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Abstract. We establish conditions under which all trajectories of a mechanical
system have a regular scattering behavior. Applications to the many-body
problems on the line and to the systems with exponential cone potentials are
worked out.

1. Introduction

To motivate our study let us consider the classical motion of n ^-dimensional
particles with pairwise interactions. We consider the situation where the forces of
interaction are central, conservative and repulsive. Denote by x l 5 . . . ,x n the
positions and by x l 5 . . . ,x w the velocities of the particles. Let m 1 ; . . . ,m n be their
masses and vtj ^ 0,1 ^ i < j fg n, the potentials of interaction. Then the total energy
is

E(X9x)^^mi\\xi\\2+^viJ(\\xi-xj\\). (1.1)
^ ί = 1 i < j

It is known [1,9] that any motion {x^ (t\..., xπ(ί); — oo < ί < 00} has asymptotic
velocities at infinity

= lim x f(f), i = l , . . . , n . (1.2)
ί-*00

Assume that the pair potentials satisfy the fast decay condition

] vij(r)dr<oo. (1.3)
P

It was shown in [2] that the motions with distinct asymptotic velocities

*άn(oo) (1.4)
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have the asymptotics

xf(ί) = xf(oo)ί + at + o(l), i = 1, . . . , n. (1.5)

Such motions are called asymptotically uniform.
Presumably, (1.4) is satisfied for a dense open set D+ a R2dn of initial data which

defines the mapping

W+:D+-+R2dn

assigning, by (1.5), to a point (x(0), x(0)) in D+ the asymptotic data (x(oo)),α) of
the corresponding trajectory. The operator W+ and its counterpart at minus infinity

W-:D--+R2dn

allow us to define the scattering S = W+ WI1.
The study of the W± and S is inconvenienced by the fact that, in general,

Ό+ΦΌ_Φ R2dn, which is related to the phenomenon that not all trajectories satisfy
(1.4). It is natural to call motions satisfying (1.4) and (1.5) regular.

However, it was discovered in the course of investigation of integrable many-
body problems that some of them have only regular trajectories. For instance,
such is the Calogero-Moser system of n particles on the line interacting via the
x~ 2 potential and the Toda lattice [8].

In this paper we, developing an idea of [8], establish sufficient conditions for
a scattering problem to have only regular trajectories. Applying these conditions
we show that for many natural classes of scattering problems all motions are
regular. This is true, in particular, for exponential potentials (Corollary 3) and for
one-dimensional many-body problems (Theorems 5 and 6). A different approach
to the regularity of trajectories for the many-body scattering in one dimension is
developed by A. Hubacher [7], see remark at the end of Sect. 3.

2. Conditions for Regularity

We consider Newton's equation of motion

Mx = F(x), - (2.1)

where x = x(t)eRN, M > 0 is the mass matrix and

(x) (2.2)

is the conservative force corresponding to the potential V. The present work relies
to some extent on [3-6] where only the case M = 1 was considered. It will be
shown in this section how to remove this restriction, so the results of [3-6] remain
valid for any positive mass matrix M.

We need to establish some terminology and notation. The cone spanned by
vectors etERN, ze/, is the closure of the set (x = £c fe f, ie/, ct ̂  0} as opposed to
the subspace spanned by ei9 ίel. A cone C in RN is called proper if it does not
contain a straight line. Let <x, j> be the scalar product in .R .̂ The dual cone C*
of C is defined by C* = {y:(y, x> ̂  0 for all xeC}. A closed convex cone is proper
if and only if C* spans RN. By Int X we denote the interior of X.
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We consider potentials V that satisfy the following conditions.

C.I. V §; 0 is defined and continuously differ entiable in a convex open domain Ω.
The vectors — grad V(x)9 xeΩ, span a proper cone C. Domain Ω is closed under

C.2. For any 0 ^eeC there is l^. — oo such that for xeΩ, <x, e> > land <x, e>->/
implies F(x)~>oo. The function ||gradF(x)|| is bounded away from zero in any
domain {xeΩ:^x,e) <L,0/eeC}.

