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Introduction

This is the second of a series of three papers devoted to the study of holomorphic
determinant bundles and direct images. Parts I and III of this work will be referred
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to as [BGS 1] and [BGS 3]. Also the Introduction of [BGS 1] contains a general
description of our results. We will refer to it when necessary.

Let π: M-+B be a proper holomorphic map of complex manifolds and let ξ be a
complex holomorphic vector bundle on M. For y eB, let Zy = π~ 1(y) be the fiber
over y. Assume that for every yeB, there is a Kahler metric gZy on Zy depending
smoothly on y, and let hξ be a smooth metric on ξ. If ^ = dim Zy, let

—>hy—=-+ hy—>...-* rLy—>Ό (0.1)

be the δ complex associated with the restriction of ξ to Zy.
In Sect. 1, we describe conditions under which the infinite dimensional vector

bundles E°9..., E* are infinite dimensional holomorphic Hermitian vector bundles
on B (for a special choice of the metric gz). This is precisely the case when π is
locally Kahler (in the sense of [BGS 1]).

Also, by using Quillen's superconnections [Q 1], higher order analytic torsion
forms associated with finite dimensional acyclic complexes of holomorphic
Hermitian vector bundles were constructed in [BGS 1], which are the analogues in
any degree of the analytic torsion of Ray and Singer [RS 2]. The number operator
N of the considered complex was used to construct such forms.

In [B 1], Quillen's superconnections were used in an infinite dimensional
context to obtain a local Index Theorem for families. Quite remarkably, the Levi-
Civita superconnection - which was introduced in [B 1] to obtain a local version
of the families Index Theorem of Atiyah-Singer [AS] - incorporates the algebraic
formalism of the double transgression which was described in [BGS 1] to calculate
the higher order analytic torsion forms. In particular we show in Sect. 2, that the
analogue of the number operator is now the Kahler form of the fibration.

However several difficulties arise. Contrary to [B 1] and [BF 2] where, because
of "extraordinary cancellations," the asymptotic expansions as £j,J,0 of the objects
which were considered were non-singular, we here have singular expansions like

— ^ + Ao + O(t). (0.2)
t

Still the "interesting" quantity is Ao.
In Sect. 2, Ao is calculated by complicated algebraic manipulations on traces,

and also by using Brownian motion and anticommuting variables. For greater
clarity, we have described some of these manipulations in a finite dimensional
context in [BGS1].

Also in Sect. 2, we obtain several results on secondary characteristic classes for
direct images in any degree. In particular an analogue of [BGS 1, Theorem 0.3] is
proved in Theorem 2.21 in any degree, and is related to work by Gillet and Soule
[GS1,2] on direct images in Arakelov theory. Theorem 2.21 will be used in
[BGS 3] to prove [BGS 1, Theorem 0.3].

Our paper is divided into two sections. In Sect. 1, we introduce Kahler
fibrations. In Sect. 2, we calculate higher order analytic torsion forms for direct
images, and we study their behavior in exact sequences.

Let us point out that the analytic torsion was introduced in Riemannian
geometry by Ray and Singer [RS 1], and in complex geometry by the same authors
[RS2]. Several developments in the Riemannian case were also obtained by
Cheeger [C] and Muller [M].
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We will use the same notations as in [BGS 1] to which the reader is referred.
In particular, if B is a complex manifold, P denotes the set of smooth differential

forms on B which are sums of forms of type (p, p) (for 0 S P S dimc B). P' denotes the
subset of P which consists of the forms ω in P which can be written in the form
ω = dBη + cFη'. If ω, ω' eP, we write ω = ω' if ω-ω' eP.

If E is a vector bundle on B with connection V and curvature F2, we denote by
ch(£) the normalized Chern character cohomology classes which are represented
by the forms Tr[exp(- F2)].

If K is a Z 2 graded algebra, if A, B e K, we denote [A, B~] the supercommutator
of A and B.

Finally the notations Tr and Trs are used for traces and supertraces.
The results contained in this paper were announced in [BGS 2].

1. Kahler Fibrations

In this section, we introduce Kahler fibrations, and we derive their main
properties.

In fact, let us remember that in the case of smooth fibrations M—^B, when the
fibers are endowed with a smooth metric, Bismut [B 1] introduced an Euclidean
connection Vz on TZ. This connection plays a critical role in the derivation of the
local Index Theorem of [B 1].

Here, when M and B are complex Hermitian manifolds, we find conditions
under which the connection Vz of [Bl] is holomorphic. This is precisely the
Kahler fibration condition described in the Introduction of [BGS1], which
generalizes the standard Kahler condition for complex Hermitian manifolds.

We also calculate the complex geometry of the infinite dimensional vector
bundles introduced in [B 1].

This section is organized as follows. In a), we describe the construction of [B 1]
of a connection Vz on TZ. In b), the results of [B1] are slightly extended. In c), we
introduce Kahler fibrations, and we derive their main properties. In d), we
construct a family of Dirac operators, naturally associated with the family of
operators W1 acting on the fibers Z. Finally in e), we prove that in a generalized
sense, the infinite dimensional vector bundles on B, E°,...,E*, which were
considered in (0.1), are holomorphic, and that the family dZy depends holomorphi-
cally on y e B.

a) An Euclidean Connection on the Vertical Tangent Space of a Fibration

Let n, ri be positive integers, and let M, B be smooth connected manifolds of
dimension n + ri, ri.

Let Z be a smooth compact connected manifold of dimension n. Let π: M -^ B
be a fibration of M on B, which is modelled on Z: there is an open covering °U of B
such that if VΈ<%, π~ι(U) is diffeomorphic to UxZ. For yeB, Zy is the fiber

1 ^ }
Let THM be a smooth subbundle of TM such that

TM=TΠM®TZ. (1.1)

THM and TZ are the horizontal and vertical parts of TM. Let PH, Pz be the
projections from TM on THM, TZ.
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The map π^ is a linear isomorphism from T^M into Tπ{x)B. If YeTB,
YHeTHM is the horizontal lift of Y in TM so that

YHeTHM, π^YH=Y.

Let gβ, g z be smooth metrics on TB, TZ. The metric gB lifts to a metric on THM.
Let g β φ g z denote the metric on TM which coincides with gB on ΓHM, with gz on
TZ and is such that THM and TZ are orthogonal. Let <, > be the scalar product
for gB®gz.

Most of the objects which we construct will ultimately be independent of the
metric gB.

Let VB be the Levi-Civita connection on TB for the metric gB, and VL the Levi-
Civita connection of TM for the metric gB®gz. The connection VB lifts to a
connection on THM, which we still note VB.

Definition 1.1. Let Vz be the connection on TZ

and Rz the curvature tensor of Vz. Let V be the connection on TM= THM®TZ
defined by

V=VB®VZ (1.3)

and R the curvature of V. Let Γ be the torsion of F, and S the tensor S=VL—V.

Note that F 5 , FL, F z , P7 preserve the corresponding metrics. The tensor S is a
one form on TM with values in antisymmetric matrices. Note that if X, Y,Ze TM,
by[Bl,Eq.(1.28)]

S(X)Y-S(Y)X+ T(X, Y) = 0,
r > o

By [B 1, Theorem 1.9] and [BF2, Sect, lc], we know that:
• T takes its values in TZ.
• IfX, YeTZ, T(X,Y) = Q.
m Vz, T and the (3,0) tensor <S( ), > do not depend on gB.
• For any XeTM, S(X) maps TZ in THM.
• For any X,Ye THM, S(X)Ye TZ.
• \ϊXeTHM, S(X)X = 0.

