13)
to to

Since, for © > t,, X(t) — 2e* belongs to C%, by (2.13), for t, <t < 0,
x(t) — ye*(t — to) — x(to)eCY

and, in view of (2.12),

Vi(x(8)) S Vi(5e*(t — to) + x(to)). (2.14)
Inequalities (2.11) and (2.14) yield
1G (D)l < const Vy (x(to) + Fe*(t — to)). (2.15)
We have from (2.6) and (2.10),
d
2 X0+ G1(1) = Fo(x(1)). (2.16)

Since C, is a closed convex nonempty proper cone, the intersection
Int CynInt C¥ is not empty. Choose a vector e from it and set

g(t) = <{xX(t) + G(1), €. (2.17)
By (2.16),
g(1) = (Fo(x(2)), e) =20, (2.18)
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hence g is monotonically increasing. By (2.4) and (2.15), G,(t) goes to zero
as t— oo, hence

lim g(t) =<e*, e) =0. (2.19)
t—>
By (2.18) and (2.19),
g() =0. (2.20)
By (2.15) and (2.4), the integral

H,(0)= | G,(0)dx (2.21)

converges, and H,(t)—0 as t — oo. Set
h(t) = <x(t) — Hy(1), €. 2.22)

Then h(t) = g(t) and, in view of (2.20), h is monotonically decreasing. Hence, h(r)
is bounded above as t— co. Since H,(t)—0, {x(t),e) is bounded above as
t—o0. By C.2, | F(x(t))| is bounded away from zero. Since F(x(t)) =0, || Fo(x(t)) |
is bounded away from zero as t— co. Since F,eC, and eclnt C¥, by (2.7), there
is a positive constant such that

CFo(x(1), e 2 const || Fo(x(1)) | (2.23)

and {F,(x(t)),e) is bounded away zero as t — co. This implies, in view of (2.18),
that g(t) — oo which contradicts (2.20) and proves the first two assertions of the
theorem. The third one can be proved by the same argument considering t —» — co.
It also follows from i) and ii) by the change of variables (x, t) > (— x, — ).

Let now M >0 be arbitrary. Set

y=M"x, V(y)=V(M 12y). (2.24)
Then (2.1) is equivalent to
y=F(@) (2.25)
with _ _
F(y)= —grad V(y) = M~ Y2F(M ~1/2y). 2.26)

Set C=M"12C, @=M"2Q. The cone C is proper and C*=M"2C* It is
straightforward but tedious (we leave it to the reader) to check that the potential
¥, the cone C and the domain 2 satisfy conditions C.1-C.3.

In view of the above, Theorem 1 holds for the trajectories y(¢) of (2.25). Since
the trajectories x(¢) of (2.1) and y(t) are related by

x(t) = M2 y(t), (2.27)

Theorem 1 follows.
Now we give the formal definition of regular motions in classical scattering.

Definition 1. A trajectory x(t), — o0 <t < 00, of (2.1) is called regular if it has the
asymptotics (as t — + o0)

Xt)=b,t+a, +o(l), %t)=b, +o(l) (2.28)
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with b,,b_ #0. The vectors b, ,b_ and a,,a_ are the asymptotic velocities and
phases at t = + oo and t = — oo respectively.
Theorem 1 contains the following.

Corollary 1. If potential V satisfies conditions C.1-C.3 then all motions of the
dynamics (2.1) are regular.
The following corollary has been proved in the course of proof of Theorem 1.

Corollary 2. Assume that conditions C.1, C.2 and C.3 are satisfied. Then any trajec-
tory x(t) has asymptotics (2.28) with b, e+ Int C*. There exists t,>0 such that
Jor t>t,

V(x(t)) < const V(x(ty) + 5b., (t — to)), (2.29)
and for t < —t,
V(x(t)) < const V(x(t) +31b_(t + to)). (2.30)

For some applications, condition C.3 is too restrictive. It can be replaced
by the following two conditions.

C4. For any ecInt C* and ae2,
[ Via+re*)dr < co. (2.31)
0

C.5. Let x(t) be a trajectory and let e*eC* be its asymptotic velocity (at plus infinity).
Let C, = C be the subcone of vectors orthogonal to e*. Then there is a decomposition

F(x)=Fq+ F,(x), (2.32)

where Fy(x)eC, and

oo}

el ITF () [l de < oo (2.33)

Proposition 1. Let a potential V satisfy conditions C.1, C.2, C.4 and C.5. Then every
motion of the dynamics (2.1) is regular, with x(co)elnt C*, X(— o0)e — Int C*.