C.3. Let e*eC* and let C0 = [eeC:(e, e*> = 0}. For any e*eC* there is a closed
convex cone C1^C such that e*e!ntC*, and the decomposition

V=V0 + V19 (2.3)

where — grad K0(x)eC0, — grad K^xJeCΊ and

] Vί(a + re*)dr<ao (2.4)
o

/or αrcy αeίλ
Potentials satisfying C.I were dubbed in [4] the cone potentials.

Theorem 1. Let potential V satisfy C.I, C.2 and C.3. Then
i) for any trajectory x(t) — oo < £ < oo, of (2.1) the asymptotic velocity x(oo) =

lim x(f) exists and x(oo)elnt C*.
ί-+oo

ii) Any trajectory is asymptotically uniform, i.e. it has the asymptotics as t-+ oo,

α + o(l). (2.5)

iii) The asymptotic velocity x( — oo) exists for any trajectory and x( — oo)
e — IntC. Every motion is asymptotically uniform at t-+ — oo.

Proof. Assume first that M= 1. By [3], for any trajectory x(t) the limit x(oo)
exists and x(oo)eC*. If x(oo)elnt C* then, by Theorem 1 of [4], (2.5) holds. Hence,
it remains to show that i(oo)eIntC* for any trajectory.

Assume the opposite and denote x(oo) by e*. Consider the cones C0 and C1

and the decomposition (2.3). Set F0 = - grad V09 F1 = - grad Vλ. Rewrite (2.1) as

Since e*e!ntCf, there is a positive constant a such that for any e1eCl9

,g*>. (2.7)

Note that inequality (2.7) is equivalent to e*e!ntCf.
Since x(t) -> e* for any ε > 0 there exists ί0 such that || x(t) - e* || < ε for t > ί0

For any vector eleC1 and ί > ί0,

(2.8)
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Choose e < l/2α. By (2.8), for ί > ί0, x(ί) - £e*elnt Cf and

(2.9)

Applying inequality (2.9) to eί = fΊ(x(τ)), we have, for t0 < t < oo,

]d_v1(^1_dτ
, dτ

Thus the integral

(2.10)

converges absolutely and, for ί > r0

ΊWO). (2-11)
Since F1(x)eC1> for any two vectors α, b such that b — aeC*, we have

Set a = %e*(t - ί0) + x(f 0), b = x(ί). Then

- f ^ i * _ f i *
to dτ to

Since, for τ > ί0, x(τ) — \e* belongs to Cf, by (2.13), for ί0 < ί < oo,

(2.13)

and, in view of (2.12),

Inequalities (2.11) and (2.14) yield

|| G^ί) || ̂  const V^X^Q) -f ie*(ί - ί0))

We have from (2.6) and (2.10),

d
at i o

(2.14)

(2.15)

(2.16)

Since C0 is a closed convex nonempty proper cone, the intersection
Int C0 n Int C ξ is not empty. Choose a vector e from it and set

By (2.16),

(2.17)

(2.18)
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hence g is monotonically increasing. By (2.4) and (2.15), G^ί) goes to zero
as t -> oo, hence

Iim0(f) = <e*,e>=0. (2.19)
t-+oo

By (2.18) and (2.19),

0(0^0. (2.20)

By (2.15) and (2.4), the integral

Hί(t)=]G1(τ)dτ (2.21)
ί

converges, and H^ή-^O as ί-» oo. Set

Λ(ί) = <*(*)-H ι(ί),*>- (2.22)

Then h(t) = g(t) and, in view of (2.20), h is monotonically decreasing. Hence, h(t)
is bounded above as ί-»oo. Since H^t)-*®, <x(t), e> is bounded above as
t -* oo. By C.2, || F(x(t)) II is bounded away from zero. Since F^xψ)) -> 0, || F0(x(t)) \\
is bounded away from zero as ί->oo. Since F0eC0 and eelntCJ, by (2.7), there
is a positive constant such that

< F0(x(t)\ e > £ const || F0(x(ί)) II (2.23)

and <F0(x(ί))9 e> is bounded away zero as ί-> oo. This implies, in view of (2.18).
that g(t) -> oo which contradicts (2.20) and proves the first two assertions of the
theorem. The third one can be proved by the same argument considering ί-> — oo.
It also follows from i) and ii) by the change of variables (x, t) -» (— x, — t).