The connection Γ z will be called the Levi-Civita connection of Z.

b) Invariance Properties of Vz

We now briefly prove that Vz and part of the (3,0) tensor <S( •)•,•> can be
calculated using metrics on TM which are not necessarily constant on THM.

Namely let g be a metric on TM which has the following properties:
• g coincides with g z on TZ.
• THM and TZ are orthogonal for g.

Let <, >g denote the scalar product for g, F 1 ^ the corresponding Levi-Civita
connection on TM. Note that the metric gB®gz is a special case of such a g. PzV

Ld

is an Euclidean connection on (TZ, gz).
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Theorem 1.2. One has Vz = Pz Vu 9. Furthermore if X, X' are smooth sections of TZ,
A, A' smooth sections of TB, and if

(1.5)

then

χ r>. (i.6)

Proof Let U be a smooth section of TM and V, W smooth sections of TZ.
Classically [KN, TV, Proposition 2.3], we know that

2<# *κ wyg=υ<y9 w\+v(w, uyg~w(u, vχ+<χy9 v\ wyg

Since [K W~\ e TZ, by using the assumptions which we have done on g, we get:

2(pzvjrβv, wy = t/<κ wy + v(w,p7υy - w(pzu, vy + <PZ[C/, F], wy

Since g β θ g z verifies the same assumptions as g, we find that

(pzvjrβv, wy = <PZF1 /

LK ^ > , (1.7)

and so PZV^=VZ.
Since P71 '̂̂  is torsion free, we have

<yL

x>°χ γχ-<yt°γ'9 γyg=(vγ

L>*x, γχ-<yί?°x9 γyg

The vector X can be identified with the one form X: Ue TM^>(X, Jjyg

= (X, PzUy, a form independent of g. Since VUβ is torsion free

χ Y')=(vY

L>dx, r>g-<vγh°x, γyg. (1.9)

Moreover one verifies trivially that [X, Y], [X, Y'] 6 TZ. Since Y' e THM, we
see that

<ιχ, n r>g-<ιχ, γ'i γyg=-<ιχ, YΊPZY>. (i.io)

Using (1.8H1.10), we obtain

(vtβχγ'yg-<v^γ\γyg=dx{χγ')-<ιx,γ'\pzγy. (i.ii)

Since (1.11) also holds for the metric gB®gz, we find that

(vx

L>°γ,γ'yg-<vx

L>°γ\γyg=(vx

Lγ,γ'y-(vkY\γy. (1.12)

Also

VxY
f = 0, VxY=VxX'eTZ. '

From (1.13), we find that (Vx% Y'> = 0, and so

< r x

L i ; r > - < F x

L r , γ > = 2 <

Equation (1.6) follows from (1.12), (1.14) •
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Remark 1.3. If α is the second fundamental form of a fiber Z in M for the metric g, it
follows from (1.6) that if X, X' e TZ, Y' e THM, then

c) Kάhler Fibrations and the Levi-Civita Connection

We now assume that n, m are even, so that n = 2/, ri = 2Λ We also assume that M,
£ are complex manifolds of complex dimension *f, *f' and that π is holomorphic.

Let J and J' be the complex structure on TM, TB. J maps TZ into itself. We
also assume that J maps T H M into itself.

Let TCM be the complexified tangent space TcM=TM(g)R(£. Set

TiU0)M = {XeTcM;JX = iX}, Ti0Λ)M={XeTcM; JX = -iX}.

Let T*M be the vector bundle of real linear forms on TM. Set T<?M
= Γ*M(x)RC If J is the transpose of J which acts on T£M, set

Jα = iα}, T* ( 0 ' 1 } M = {αe TC*M; J α = - i α } .

a n c j j-*(o, i)jy^ a r e ^g J3Uncjies of holomorphic and antiholomorphic one

forms on M.
In the same way, we define TCB, TCZ, T?M, T£U0)B, etc.
The holomorphic bundle π*TiU0)B is isomorphic to T{U0)M/TiU0)Z, and we

have the exact sequence of holomorphic bundles over M:

Note that as C00 bundles T H ( 1 ' O ) M ^ π * Γ ( 1 O)J5. However in general, Tm>0)M
is not a holomorphic subbundle of T ( 1 0 ) M .

Let Λ(TC*M) be the exterior algebra of T<?M. For Orgi'rgn, the vector bundle
A\T£M) splits into ^ f (T c *M)= © Λ^q\T£M\ where yl(ί7'g)(Tc*M) is the set of

p + q = ί

forms on M of complex type (p, q).

Definition 1.4. The triple (π,gz, T^M) will be said to define a Kahler fibration if
there exists a smooth 2-form ω on M of complex type (1,1), which has the following
properties:

a) ω is closed;
b) THM and TZ are orthogonal with respect to ω;
c) If X, YeTZ, then ω(X, Y) = (X,JY).

We say that ω is associated with (π, gz, THM). In the sequel, ω will be fixed once
for all.

Properties a) and c) imply that J induces an isometry of TZ, that the fibers
(Z, gz) are Kahler and that, when restricted to TZ, ω is the Kahler form of the
corresponding fiber.

We will denote by ωH, ωz the restrictions of ω to THM, TZ. We extend ωH and
ωz to TM by taking the convention that, if X e TZ and Y e T HM, then ixω

H = 0
and iγω

z = 0. Therefore
(1.15)

The pair (gz, THM) is entirely determined by ω, as we shall see in the following
theorem.
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Theorem 1.5. Let ω be a smooth 2-form on M of complex type (1,1), which has the
following properties:

a) ω is closed;
b) If X,Ye TZ, X, Y^ω(JX, Y) defines a Hermitian product gz on TZ.
For any xeM, let T^M be the sub space of TXM;

T»M = {Ye TXM; for any Xe TXZ, ω(X, Y) = 0} .

Then, THM is a smooth subbundle of TM such that: TM=THM@TZ.
(π,gz, THM) is a Kάhler fibratίon, and ω is an associated (1, \)-form.

Proof By condition b), it is obvious that:

dim THM + dim TZ = dim TM, THMn TZ = {0}.

Therefore THM is a smooth vector bundle on M and (1.1) holds. Since ω is of type
(1,1), it is clear that J maps THM into itself. The theorem is now obvious. •

Example 1. Assume that (M, g) is a Kahler manifold, and let Φ be its Kahler form.
If THM = (TZ)1 and if gz is the restriction of g to TZ, by Theorem 1.5, (π, gz, THM)
is a Kahler fibration.

Example 2. lίX is a Kahler manifold, set M' — X x B. If Φ' is the Kahler form of X,
if THM' = TB, by taking ω = Φ', we still have a Kahler fibration with constant fiber
X.

Remark ί.6. B is locally Kahler. Namely there is an open covering °tt of B such
that, if U E %, there is a closed (1,1) form ηu on U which induces a Kahler metric on
TB.

If (π,gz,THM) defines a Kahler fibration with associated (1,1) form ω, on
π~ι(U), for any λ>0, we can replace ω by ω + λπ*ηu. Since the fibers Z are
compact, for λ large enough, ω + λπ*ηu is a Kahler form on π~ 1(U\ which induces
the metric g z on the fibers Z, and is such that THM = (TZ)λ. This implies that
locally on B, we are in the situation described in Example 1.

If a is a smooth p form on M, if Γ e TM, Pyα is still a /? form. Vaa denotes the
p + 1 form which is the antisymmetrization of (Xu . . .,X p + 1)->FX la(X 2, . . . ,X p + 1 ).

Since T is a 2 form on TM with values in TZ, iτ<x will be a p 4-1 form on TM.
Also remember that the (3,0) tensor <S( ) , •> does not depend on gβ.