Proof. Following the proof of Theorem 1 we come to the point where we need
to show that x(co)elnt C*. Assume the opposite and set x(co0) =e*. By C.5, the
integral (2.10) converges and we estimate the integral in (2.21),

|H, ()] = Tcl(z)dr - I]fd‘c?Fl(x(a))da = JI Fix(@)dedo
< <ﬂ; HFl(x(o))Hd-cda=°§(o—t) | Fy(x(c)) |l do. (2.34)

By (2.33) and (2.34), | H,(t)|| < oo and ||H,(t)|| = 0 as t - co. The rest of the proof
of Theorem 1 goes through unchanged and the obtained contradiction proves
Proposition 1.

The following lemma is used in Sect. 3.

Lemma 1. Let E ~ R be a Euclidean space with the scalar product {x,y) and let
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E;~RN, i=1,...,n, be a nonempty family of subspaces of E. Denote by P; the
orthogonal projection of E onto E;.

Let fori=1,...,n a potential V; in 2, = E; be given. Denote by C; < E; the cone
spanned by vectors F(x)= — grad V, and assume that for i=1,...,n, conditions
C.1-C.3 are satisfied. Set Q= {xeE: P(x)eQ;,i=1,...,n} and

V)= Y, VP (2.35)

Ifthe cone C in E spanned by C,,..., C, is proper, then V satisfies conditions C.1-C.3.
Proof. The dual cone C* is given by
C*={xeE:P;xeC}, i=1,...,n}.

If xe and e*eC*, thenfori=1,...,n, Pxe, and P(x + e*)e, + C¥ = Q,. This
shows that £ contains 2+ C*. If eeC then e=¢, + --- + ¢,, where ¢;eC; and

(xer= 3 (rep= 3 (Pxier.

Assume, for simplicity of exposition, that e; 0 for 1 <i<n, and let [;= — o0 be
the lower bound on (P;x,e;». Set =Y .. Then {x,e) > 1.
i=1

Assume first that [ > oo, i.e. ; is finite for all i. Then {x,e>—1 if and only if
{P;x,e;y—1; for all i. The latter implies that V,(P;x)— oo for all i, hence V(x)— co.
The equality /= — oo holds if and only if ;= — oo for at least one index i. We
have (x,e)»— — oo if and only if {P;x,e;> - — co for at one of those i, say for
i=1. But then V,(P;x) - oo implying V(x)— co.

Analogously, if {(x,e) is bounded from above, then for at least one index
i, { P;x, ;> is bounded from above, therefore || F(x)|| = || F{P;x)| is bounded away
from zero. Since C,,...,C, span a proper cone, there is a constant a > 0 such that
for any e¢;eC,, i=1,...,n, we have

les+ - +eull 2 alle | + -+ lle,lD). (2.36)

By these two observations, || F(x)|| is bounded away from zero. So far we have
proved C.1 and C.2. It remains to prove that C.3 is satisfied.
A vector e*eC* defines P,e* = e*eC¥ and let C? and C} be the corresponding

n

subcones of C;. Since for any vector e= Y ¢, in C,
i=1

(Y=Y (epery=0
i=1

if and only if {e;, e*) =0 for all i, the cone C, is the span of C?, i=1,...,n. Set
C, be the span of C} for i=1,...,n, and define the decomposition (2.3) by

V=3 VP =3 VOPx)+ 3 VIPx) = Vo) + Vi(x).  (237)
i=1 i=1 i=1
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In a selfexplanatory notation, we have

Folx) = --i FO(Px)eCo, F,(x)= il F(Px)eC,.
Since e} = P,e* belongs to Int C}, e*eInt C,.

It remains to show convergence of the integral (2.4). Using notation a; = P;q,
we have

0 n e o]
[ Vila+re¥dr=Y [ Via;+ref)dr< o,
0 <10

which finishes the proof.

3. Applications and Examples

Applications of the results of Sect. 2 to the many-body scattering are based on
the following theorem which is a straightforward corollary of Theorem 1 and
Lemma 1.

Theorem 2. Let E be a Euclidean space of N dimensions with orthogonal projections
P.,...,P, on the subspaces E,,...,E,. Let
V(x)= Z Vi(P;x)
i=1

be a potential such that for i=1,...,n the potentials V; on E; satisfy C.1.-C.3 with
domains £2; and cones C; in E;. Denote by C the cone in E spanned by C,,...,C,.
If C is proper then all trajectories x(t) of Newton’s equation

Mx = — grad V(x) 3.1
are regular with x(co)elnt C*, x(— oo)e — Int C*.