Let now M > 0 be arbitrary. Set

y = M1/2x, V(y) = V(M" 1/2y). (2.24)

Then (2.1) is equivalent to

y = F(y) (2-25)
with

F(y) = - grad V(y) = M" 1/2F(M~ 1/2y). (2.26)

Set C = M~1/2C, Ω = M1/2Ω. The cone C is proper and C* = M1/2C*. It is
straightforward but tedious (we leave it to the reader) to check that the potential
F, the cone C and the domain Ω satisfy conditions C.1-C.3.

In view of the above, Theorem 1 holds for the trajectories y(t) of (2.25). Since
the trajectories x(ί) of (2.1) and y(t) are related by

x(t) = M^2y(t\ (2.27)

Theorem 1 follows.
Now we give the formal definition of regular motions in classical scattering.

Definition 1. A trajectory x(t\ — oo < t < oo, of (2.1) is called regular if it has the
asymptotics (as t -> ± oo)

(2.28)
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with ί? + , b, Φ 0. The vectors fr + , b_ and α+, α_ are the asymptotic velocities and
phases at t = 4- oo and t = — oo respectively.

Theorem 1 contains the following.

Corollary 1. If potential V satisfies conditions C.1-C.3 then all motions of the
dynamics (2.1) are regular.

The following corollary has been proved in the course of proof of Theorem 1.

Corollary 2. Assume that conditions C.I, C.2 and C.3 are satisfied. Then any trajec-
tory x(t) has asymptotics (2.28) with i>±e±IntC*. There exists ί 0>0 such that
far t > ί0

V(x(t)) ^ const V(x(t0) + ±b + (t - ί0)), (2.29)

and for t<—t0

V(x(t)) ^ const V(x(t0) + £&_(* + *<>))• (2 30)

For some applications, condition C.3 is too restrictive. It can be replaced
by the following two conditions.

C.4. For any eelntC* and aeΩ,

f V(a + re*)dr < oo. (2.31)

C.5. Let x(t) be a trajectory and let e*eC* be its asymptotic velocity (at plus infinity).
Let C0 ci C be the subcone of vectors orthogonal to e*. Then there is a decomposition

where F0(x)eCQ and

\t\\\F1(x(t))\\dt«x>.

(2.32)

(2.33)

Proposition 1. Let a potential V satisfy conditions C.I, C.2, C.4 and C.5. Then every
motion of the dynamics (2.1) is regular, with i(oo)eIntC*, x(— oo)e —IntC*.

Proof. Following the proof of Theorem 1 we come to the point where we need
to show that x(oo)e!ntC*. Assume the opposite and set i(oo) = £*. By C.5, the
integral (2.10) converges and we estimate the integral in (2.21),

ff

^ ff | |F1(x(σ))||dτ£ίσ=f(σ-ί)| |F1(x(σ))||dσ. (2.34)

By (2.33) and (2.34), \\H^(t)\\ < oo and H/ί^OII -*0 as ί-> oo. The rest of the proof
of Theorem 1 goes through unchanged and the obtained contradiction proves
Proposition 1.

The following lemma is used in Sect. 3.

Lemma 1. Let E ~ RN be a Euclidean space with the scalar product <x, y> and let
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Ei~RNi, i =l,...,w, be a nonempty family of subspaces of E. Denote by Pt the
orthogonal projection of E onto Et.

Let for i = l,...9na potential Vi in Ωi a Eί be given. Denote by Ct c Et the cone
spanned by vectors Fi(x)= — gradFf and assume that for i = l,...,n, conditions
C.1-C.3 are satisfied. Set Ω = {xeE: Pt(x)€Ωi9 i = 1, . . . , n} and

=Σ Vt(Ptx). (2.35)
i = l

If the cone C in E spanned byCl9..., Cn is proper, then V satisfies conditions CΛ-C.3.