Finally note that, if Y is a smooth vector field on B, the vector field Yff acts on
the fibers Z. If ψs is the group of diffeomorphisms of M generated by YH, and if β is
a smooth section of Λ(T*Z), set

Note that in (1.16), β and Lz

Hβ are not considered as elements of Λ(T*M)
but only as elements of Λ(T*Z).

One verifies that YeTB^L^HβeΛ(T^Z) is a tensor, i.e. does not in-
volve differentiation in Y.

Theorem 1.7. Assume that (π, gz, THM) defines a Kahler fibration, with associated
(1,1)/orm ω.
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a) The connection Vz on TZ preserves the complex structure of TZ, and induces
on T(1'0)Z its holomorphic Hermitian connection.

b) For any X e TZ, the 2 form <S(X) , > on TM is of complex type (1,1). //
X e T ( 1 ' 0 ) Z , YeT{0Λ)Z and Y'eTcM, then

(S(X)Y,Y') = (S(Y)X,Y') = O. (1.17)

c) As a 2 form on TM, the torsion T is of complex type (1,1).
d) The following relations hold:

For any YeTB, Lz

γHωz = 0,

Vzωz = 0; iτω
z = 0 on THMxTZxTZ,

V<!ωH = 0 on THMxTHMxTHM, (1.18)

= ϊ) on THMxTHMxTZ.

e) A smooth (1,1) form ω' on M is associated with the Kάhler fibration
(π, gz, THM) if and only if there is a smooth closed (1,1) form ηonB such that: ω' — ω
= π*η.

Proof Statements a)-c) only need to be proved locally. If U is taken as in
Remark 1.6, by restricting ourselves to π~ι(JJ), we many and we will temporarily
assume that ω is a Kahler form over π~ι{U).

Let VL be the Levi-Civita connection on TM associated with the Kahler form
ω. Then J is parallel with respect to VL.

By Theorem 1.2, we know that: VZ = PZV
L. Since [P z , J ] =0, it is clear that Vz

preserves the complex structure of TZ. Since π~1(U) is Kahler, VL is a
holomorphic connection on T{ί'0)M.

Since T{U0)Z is a holomorphic subbundle of T(1>0)M, VZ = PZV
L is a

holomorphic connection on T{1-0)Z. Since Vz is Hermitian on T(1*0)Z, Vz is the
unique holomorphic Hermitian connection on T{ί'0)Z.

Theorem 1.2 still holds with X, X' e TCZ, A, A' e TCB. Using the same notations

as in (1.5) if Y, Y'eT(1'0)M, since V}Y, V£Y'eTiU0)M, we have

Using Theorem 1.2, we find that (S(X)Y, Γ> = 0, or equivalently

(S(X) (X' + AH\ ΆH} = 0. (1.20)

Also we have seen in Sect, la) that if X\ X"e TZ,

(S(X)X',X") = 0. (1.21)

By (1.20) and (1.21), we find that <S(X) , > is of complex type (1,1).
Equivalently, S(X) is a complex endomorphism of TM.

If Xe TiU0)Z, Ye T{0Λ)Z, since T(X, Y) = 0, by (1.4) we know that

S(X)Y = S(Y)X. (1.22)

Since S(X) is a complex endomorphism, S(X)Ye T{0Λ)Z. Similarly,
S{Y)XeT{U0)Z. So by (1.22), we get

S(X)Y=S(Y)X = 0. (1.23)
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Take U, VeT{U0)M. We will prove that T(U, V) = 0. Since T vanishes on
TZ x TZ, we may, and we will assume that Ve TH{1>0)M.

a) If U E TiU0)Z, then S(V)U e T<?M. Using (1.4), we find that if Xe TCZ, then:

<x, iχu, F)> = - (x, s(u)vy = (S(u)x, vy.

Since T(U,X)e TCZ, and S(U)X-S(X)U+T(U,X) = O, we find

(X,T(U,V)) = (S(X)U,V). (1.24)

Since S(X) is a complex endomorphism of TM, (S(X)U, F> = 0. By (1.24), we
find that T(U,V) = 0.

b) If UeTm'0)M, we have

<X, Γ(C/, F)> = - (X, S(U)V) + (X, S(V)U) = (S(U)X, V) - (S(V)X, U) .

Since T(U,X% T(V,X)eTcZ, we find

<X, T(U, V)) = (S(X)U, V) - (S(X)V, U) = 2(S(X)U9 V} . (1.25)

Since S(X) is a complex endomorphism, we find again that: T(£7, V) = 0.
We have proved that T is of complex type (1,1).
We do not assume any longer that u is ω Kahler form.
Since Vz preserves the metric and the complex structure of TZ, clearly

Vzωz = 0. This shows that Vaωz = 0. On the other hand, it is classical that

d=Va + iτ. (1.26)

Since ω = ωz + ωH is closed, we find that:

Va{ωz + ωH) + iτ{ωz + ωH) = ΰ.

Since T takes its values in TZ, ίτω
H = 0, and so, since Vaωz = 0,

VaωH + iτω
z = 0. (1.27)

On THM xTZx TZ, VaωH = 0, and on THM x THM x THM, iτω
z = 0.

All equalities in d) have been proved except the first one.
Take YeTB. Clearly iγHωz = 0. Therefore

Lz

γHωz = ίγHdωz restricted to TZxTZ. (1.28)

Since ωH + ωz is closed, dωz = — dωH, and so

Lz

γHωz = -iγHdωH restricted to TZxTZ. (1.29)

One verifies easily that ίγHdωH vanishes on TZ x TZ and so

Lz

γHωz = 0. (1.30)

Let us prove e). If ω' = ω'H + ωz is another closed (1,1) form associated with
(π,gz, THM), we find from d) that:

Va(ω'H -ωH) = 0 on THM x THM x TZ.

Equivalently if X e TZ, we find that

Vx(ω'H-ωH) = 0 on THMxTHM. (1.31)
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Equation (1.31) exactly means that ω/H~ ωH = π*η. Since ω' — ω is closed, η is
also closed.

The theorem is proved. •

Remark 1.8. If Ye TB, by Theorem 1.7 we know that

Lz

γHωz = 0; Vz

Hωz = 0. (1.32)

On the other hand, we know that when acting on smooth sections of TZ

Vz

H = Lz

γH+T(YH,). (1.33)

We conclude that

[T(Y f l,.)]ω z = 0 (1.34)

or equivalently

ϊτω
z = 0 on THMxTZxTZ, (1.35)

which was proved in Theorem 1.6.
Note that ωz is a symplectic form on Z. The relation Lz

γHωz = 0 exactly means
that the holonomy group of the fϊbration preserves the symplectic form ωz.

If X Ze TB, since VB is torsion free, we find that

T{YH,ZH) = -PZ[YH,ZH^. (1.36)

The vertical vector field T(YH, ZH) must therefore preserve the symplectic form
ωz. The relation

VaωH + iτω
z = 0 on THM x THM x TZ

exactly means that T(YH,ZH) is a Hamiltonian vector field on Z, associated with
the Hamiltonian function ωH(YH,ZH).

Remark 1.9. We may ask under what conditions the holonomy group of the fibers
Z acts holomorphically on the fibers. This exactly means that, if Jz is the restriction
of J to TZ, if YeTB, then Lz

γHJz = 0. However since Lz

γHcoz = 0, we find that
Lz

γHgz = 0. In other words, the holonomy group of the fibration must then consist
of holomorphic isometries. This is of course a very restrictive assumption.

d) A Family of Dirac Operators

From now on, we assume that the fibration (π,gz, TTM) is Kahler, and that
ω = ωH + ωz is an associated (1,1) form.