Theorem 3. Let e,...,e, be nonzero vectors in E ~ RN spanning a proper cone C.
Let vy(r) be continuously differentiable functions defined in { — oo < a; <r < o0} for
i=1,...,n. Assume that v,(r) monotonically decreases from infinity to zero when r

runs from a; to co. Assume also that f,(r)= — vi(r) > 0 and that for A;> a;,
[ vi(r)dr < 0. (3.2
Ai
Set
Vix)= _Zl vi({X, €)). (3.3)

Then the trajectories of the dynamics (3.1) are regular and satisfy
{(x(0),€;> >0, <(X(—o0)e»<0 34
fori=1,...,n

Proof.. The situation of Theorem 3 is a special case of that of Theorem 2 with
E;=Re;, C;=R e, Q2,=(a; o). It is trivial to check that fori=1,...,n, potentials
v; satisfy C.1-C.3. Hence, Theorem 2 applies.
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Example 1. Exponential Cone Potentials. These are the potentials of the form

[3]
Vix)= Z cie” e, (3.5)
i=1

where c¢; >0 and the vectors ey,...,e, in E span a proper cone. The following is
a special case of Theorem 3.

Corollary 3. Any trajectory x(t) of the dynamics (3.1) with the exponential potential
V given by (3.5) is regular. The velocities x(o0), X(— o0) satisfy (3.4).

Potential V given by (3.3) is a linear superposition of potentials v; in one
dimension. Now we consider the polynomial superpositions of such potentials.
Let ¢; #0 be a vector in E~RY, i=1,...,N. By polynomial superposition of v,
we mean potentials V on E of the form

V=3 ¥ cvn({xe0) v, (X e,0) (3-6)

m I=(i,..., im)

where the summation is over a finite set of multi-indices I and ¢; > 0.

Theorem 4. Let a potential V on E be a polynomial superposition (3.6) of potentials
v; in one dimension satisfying conditions of Theorem 3. If the cone C in E spanned
by ey,...,ey is proper then the motions x(t) of the dynamics (3.1) are regular with
X(o0)elnt C*, X(— oo)e — Int C*.

Proof. The cone C* is given by C* = {x:{x,¢;> 2 0,i=1,..., N}, the domain 2 by
Q={x{x,e;)>a, i=1,...,N}.
The force F(x) = — grad V(x) has expansion
F(x)= ; ;Cwil(@, e, ) 0;, (<X, €, D) fil{x, €. ))es. 3.7

Conditions C.1 and C.2 are elementary to check. Condition C.4 is fairly straight-
forward and we leave it to the reader.

For e*eC* let K, be the set of indices i such that {e* ¢;> =0, and let K, be
the complement of K,. Set Fy(x) be the part of the expansion (3.7), where ieK,
and F(x) be the rest of the expansion. Since C, is spanned by e;, ieK,, we have
Fo(x)eC,. To obtain C.5, it suffices to bound the integrals

Of: tvy, (CX(0), €5, ) -+ v, (x(2), €, ) fi({ x(20), €, )dt (3.8)

for any multi-index I = (i,...,i,), i€l n K, and T sufficiently large. By conservation
of energy, v;({ x(t), e; ) is bounded on the trajectory x(t) for any j, therefore { x(z), ¢; >
is bounded away from a;, hence in the integral (3.8) the product v; ({x(t), e;,>) -
v, ({x(t), e;, >) is bounded as t— oo. Since ieK;, lim {(X(t),¢;> >0 and we can

t—> o

find a> 0 such that {x(t),e;> = at for t large enough. Hence, (3.8) is bounded
above by

const of t fi(at)dt. (3.9
T
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Integrating (3.9) by parts and using that, in view of (3.2)

lim rov,(r) =0, (3.10)

we conclude that (3.9) converges. Thus, Proposition 1 applies.

Example 2. Polynomial Superpositions of x~* and e * Potentials. Let vectors e; # 0,
i=1,...,N, span a proper cone C in E. Let a;, b;, ¢;;, 1 <i, j < N be nonnegative
numbers, not all of them zero. Consider the potential

N N N
V(x)= -21 ae” 0 4 '21 bi{x,e;> 2+ ' Zl cii{x, e,y " 2e 9 (3.11)
i= ji= i,j=

defined in the domain Int C* and the corresponding dynamics (3.1). Theorem 4
implies the following.