Proof. The dual cone C* is given by

C* = {xεE'.PiXεCf , i = 1, . . . , n}.

If xeΩ and £?*GC*, then for i = 1, . . . , n, Pix^Ωi and Pt(x + e*)eΩi + Cf c Ωt. This
shows that Ω contains Ω+ C*. If eeC then e = el + — h en, where ei^Ci and

< x , e > = Σ <*,*,> = Σ <Ptx9ety.
i = l i = l

Assume, for simplicity of exposition, that ef Φ 0 for 1 ̂  i ̂  n, and let /,- ̂  — oo be
n

the lower bound on <Pfx, ^>. Set / = £ /,. Then <x, ^> > /.
t = l

Assume first that /> oo, i.e. lt is finite for all z. Then <x, ^>-^/ if and only if
<Pfx, βf> ->/j for all i. The latter implies that ^(PfX)-^ oo for all i, hence V(x)-> oo.
The equality / = — oo holds if and only if lt = — oo for at least one index i. We
have <x, e> -> — oo if and only if <PfX, β(> -> — oo for at one of ί/zosβ i, say for
i = 1. But then Fι(Pιx)-» oo implying V(x)-+ao.

Analogously, if <x, ^> is bounded from above, then for at least one index
i, <Proc, e/> is bounded from above, therefore || F^x) \\ = \\ P/ίP/x) || is bounded away
from zero. Since Ci9...9Cn span a proper cone, there is a constant a > 0 such that
for any ^eCf, z* = 1, . . . , n, we have

||e1 + ...+eJ^(||eJ + .. + |j ίyχ (2.36)

By these two observations, || F(x) \\ is bounded away from zero. So far we have
proved C.I and C.2. It remains to prove that C.3 is satisfied.

A vector e*eC* defines P^e* = e f e C f and let C° and Cl be the corresponding

n

subcones of Cf. Since for any vector e = ]Γ et in C,

if and only if <eί9 ef > = 0 for all i, the cone C0 is the span of C?, i = 1, . . . , n. Set
G! be the span of Cl for i = 1, . . . , n, and define the decomposition (2.3) by

V(x) = Σ Vi(Pi*) = Σ
i = l ί=l
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In a selfexplanatory notation, we have

FQ(x) = Σ W,x)eCo, F,(x) = £ F^P^eC,.
i = l i = l

Since βf = Pte* belongs to Int C\, e*elnt Cl.
It remains to show convergence of the integral (2.4). Using notation a{ = P^α,

we have

J Vι(a + re*)dr = J J/^ + ref)dr < oo?
0 i = l 0

which finishes the proof.

3. Applications and Examples

Applications of the results of Sect. 2 to the many-body scattering are based on
the following theorem which is a straightforward corollary of Theorem 1 and
Lemma 1.

Theorem 2. Let E be a Euclidean space ofN dimensions with orthogonal projections
Pt, . . . , Pn on the subspaces El9 . . . , En. Let

be a potential such that for i= 1, . . . ,n the potentials Vi on E{ satisfy C.1.-C.3 with
domains Ωt and cones C{ in Et. Denote by C the cone in E spanned by Cl9 . . . , Cn.

If C is proper then all trajectories x(t) of Newton's equation

Mx=-gradF(x) (3.1)

are regular with x(oo)elnt C*, x( — oo)e — Int C*.

Theorem 3. Let e^...,en be nonzero vectors in E ~ RN spanning a proper cone C.
Let Vι(r) be continuously differentiate functions defined in { — oo ^ at < r < 00} for
i= l,...,n. Assume that vt(r) monotonically decreases from infinity to zero when r
runs from at to oo. Assume also that /)(/•) = — v'^r) > 0 and that for Aϊ > αί?

]vt(r)dr<ao. (3.2)
Ai

Set

i y ) . (3.3)

Then the trajectories of the dynamics (3.1) are regular and satisfy

<x(oo),e l>>0, <x(~oo),^><0 (3.4)

for i= l,...,n.