Let A T* ( 0 ' 1 } Z be the exterior algebra of Γ* ( 0 ' 1 }Z, andΛ pT* ( 0 ' ι)Z the /? forms in
/ίΓ* ( 0 ' 1 } Z. The vector bundle A(T*{0' υ Z ) is Hermitian, and splits orthogonally as
a direct sum

A(T*{0Λ)Z)= © Ap(T*i0Λ)Z).
p = 0

The bundle T*i0Λ)Z is identified to Γ ( 1 ' 0 ) Z by the metric gz. Therefore
T* ( 0 ' υ Z inherits the holomorphic structure of T{U0)Z. Vz induces on T* ( 0 ' υ Z the
corresponding holomorphic Hermitian connection. A(T*i0Λ)Z) then becomes a
holomorphic Hermitian vector bundle on M.
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Let ξ be a holomorphic Hermitian vector bundle on M, of complex dimension
k. Then Λ(T*{0Λ)Z)®ξ is a holomorphic Hermitian vector bundle on M.

Definition 1.10. For O^p^/, Ep denotes the set of C00 sections over M of

As in [B 1], we will regard Ep as being the set of C°° sections over B of an infinite
dimensional bundle. For y e B, the corresponding fiber Ep

y is the set of C00 sections
over Zy of Λ*{T«0Λ)Z)®ξ. Set

E+= 0 £*, E " = 0 Ep, E = E+@E~. (1.37)
peven podd

Let dx be the Riemannian volume element in the fiber Z. For any yeB, Ey is
endowed with the Hermitian product

h,hΈEy^ f ( M ' ) M ^ . 0-38)

Let (z1 = x1 + zy1, . . . ^ = xzf + i>Ό be a complex system of coordinates in one

given fiber Z. Clearly —- = J ( —-- 1, 1 < / < /. We assume that TZ is oriented
dy3 \dxJ J

ί d d d d
by the base I — τ , —.1 -, . . . ,—y, — Ί

Set

d 1 / d . d \ d ^ ( ^ d
Iz]~2\dxJ~l~dy1)' dϊ1 ~ ΐVdx1+l~dyj)'

. . . (1.39)
dzJ = dxJ — iJy 7.

For every yeB, the operator ^ acts naturally on Ey. By also taking
holomorphic coordinates on ξ, W"y is expressed locally by the formula

d*y= V dzjΛ^L. (1.40)
7=1 5z J

Let W1** be the formal adjoint of Ψy with respect to the Hermitian product
(1.38). Set _

5, = ̂ ^ , δ* = l/2δ*z^, Dy = 3y + 3*. (1.41)

The operator Dy interchanges Ey and E~. Let D+ y be the restriction of Dy to
Ef. We will write Dy in the form

y υ>+., 0 J
By taking a local trivialization of the fibration M —^ B, one verifies easily that

dy, d*, Dy axQ uTst order differential operators whose coefficients depend smoothly
onxeM. Also Dy is formally self-adjoint on Ey.

We now turn Λ(T*(0' ι)Z)®ξ into a Tc

z Clifford module. Namely if X e T ( 1' 0 )Z,
if χ * e τ * ( o , D Z i s the 1 form 7e ΓCZ-><X, 7>, we define

by the relation

| / 2 X * Λ . (1.42)
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Similarly if XfeT{0Λ)Z9 set

c{X')=-\f2ix,. (1.43)

The map c extends by linearity to the whole TCZ. Clearly, if X, X' e TCZ, then

c{X)c{X') + c{X')c{X)= -2(X,X'y. (1.44)

Let Vξ be the unique holomorphic Hermitian connection on ξ. Let 13 be the
curvature of Vξ. As 2 form, Lξ is of complex type (1,1). The bundle Λ(T*{0> l)Z)®ξ
is then naturally endowed with the connection Vz® 1 + 1 (x) Vξ which we will note V
(there is no risk of confusion with the connection V we had defined on TM).

Let eu...,en be an orthonormal basis of TZ. w1 }..., ŵ  is an orthonormal basis
of T(1'0)Z, W 1 ? . . . ,HV the conjugate basis in J Γ ( 0 > 1 ) Z 5 w1, ...,v/ the dual basis in
Γ* ( 1 > 0 )Z, and vv1, . . . y the corresponding conjugate basis of T* ( O f l ) Z.

We now define a family of Dirac operators acting on E.

Definition ί.ίl. For yeB, D'y denotes the operator:

£>;= i Φ ^ (i 45)

We first prove the basic simple result.

Proposition 1.12 For any yeB, Dy = D'r

Proof. Clearly

Since Zy is Kahler, we also have

c^j = dzj A V± = wj A VWj, ^ * = - fw PW j . (1.46)

The proposition is proved. Π

We must now compare the connection V on Λ(T*{0'l)Z)®ξ with the
connection on twisted TZ-spinors which is used in [B 1].

If x e M, at least on a neighborhood of x e M, the holomorphic Hermitian
bundle det T(0Λ)Z has a holomorphic square root μ, which we endow with the
square root metric and the corresponding holomorphic connection Vμ.

Set
F + = y l e v e n T * ( 0 1 ) Z ® μ " 1 , F _ = y l o d d T * ( 0 ' 1 ) Z ® μ " 1 . (1.47)

By [H, Theorem 2.2], F + and F_ can be identified with the (locally defined)
Hermitian bundles of spinors over TZ. Also Λ(T*{0Λ)Z) is a holomorphic vector
bundle on M. Vz induces on A(T*{0Λ)Z) the corresponding holomorphic
Hermitian connection. Therefore i7, F+, F_ are holomorphic Hermitian bundles,
and PF = Vz® 1 + 1 (x) F μ " x is the corresponding holomorphic Hermitian connec-
tion. Tautologically, VF induces on TZ the connection Vz which is holomorphic on

Now, by Theorem 1.7, the connection Γ z on TZ is exactly the Euclidean
connection on TZ which was considered in [Bl, Sect. 1]. Also VF is a Spin(π)
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connection on F, and so VF is necessarily the unique Spin(rc) connection on F which
lifts the Euclidean connection Vz on TZ. VF thus coincides with the connection on
F which was constructed in [B, Sect. le)]. Also, from (1.47), we find that

^even'pMo, ̂ Z®ξ = F+®μ®ξ, ΛoάάT*{0> l)Z®ξ = F_®μ®ξ. (1.48)

Now μ®ξ is a (locally defined) holomorphic Hermitian bundle endowed with
the holomorphic Hermitian connection Vμ®\ + 1® Vξ.

It thus follows that at least locally on M we are exactly in the situation of [B 1,
Sect. 1]:

The bundles F+ and F_ are endowed with the unitary connection considered in
[Bl, Sect. le)].
- The twisting bundle with metric and connection ξ in [B 1, Sect. 1] is here μ®ξ.

Note that in [B 1], TZ was assumed to be Spin, in which case μ can be globally
defined. However, as in Atiyah-Bott-Patodi [ABP], only the existence of a local
spin structure on TZ is needed for the results of [B 1] to apply in our situation.

These considerations permit us to use all the results of [B 1] without further
comments.

e) A Holomorphic Hermitian Connection on Infinite Dimensional Bundles

We now define connections on the infinite dimensional bundles Ep as in [Bl,
Sect. If)] and in [BF2, Sect. le)].

Definition Ϊ.Ϊ3. For Orgprg/, let V be the connection on Ep such that if h is C00

section of Ep and if Y e TB,

Vγh=VγHh. (1.49)

Since the curvature tensor Rz of V7 takes its values in the complex
endomorphisms of TZ, Rz acts naturally on ΛT*{0' X)Z and preserves the grading
of ΛT*{0>l)Z.