Corollary 4. Trajectories x(t) of the dynamics (3.1) with potential (3.11) are all regular
and x(c0)elnt C*, x(— oo)elnt C*.

Remark. One can consider, analogously, more general than (3.11) superpositions of
x~? and e * potentials.

In the rest of this section we consider applications to the many-body problems
on the line. We denote by x;,..., xy the positions, by X;,..., Xy the velocities and
by my,...,my the masses of the particles. We assume that the particles interact
pairwise by conservative repulsive forces and consider the following two cases.

Case 1. Central Forces. The pair potentials depend on the distances between
particles, v;;(|x; —x;|). We assume that the potentials v; 20, 1 Si<j<N, are

continuously differentiable on (0, co0), monotonically decreasing and that lim v;;(r) =
0 as r— 0. The total potential in the case of central forces is

V(xg,...oxy) =3 vi(lx;— x;]). (3.12)

i<j

Case 2. Directed Forces. The pair potentials are v;(x; —x;), 1 £i<j<N, where
v;;(r)2 0 is continuously differentiable on the interval {—co <I;;<r <o} and
monotonically decreases from infinity to zero.

Theorem 5. Let N particles on the line interact by central repulsive forces. Assume
that all pair potentials v;(r)— oo when r—0, that v;;<0 and that for p >0 the

integrals | v;;(r)dr converge.
P
Then every trajectory {x,(t),...,xy(1)} is regular and %,(c0) # --- # Xy(0).

Proof. The condition v;;(0) = co means that the particles cannot pass each other.
Therefore on a given trajectory we can relabel them in such a way that for all times

Xy > > Xy (3.13)

Let e,...,ey be the standard basis of RY and let C be the cone spanned by
e, —e,,...,ey_; —ey. Then the total potential (3.12) in the domain (3.13), which
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is Int C*, takes the form (3.3)

V(x)= Z vi({x, e;—¢;)),

i<j
and satisfies conditions of Theorem 3, which implies the assertion.

Remarks. 1. What happens if the particles can pass each other, i.e. v;;(0) < oo for
some i< j? By [1] and [9], the asymptotic velocities x,(o0),...,Xy(c0) exist for
every motion. By [2], the motions satisfying (1.4) are asymptotically uniform (1.5),
but now the regularity condition (1.4) is not satisfied by all trajectories, only by
generic ones. For instance, if v;;(0)< oo for all i<j then there are relative
equilibria

X, (t)=-=xyt)=a+bt, %{(0)==Xy(c0)=b (3.14)

which violate (1.4). Nevertheless, the motions (3.14) are asymptotically uniform.
Are there trajectories which are not asymptotically uniform? The question seems
to be open, see [2].

2. Theorem 5 obviously extends to the case when the pair potentials v;; are
defined on (a;;, o) with a;; 2 0, and the other conditions remain the same.

Now we consider N-body problems with directed forces and allow, in addition,
external potentials u; = 0 which are continuously differentiable for — o0 S [;<r <
oo and monotonically decrease from infinity to zero. The following is a corollary
of Theorem 3.

Theorem 6. Let

N
V(Xi,...,xy) = Z‘v,-j(xi —x;)+ k; g (x;) (3.15)

i<j

be the total potential of a many-body problem with directed forces. Assume that
Vi1 <0 for i=1,...,N—1 and that for all i<j and p>1; the integrals

[ v(r)dr < co. Also assume that for k=1,...,N, either u,=0 or u; <0 and
P

Tuk(r)dr < 0.
P

Then every trajectory of the N-body problem is regular and %,(00) > -+- > X y(00).
Let ko be the minimal k such that u, #0. Then for k = kg, X;(00) > 0.

Remark. One of the results of [ 7] is a criterion of regularity of asymptotic velocities
for a class of repulsive many-body interactions in one dimension. Assume that the
particles have equal masses (and set m = 1), and that the directed repulsive pair
potentials v;; are all equal. Then the Hamiltonian of the system is

1 N
H=33 %+ ox—x). (3.16)
k=1 i<j

Assume that the interaction potential v is continuously differentiable on (I, co).

Theorem [7]. The usual repulsivity conditions on v (i.e.v > 0, v <0 and lim v(x) = o
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as x —1) are necessary and sufficient for the property
X1(00) > -+ > Xpy(00) (3.17)

for all trajectories of the Hamiltonian (3.16).
Thus, for system (3.16), no decay conditions on v are needed for the regularity
(3.17) of asymptotic velocities.
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