Proof. The situation of Theorem 3 is a special case of that of Theorem 2 with
Et = Ret, Ct = R + ei9 Ω{ = (ab oo). It is trivial to check that for i = 1, . . . , π, potentials
vt satisfy C.1-C.3. Hence, Theorem 2 applies.
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Example 1. Exponential Cone Potentials. These are the potentials of the form

[3]

F(x)=£C ; e- <*•«>, (3.5)
ί=l

where c{ > 0 and the vectors eί9 . . . , en in E span a proper cone. The following is
a special case of Theorem 3.

Corollary 3. Any trajectory x(t) of the dynamics (3.1) with the exponential potential
V given by (3.5) is regular. The velocities x(oo), x( — oo) satisfy (3.4).

Potential V given by (3.3) is a linear superposition of potentials v{ in one
dimension. Now we consider the polynomial superpositions of such potentials.
Let et φ 0 be a vector in E ~ RN, i = 1, . . . , N. By polynomial superposition of vt

we mean potentials V on E of the form

λ (3.6)

where the summation is over a finite set of multi-indices / and cl > 0.

Theorem 4. Let a potential V on E be a polynomial superposition (3.6) of potentials
Όi in one dimension satisfying conditions of Theorem 3. If the cone C in E spanned
by ei9...9eN is proper then the motions x(t) of the dynamics (3.1) are regular with
x(oo)elnt C*, x( - oo)e - Int C*.

Proof. The cone C* is given by C* = {x:<x, e f> ̂ 0, i = 1,..., N}, the domain Ω by

Ω={x:(x,eiy>ai, i=l,.. .,N}.

The force F(x) = — grad V(x) has expansion

(3.7)
I iel

Conditions C.I and C.2 are elementary to check. Condition C.4 is fairly straight-
forward and we leave it to the reader.

For e*eC* let K0 be the set of indices i such that <e*, ̂ > = 0, and let Kί be
the complement of K0. Set F0(x) be the part of the expansion (3.7), where ieK0

and F^x) be the rest of the expansion. Since C0 is spanned by ei9 z'eK0, we have
F0(x)eC0. To obtain C.5, it suffices to bound the integrals

(3.8)

for any multi-index I = ( i ί 9 . . . 9 zm), ie!nK1 and T sufficiently large. By conservation
of energy, Vj( < x(t), e^ >) is bounded on the trajectory x(t) for anyy, therefore < x(t\ e^ >
is bounded away from aj9 hence in the integral (3.8) the product ι? ί l«x(ί),e^y)--
vίm((x(t)9eimy) is bounded as £->oo. Since ieKl9 lim <x(ί), e^ >0 and we can

find α > 0 such that <jc(ί),<?/> ^fl£ for t large enough. Hence, (3.8) is bounded
above by

00

const f tft(at)dt. (3.9)
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Integrating (3.9) by parts and using that, in view of (3.2)

lim rvt(r) = 0, (3.10)
r-» oo

we conclude that (3.9) converges. Thus, Proposition 1 applies.

Example 2. Polynomial Superpositions ofx~2 and e'x Potentials. Let vectors e{ φ 0,
i=l,...,N, span a proper cone C in E. Let ai9 bp cip 1 ̂  z, j ^ N be nonnegative
numbers, not all of them zero. Consider the potential

V(x)= f aie-<x '*+ X fr/x,e,.>-2 + £ Cί/x^r2^^, (3.11)
i = l j = l i, j=l

defined in the domain IntC* and the corresponding dynamics (3.1). Theorem 4
implies the following.

Corollary 4. Trajectories x(t) of the dynamics (3.1) with potential (3.11) are all regular
and x(oo)e!ntC*, x(- oo)e!ntC*.

Remark. One can consider, analogously, more general than (3.11) superpositions of
x~2 and e~x potentials.

In the rest of this section we consider applications to the many-body problems
on the line. We denote by x 1 ? . . . , XN the positions, by x 1 ? . . . , XN the velocities and
by m 1 ? . . . ,w N the masses of the particles. We assume that the particles interact
pairwise by conservative repulsive forces and consider the following two cases.