ί r) r) \
In the sequel, (y1,..., j/') is a complex coordinate system in B. I — τ , . . . , —ψ ) is

the corresponding basis of T(1'0)J3,1 -—Γ, ...,—ZJT I the conjugate basis in T ( 0 ) ί)B,
\df df J

{dy\...9dy') and (dy\...Jf) the dual bases in T * ( 1 ' 0 ) β and in T*{0Λ)B.
Furtherjore eu...,en, w1? ...,wΛ... will be taken as in Sect. Id).

We will use α, β... as indices for horizontal variables -—, and L /... as indices for
dya

vertical variables like et.

We identify —— and ί — ) , dya and π*dya etc.

Theorem 1.14. The connection V preserves the Hermitian product of E. The
curvature (V)2 of V is such that if Y, YΈTB,

(V)\X Y') = RZ(YH, Y'H)®1 + \®Lξ{YH, Y'H)-VTiYHtY.ny (1.50)

For any Y,Y'e TB, (V)2(Y, Y') is a skew-adjoint element of End£. As a 2-form on
TB, (V)2 is of complex type (1,1). Finally, if UeT{ί0)B, Ve T{0Λ)B, then

Vvd = 0, Vv()* = 0. (1.51)
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Proof. Set fe = - i Σ S{e^ev Then, k e THM. In [BF 2, Proposition 1.4], it is proved
1

that the connection Vu on E, which is such that, if Ye TB, Vγ = Vγ + (k, YH}, is
unitary. We claim that fc = 0. In fact

Λ=-i[S(w i )w i + S(wi)wi]. (1.52)

By Theorem 1.7, we know that S^fa = S^X- = 0. It follows that V = PM, i.e. V is
unitary.

(— cozY
Equivalently, one can say that — is the volume form of Z. By

[BF2, Proposition 1.4], if Ye TB9

 Λ

ωzY (1-53)

By Theorem 1.7, Lz

γHωz = 0, and so <fc, YH} = 0.
By [Bl, Proposition 1.11], the curvature (V)2 is given by (1.50). Since V is

unitary, for Y9 Y' eTB, (V)2(Y, Y') is necessary skew-adjoint.
Since Vz is holomorphic and Hermitian on T{ί'0)Z, Rz is of complex type (1,1),

and so is Lξ. By Theorem 1.7, Tis also of complex type (1,1). It is now obvious that
(V)2 is of complex type (1,1).

We identify VD to the element of Λ\T£B)®EndE,

D.
dy*

By [B 1, Theorem 2.5], we know that VD is given by

so we eliminated terms like τl -—, wt

(1.54)

Note that in (1.54), we have used the fact that Rz, β, and Tare of type (1,1), and

δ

Also since D = δ + δ*, trivially

VD=Vd+Vd*. (1.55)

Also V preserves the grading in E, and so Vδ increases the degree in £ by 1,
while Vδ* decreases the degree by 1. Also Rz, Lξ and Vτ do not change the grading
in E. We immediately derive from (1.54) and (1.55) that

Equation (1.51) is proved. •
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Remark 1.15. \ΪE' is a finite dimensional complex Hermitian vector bundle on B,
endowed with a Hermitian connection V whose curvature is of complex type (1,1),
it is a well-known consequence of the Newlander-Nirenberg theorem (see [AHS,
Theorem 5.1]) that there is a unique holomorphic structure on E' such that V is the
corresponding unique holomorphic Hermitian connection.

Here E is an infinite dimensional complex Hermitian vector bundle, which is
endowed with a unitary connection whose curvature is of complex type (1,1).
However since E is infinite dimensional, the result of [AHS, Theorem 5.1] is
unapplicable in our situation.

Also the condition Vd = 0 means that d is a "holomorphic" section of the
"holomorphic" vector bundle End£.

However the fact that, at least formally, E is a holomorphic vector bundle
will be of utmost importance when defining a genuine holomorphic structure
on the determinant bundle associated with the family d.

2. Double Transgression for Direct Images and the Heat Equation

In this section, we consider a chain complex of holomorphic Hermitian vectors
bundles on M,

By considering the Dolbeault resolutions of the d complexes associated with
ξQ...ξm restricted to Zr we obtain a family of infinite dimensional complexes
(Eyiδy + υy).

Using the Levi-Civita superconnection and the local index formula of [B 1], we
obtain Chern character forms on B for this family. The purpose of this section is to
double transgress these Chern character forms by imitating formally what has
been done in [BGS 1] for finite dimensional complexes.

In a), we briefly describe the Levi-Civita superconnection of [B 1]. In b), we
prove that in our situation, the Chern character forms of [B 1] associated with the
Levi-Civita superconnection Au - which depends on a parameter u > 0 - are in the
space P considered in [BGS 1].

In c), we prove that the form ω = ωH + ωv plays the role of a number operator
associated with the d complexes. In particular, we find that this formal number
operator together with the Levi-Civita superconnection verify the algebraic
identities which were proved in [BGS 1] in a finite dimensional context.

In d), and imitating [BGS1], we double transgress infinitesimally the local
index forms of [B 1]. However, contrary to the situation considered in [BGS 1],
certain asymptotic expansions (for wj, J,0) have singular terms. Before obtaining the
integrated double transgression of the local Chern forms, we need to understand
the structure of such expansions.

Thus in e), and extending Bismut-Freed [BF 2, Sect. 3], we prove in full
generality that the first transgressed forms are non-singular as wj,|0.

In f), and by a formal transfer of the results of [BGS 1], we obtain various
identities with anticommuting variables, and we establish a generalized Lich-
nerowicz formula.
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If Nu is our generalized number operator - which also depends on u > Q, we
calculate in g) the asymptotic expansion of Trs[iYM(exp — Al)~\ which is of the form

C ^ . (2.1)

C_ x and C o are explicitly calculated using the identities established in f).
Understanding the structure of C o will be essential in establishing [BGS1,
Theorems 0.1, 0.2, and 0.3].

In h), when (E, d + v) is acyclic, we obtain a double transgression formula in P
for our Chern character local forms. This formula is of an essentially analytic
nature. It is obtained as a generalized analytic torsion in the sense of Ray-Singer
[RSI, 2].

In i), we prove in Theorem 2.21 that when the chain complex ξ is acyclic, the
double transgressed forms constructed in h) are equal in P/P' to the differential
form appearing in [BGS 1, Eq. (0.6)]. Such a result is a double transgressed version
of the Atiyah-Singer Index theorem for families [AS, B l ] , since it equals an
expression constructed by analytic methods, i.e. a generalized analytic torsion, to a
local expression obtained via secondary characteristic classes.

The proof is technically difficult due to the fact that P' is in general not closed
for any reasonable topology. However in degree 0, P' is irrelevant. The proof of
Theorem 2.21 in degree 0 becomes much simpler, and most of the technicalities
disappear.

In application to determinants in [BGS 3], we only use Theorem 2.21 in degree
0. So the reader interested in determinants may well skip most of the technicalities
of the proof of Theorem 2.21.

Finally, observe that in degree 0. Theorem 2.21 exactly says that the Ray-
Singer analytic torsion of a certain infinite dimensional complex is given by a local
formula.

Note that as in [BGS1], the notation [A, E] will always represent the
supercommutator of A and B.

a) Kάhler Fibrations and the Levi-Civita Super connection

We now suppose that the assumptions of Sect, lc) are verified. The fibration
(π,gz, THM) is Kahler with associated (1,1) form ω = ωH + ω z .

The bases (e^ (wt )... are taken as in Sect. Id).
Let

0-+ξol?ξιΊ?...Ί?ξm^0 (2.2)

be a holomorphic chain complex of finite dimensional holomorphic Hermitian
vector bundles on M. Set

ξ+= e ξj, ξ-=βξj, ξ=ξ+®ξ^. (2.3)
jeven jodd

Then ξ + ,ξ are also holomorphic Hermitian vector bundles, and ξ is naturally Z 2

graded.
Let Vξj be the unique holomorphic Hermitian connection on ξp whose

curvature we denote by Lξj. Therefore Vξ = © Vξj is the unique holomorphic
Hermitian connection on ξ and Lξ= ®J3J the corresponding curvature.
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Let v* be the adjoint of v. Set

V = υ + v*. (2.4)

For O^jrgm, we can do the various constructions of Sect. 1 (with ξ = ζj). E*j,
E^Ej denote the corresponding infinite dimensional Hermitian vector bundles on
B which we endow with the (unlabelled) "holomorphic" Hermitian connection V.

Also the unlabelled families of operators d, <3*, D act on Ej as well as the vertical
Clifford multiplication operators c(ef).

Let τ be the involution defining the grading on Ep i.e. τ = ± 1 on Ef. We will
take the convention that v, v*, V act on Ej like τ(l®v). Therefore v, v*, V
anticommute with the vertical Clifford multiplication operators c(et).

We thus have an infinite dimensional "holomorphic" double chain complex of
infinite dimensional vector bundles on B,

0 ->

0 -+

0 ->

0
ΐ

^ 0 Ί

iff

iff

E° -

i
0

0

ΐ

iff

i
0

0
i

• v K

iff

ΐ
0

As in [BGS 1, Sect. Id)], the double complex has a horizontal, a vertical, and
a total Z grading. Set

F — £D\ F*7 F — £Π F^ 77 — £D FP
Lu — \ς\y Uj , Â  + — \ζγj J^j , £/ _ — ( ^ ϋ j .

j , p j + peven j + podd

The operators d, 5*, D, ι;, i;*, F are odd in End£. Since υ is holomorphic, we have

[δ, t;] = [β*, t;*] = 0, (β +1;)2 = (δ* +1;*)2 = 0. (2.5)

Also V splits into F = V' + Fr/, where F', V" are the holomorphic and
antiholomorphic parts of F. By Theorem 1.14,

V"(d + v) = 0, Fr(δ* +1;*) = 0. (2.6)

For u > 0, F + |/M(D + F) is a superconnection on £. This superconnection is the
natural extension of the superconnection of [BGS1, Sect, lc)] in an infinite
dimensional situation. However, due to the results of Bismut [B 1], we know it is
not the right choice of a superconnection to obtain a local form of the Theorem of
Atiyah-Singer for families.

So we define the Levi-Civita superconnection introduced in [B 1, Sect. 3].

Definition 2.1. For w>0, the Levi-Civita superconnection Au on E is given by

(2.7)
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Instead of (2.7), we will also the notation

r.(T\
(2.8)

When V = 0, by [BF2, Proposition 1.18], Au is exactly the Levi-Civita
superconnection of [B 1, Sect. 3].

b) Construction of Chern Character Forms in P

We now prove a first basic result concerning the superconnections V + ]/u(D + F)
and Au.

In all the formulas where characteristic classes appear, Rz will be considered as
the curvature tensor of T(1'0)Z.

Let us recall that the ad-invariant Todd polynomial on complex (/, ί) matrices
is characterized by the fact that if B is diagonal with diagonal entries yx,...,y£, then

τd{B)=γ\τ^-_Ύj.

Theorem 2.2. For any u>0, the smooth differential forms on B, Tr s [exp-(ί
+ j/w(D + F))2] and Trs[exp — (Au)

2'], are elements of P. They are closed and they

are in the same cohomology class, which does not depend on u>0.

Also, uniformly on compact sets in B

lim Trs[exp - A2~\ = f ^ Y J Td{ - Rz) Trs[exp( - β)~\ , (2.9)
uiio \2πιJ z

and the differential form in the right hand-side of (2.9) is also in the same cohomology
class as Trs[exp — A2\

If B is compact, let 7} e K(B) be given by

The differential forms considered above represent in cohomology
ch(T 0 -T 1 + T2...).

Proof The proof that Tr s [exp-(F + |/M(D+ F))2] is in P is the infinite dimen-
sional analogue of the proof of [BGS 1, Theorem 1.9]. We here use instead the
relation (2.6).

Also one verifies that

[c(T),Vl=0. (2.10)

We thus find that

A 2 = fa^ + ] f { + ^ + { [ , ] + \ , ] ) + ( +
V AVuJ (2.11)

The operators [β, t;*], [δ*, υ], vv*, v*v preserve the total grading in E.
V'v is of type (1,0) and increases the total degree in E by 1, while V"υ is of type

(0,1) and decreases the total degree in £ by 1.
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We now calculate ( V + ]/uD —) acting on Ek. Remember that by the
\ 4]/W

results of Sect. Id), we can use the results of [B 1], with ξ = μ®ξk, where μ is any
locally defined square root of det T ( 1 ' 0 )Z endowed with the corresponding
holomorphic Hermitian connection. The curvature Lξk of μ®ξk is given by

L'*k=iTr[Kz]J + L*k. (2.12)

Let K be the scalar curvature of Z. By Theorem 1.7, we know that (S(ej) , > is
a 2-form of complex type (1,1). Using [B 1, Theorem 3.6], we find that on Ek

V
]/u\

i,-~

One again verifies that the terms on the right-hand side of (2.13) are of
three kinds:
• The terms which preserve the grading of Ek and which are of type (0,0) or (1,1)
in the Grassmann variables in T*B;
• The terms which increase the degree in Ek by 1 and are of type (1,0) in the
variables in T*B;
• The terms which decrease the degree in Ek by 1 and are of type (0,1) in the
variables in Tc*5.

Using [BGS 1, Proposition 1.8], we find that Tr s [exp-(^)] is also in P.
When v = 0, (2.9) is a consequence of [B 1, Theorems 4.12 and 4.16]. When

uφO, exactly the same methods permit us again to prove (2.9). In particular,
because it has the weight u, the 0 order operator [d *, v] -f [β, i;*] does not
contribute to the limit.

When v = 0, the final part of the Theorem is proved in [B 1, Theorem 3.4].
Replacing D by D + bV(O^b^l) and using the fact that the cohomology class of
the corresponding forms does not change with b - see in particular [Bl,
Remark 2.3], the end of the Theorem holds in full generality. •

Remark 2.3. It is a consequence of Bismut-Freed [BF2, Theorem 1.19] that in

degree 0 and (1,1), Tr s[exp-(F + ]/u(ί)+F))2] and Tr s [exp-(^)] coincide.

In general, Trs[exρ — (F + ]/ϋ(D + F))2] does not converge as wjjO, except in
degree 0 and (1,1). This explain why we need to use the Levi-Civita superconnec-
tion to study higher degree characteristic classes.
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c) Number Operator and the Levi-Civita Super connection

The double complex E has a horizontal and a vertical grading. Let NH, Nv be the
number operators corresponding to these two gradings. NH and Nv act on 2s* by
multiplication by j and k.N = NH + Nv is thus the total grading number operator.

These NH, Nv, N are the right choice of number operators if we use the
superconnection V + ]/ΰ(D + V). We can thus reproduce formally what has been
done in [BGS1] to double transgress the Chern forms Trs[exp

However because of (2.9), the right forms to consider are Trs[exp( — Al)~]. The
number operators have to be changed in order that certain basic commutation
relations are still verified.