Case 1. Central Forces. The pair potentials depend on the distances between
particles, ^(Ixf — x/ |) . We assume that the potentials i^ ^O, l r g ί < j : g J V , are
continuously differentiable on (0, oo), monotonically decreasing and that lim vtj(r) =
0 as r -» oo. The total potential in the case of central forces is

V(xl9...9xN)=^υij(\xi-Xj\). (3.12)
i<j

Case2. Directed Forces. The pair potentials are i^/x^ — x,-), 1 ̂ i<j^N, where
1)^)^0 is continuously differentiable on the interval {— oo ^ ltj< r < 00} and
monotonically decreases from infinity to zero.

Theorem 5. Let N particles on the line interact by central repulsive forces. Assume
that all pair potentials vtj(r) —» oo when r —> 0, that t/fj < 0 and that for p > 0 the

00

integrals J v^ήdr converge.
p

Then every trajectory (x^t),...,xN(ί)} is regular and x^oo) Φ~ ^XN(CO).

Proof. The condition 1 (̂0) = oo means that the particles cannot pass each other.
Therefore on a given trajectory we can relabel them in such a way that for all times

xί> ~>xN. (3.13)

Let elί...,eN be the standard basis of RN and let C be the cone spanned by
el — e2,. .9eN-1 —eN. Then the total potential (3.12) in the domain (3.13), which
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is Int C*9 takes the form (3.3)

and satisfies conditions of Theorem 3, which implies the assertion.

Remarks. 1. What happens if the particles can pass each other, i.e. ι;0 (0) < oo for
some ί<7? By [1] and [9], the asymptotic velocities x t(oo ),..., XN(CO) exist for
every motion. By [2], the motions satisfying (1.4) are asymptotically uniform (1.5),
but now the regularity condition (1.4) is not satisfied by all trajectories, only by
generic ones. For instance, if ι̂  (0)<oo for all i<j then there are relative
equilibria

x1(ί)= ••• = xN(t) = a + bt, X!(oo)= ••• = Xtf(oo) = b (3.14)

which violate (1.4). Nevertheless, the motions (3.14) are asymptotically uniform.
Are there trajectories which are not asymptotically uniform? The question seems
to be open, see [2].

2. Theorem 5 obviously extends to the case when the pair potentials vtj are
defined on (aij9 oo) with atj ^ 0, and the other conditions remain the same.

Now we consider N-body problems with directed forces and allow, in addition,
external potentials ui ̂  0 which are continuously differentiate for — oo ^ lt < r <
oo and monotonically decrease from infinity to zero. The following is a corollary
of Theorem 3.

Theorem 6. Let

N

V(x ί9..., XN) = £ ϋi/Xf - Xj) + £ uk(xk) (3.15)
ί < j k = 1

be the total potential of a many-body problem with directed forces. Assume that
t/ί>ί + 1 < 0 for i = 1,. . ., N — 1 and that for all i<j and p>lij the integrals
00

J Vij(r)dr < oo. Also assume that for k= 1, . . . , N, either uk = Q or u'k<0 and
p
GO

$uk(r)dr<cc.
p

Then every trajectory of the N-body problem is regular and x^oo) > > x#(oo).
Let k0 be the minimal k such that uk φ 0. Then for k ̂  fe0, xfc(oo) > 0.

Remark. One of the results of [7] is a criterion of regularity of asymptotic velocities
for a class of repulsive many-body interactions in one dimension. Assume that the
particles have equal masses (and set m = 1), and that the directed repulsive pair
potentials vtj are all equal. Then the Hamiltonian of the system is

Assume that the interaction potential v is continuously differentiable on (/, oo).

Theorem [7]. The usual repulsivity conditions on v (i.e. υ > 0, v' < 0 and lim v(x) = oo
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as x ->/ ) are necessary and sufficient for the property

x1(oo)> ••• >XN(CO) (3.17)

for all trajectories of the Hamiltonian (3.16).
Thus, for system (3.16), no decay conditions on v are needed for the regularity

(3.17) of asymptotic velocities.
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