We first evaluate the number operator Nv in terms of the vertical Kahler form
ωz. Note that ωzeΛ2(TZ). The element of the Clifford algebra c{TZ) which
corresponds to ωz identified with the antisymmetric matrix Jz is ω z ' c given by [B 1,

Eq (1-2)] , . . „. . _
)c(vv ) — c(w -)c{w ) \ . (2.14)

Proposition 2.4. We have the following identity

Nv=-iωz'c+^. (2.15)

Proof. By (1.41),

• -i- Γ-; -ϊ\
ι*A ' r Λ / * j 2j

Also Σ ^ ' Λ V a c t s o n E* by multiplication by k. Equation (2.15) is

proved. •

We now will define a new vertical number operator, which is an element of
Λ(T£B)®End2s, and depends on the parameter u>0.

Definition 2.5. For w>0, the operators N'VfU, Nu are given by

N'v u— — icoz'c + iωH A/2u-\—, Nu = N'v^u + NH. (2.16)

We now prove a family of commutation relations which exactly extends

[BGSl,Eq. (1.24)].

Theorem 2.6. The following relations hold:

=0,(2.17)

\}/u(d + v)-C{
 \NU\=-ΫW

L 4]/w J
J , Nu = ]fu(d + v) Λ

4\/u J 4|/M

Ti0Λ))

4]/M

1 ' 0 ) ) Ί r- c(Ti0Λ)
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In particular

4J/H

4]/u ) \ 4]/u
=o,

l = ΓV" + \Γu0+ v)-°-i^β, V
L 4γ4γu 4γu

(2.18)

Proof. The number operator Nv is parallel for the connection V. Therefore by
Proposition 2.4, we find that

[ p > z ' c ] = 0 . (2.19)

Of course, (2.19) reflects the fact that V is unitary and preserves the Kahler form
ωz.

Also, by Theorem 1.7,

Va ωH = 0 on THMxTHMxTHM. (2.20)

It follows that

[Γ,ω H ]=0. (2.21)

We have thus proved that [F,iV'Kt J = [ P , N J = 0 . Clearly

[a,jvF] = - a . (2.22)

Also since c(T(1'0)) increases the vertical degree by 1, we also have

[-c(T ( 1 ' 0 ) ),N F ] = c(Γ ( 1 '0 )). (2.23)

Also trivially

[c(T ( 1 'O )),ωH]=0. (2.24)

By Theorem 1.7, we know that

Fβω f f + i Γ ω z = 0 on THMxTHMxTZ. (2.25)

Also

[3, ωH] = c(w,)^ ωH; [3*, ωH] = c(w,)Γw ω H . (2.26)
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Using (2.25), we find that

K ωH] = - c{wdωz{T9 wd = ic{T^ °>),

[5*, ω f /] = - c{w^ωz{T, wt) = - ic(T ( 0 ' 1 }). ( ' }

Using (2.6), (2.21) and (2.27), we find that

[F", c(T(1'°>)] = \V\ c{T{^1})] = 0. (2.28)

Also

K [5, ω f l ]] - [[5,3], ω f l ] - [^ [3, ω f l ]] . (2.29)

Since <P = 0, we find that: [3 , [δ,ω H ] ]=0, and so using (2.27), we get

[δ,c(T ( 1 'O ))] = 0. (2.30)

In the same way, we can prove that

[3*,c(T ( 0 1 ) ) ] = 0 . (2.31)

Using (2.22)-(2.31), it is now easy to prove the final equalities in (2.17).

Since (c(7τ(1 O)))2 = (c(7τ(O 1)))2 = 0, the second series of equalities in (2.18) is a
consequence of (2.17).

Since (F')2 = (F")2 = 0, we find the third series of equalities in (2.18) also hold.
The fourth and fifth equalities in (2.18) are now obvious. The sixth equality is a
consequence of (2.17). •

Remark 2.1. Theorem 2.6 should shed some light on the result of Theorem 2.2
which asserts that Trs[exp —4 2 ] is in P.

c(T(1'0))
In fact by Theorem 2.6, ]/u(d + v) ^ — is a "holomorphic" function of

4]/u
yeB; it increases the degree in £ by 1, and its square vanishes, while ]/ΰ(d* + v*)

c(T(0,Ό)

j=τ— is "antiholomorphic," decreases the degree by 1, and also has a square
A]/u

which vanishes. The situation is then formally identical to what was done in
[BGS1].

N'VtU9 Nu will play the role of vertical number operators and of total number
operators. In this respect, the final equality in (2.18) is of critical importance, since
it shows that JVU incorporates the basic features of a number operator, as used in
[BGS1].

It follows from (2.17) that
(P" + 5)2 = 0. (2.32)

We now give an intepretation of (2.32) which will be very useful in [BGS3].
Because of the splitting T{U0)M= TiU0)Z® TH{U0)M, we have the identification:

Λ(T*i0> υ M ) =

acts naturally on the smooth sections o
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So V" Λ-Έ1 acts naturally on the smooth sections of Λ(T*(0Λ)M)(g)ξ.
Also o™ acts naturally on smooth sections of Λ(T*iOtl)M)(g)ξ.

Theorem 2.8. We have the equality of operators acting on smooth sections of

(2.33)

Proof Equality (2.33) is clearly local. Therefore, if U is any open set in B, we only
need to prove (2.33) on π - 1 (ί7).

Recall that in Sect. 1 a), we were free to choose any metric gB on TB. Therefore,
we can assume that U is small enough so that gB induces a Kahler metric on U. We
now will work on π~ι(Ό).

The connection V = VB®VZ is complex, i.e. induces a connection on Γ ( 1 ' 0 ) M.
The operator Va, which acts on smooth sections of A(T£M\ was defined in

Sect. 1 c). We extend Va into a operator acting on smooth sections of Λ(T£M)®ξ
in the obvious way.

By (1.26), we know that we have the equality of operators acting on smooth
sections of Λ(T£M)®ξ,

V^Va + iτ. (2.34)

Also Va splits into Va = Va' + Va", where Va\ Va" are the holomorphic and
antiholomorphic parts of Va.

The connection VB is complex and torsion free, and also, when restricted to one
given fiber, the connection Vz is complex and torsion free. We thus find that

Va"=V" + (F. (2.35)

By Theorem 1.7, T vanishes on TCZ x TCZ and is of complex type (1,1).
Therefore

iτ = dzι A dyai /_a_ _a_\ + dzl A dyai /_£_ AΛ+dy* A dyβi rj_ j _ \ . (2.36)

Clearly dM = Vξ". Moreover o™, V" and (F map forms of type (0,/?) into forms
of type (0, p +1). Due to (2.36), we see that iτ maps forms of type (0, p) into forms of
type(l,p).

From (2.34)-(2.36), we obtain (2.33). •

d) Double Transgression of the Chern Character: The Infinitesimal Form

We now prove the natural analogue of [BGS1, Theorem 1.15] in an infinite
dimensional context.

Theorem 2.9. For any u>0, the smooth differential form Trs[iVuexp — A^\ is in P.
Also

) τ r s [ e x p ( - Λ 2 ) ] = ( ^

(2.37)
Trs ^(]/u(D +V)+ jjLj exp( - A2

U) J = (dB - ¥) Txs[_Nu exp( - ^u

2)] .
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In particular

Ά Trs[exp( - Al)-] = ί^f\ dBdB Trs[iVu exp( - A2

U)] . (2.38)

Proof. To differentiate traces or supertraces, we must proceed rigorously as in
[B 1, Sect. 2], i.e. use the fact that since D2 is fiberwise elliptic, exρ( — Al) is given by
a fiberwise smooth kernel depending smoothly on y e B. Ultimately the manipula-
tions of [B 1, Sect. 2] show that formally, in this situation, we can use the same
commutation rules as in finite dimensions.

The first line of (2.37) is then a simple consequence of the superconnection
algebra. The second line of (2.37) can be proved by the same arguments as in the
proofs of [BGS 1, Theorems 1.9 and 1.15], simply using the commutation rules of
Theorem 2.6 instead of [BGS 1, Proposition 1.6]. •

Before giving an integrated version of Eq. (2.38), we will study the behavior of
the various quantities appearing in (2.37)-(2.38) as wJ,J,O.

In Theorem 2.2, we have shown that as ujJ,O, Tr s[exp — A2~\ is non-singular
because of certain cancellations obtained in [B 1, Sect. 4]. This implies that related
cancellations occur in right-hand side of (2.37), 2.38).

We will study these cancellations, and also calculate explicitly certain terms in
the corresponding asymptotic expansions.

e) Asymptotic Behavior of the First Transgressed Forms

[
(]/u(D+V)+^—L)exp(-Al) asM||0. The
V 4J/V J

result which we will obtain generalizes the result obtained in Bismut-Freed [BF 2,
Theorem 3.4] which was only concerned with the degree one part of this
expression.

The result which we will prove is true in full generality for any family of Dirac
operators of the kind considered in [B 1] and has nothing to do with complex
geometry. It will be formulated in complex geometric terms for simplicity.

Here du denotes the odd Grassmann variable corresponding to ueR + .
Recall that Lξk has been introduced in (2.12).
Let Lξ denote the corresponding curvature tensor associated with ξ, i.e. Lξ

Proposition 2.10. For any u>0, we have the equality

+ (ί) <^^®Lξ^ ϊ + Y{ϊdf®Vξ (eb -^

r (2.39)
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Proof. When du = 0, (2.39) is exactly [B 1, Theorem 3.6]. Also

d-)\
dyadulc(ej)c{ei)-c(ei)c(ej)']

e;, e j ), A dfduc(ej)c(et). (2.40)

Since T{eb ej) = 0, (2.40) is 0. Of course, (2.40) is still 0 when replacing — , df by

d y

7—, df. Also, by (1.4)
dya

1

It is now easy to obtain (2.39). Π

Theorem 2.11. There exist C00 even differential forms Ao, Λί9... in P, and C0

differential forms BX,B2,..., swc/z that for any keN,

Trs[exp( - Al)-] = Σ ̂  + o(uk),

Yί m\ ° Ί * ( 1 4 1 )

Trs ]/u(D + V) + ^L) exp( - A2

U) = Σ V + φ*),
L\ Ayu) 1 i

απrf ί/ie various o(uk) are uniform on the compact sets in B. Also

^-ljAj , j>0. (2.42)

Proof. By Greiner [Gr, Theorem 1.6.1], we know that for any k'eN,

Trs[exp^-u(^V + D + V- C-ψJ-du(θ + V+ Cψ))\] = Σ

where o(uk') is uniform over the compact sets of B. We now rescale dyα, rfyα, dw into

—=, —=, —=. We thus find that for any keN,

yu yu yu

( ( / ^ ) ) ] . (2.43)
41/U
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Also by DuhameΓs formula, the left-hand side of (2.43) is given by

Tr s [exp(-4ϊ) + dttTrJ (I/M(D + F)-f ̂ φ : ) e x p ( - , 4 2 ) .
L\ 4yuJ J

We thus deduce from (2.43) that

Tr s[exp(-,4U

2)]= £ Λju
j + o(uk),

Tr s (yu(D + V) + ̂ ) e x p ( - ^ 1 M

2 ) 1 = £ β y + o(ufc).
LΛ 4]/w/ J -(/+n

To prove (2.41), we will show that Efj = 0J<0 and that £'o does not contain rfw.
By Proposition 2.10, we find that the right-hand side of (2.39) is exactly of the

same form as the corresponding formula of [B 1, Theorem 3.6] for A2

U, with the

Λ cίeMu
exception that — appears.

2γΰ
We can thus use formally the results of [B 1, Sect. 4], which already show that,

for j < 0 , Efj = 0. Let us prove that E'o does not contain du.
Note the commutation relations

= 2δ\dyadu. (2.44)

Take x e Zy. Let w'1 be a Brownian bridge in TxZy, with wΌ1 = w'/ = 0, and let Pί

be the law of w'1 on ̂ ([0,1]; TxZy).
By proceeding as in [B 1, Theorem 4.12] and using the commutation relations

(2.44), we find that as wj JO, the left-hand side of (2.43) has a limit and that the only
term where du appears is given by

fexpί ...i j (S{wn)dW1-S(dwtl)W\^λ dyadu
( o \ dyal

+ i j ls{wn)dwn ~S{dwn)W\~\ dFdu...ldP1{w'1). (2.45)

Since w'1, dw'1 e TZ, we have

S(w'ί)dwfί-S{dwa)wtl=-T(W\dw'ί) = O. (2.46)

It thus follows from (2A5}-(2Λ6) that E'o does not contain du.
The explicit expression of Ao has already been found in (2.9). Using (2.37), we

obtain the second expression in (2.42) •

Remark 2.12. The asymptotics as wJ,J,0 of the first line of Eq. (2.37) is now fully
understood.

We will study the asymptotics of Tr s[N uexp(-yl^)]. The presence of the
iωH

diverging term —— in Nu already indicates that it will be more difficult. In order to
2u

solve these difficulties, we now will establish certain formulas which are the infinite
dimensional analogues of the results given in [BGS 1].
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f) On Certain Identities Verified by the Levi-Civita Super connection

We now establish the infinite dimensional analogues of [BGS 1, Theorems 1.10,
1.12, 1.13].

Let da, da be two odd Grassmann variables. We still use the convention that if
ηeΛ(T£B)®C{da,dά\ if η is written in the form,

η = ηo + daη ί + dάη2 + daddη?){ηi e Λ(T£B), 0 ^ ί ̂  3),

then, we set

ίηTad'a = η3. (2.47)

Theorem 2.13. For any u>0, b^O,

bu Tr s \{]/ΰψ + V)+ C^\ exp( - A2

U + buNuU

= (dB - dB) Tr s [exp( - A2

U + buNJ]. (2.48)

Let θueP be given by

θu = Trs [̂ exp ( - Al - da (γu{d + v) +

( r- - c ί T ( 0 > 1 ) Λ \Ίdo<ia

-dάl]/u(d* + v*)+ y Ί-dadάiωz c + buNu]\ . (2.49)

Then, for any u>0, bltO,

—

= ~ (£) dB Trs \^γu(D + V)+ C^j exp( - A2

U + buNj

+ Trs [(NB + 0 exp( - A2

U + buNu)^j (2.50)

or equivalently for u > 0, b > 0,

' d
d u.Tr£exp(-A2 + buNu)-]= - i — )dBdBTrs[_exp(-A2

u+buNuft

(2.51)

Proof. Using the commutation relations of Theorem 2.6, the proof of (2.48) is
formally identical to the proof of [BGS 1, Theorem 1.10]. Also the proof of (2.50) is
formally identical to the proof of [BGS 1, Theorem 1.12]. Note that

-,

and this explains why ωH does not appear in the final term in the right-hand side of
(2.50).
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Equation (2.51) is a consequence of (2.48) and (2.50). •

As in [BGS 1, Theorem 1.12], we now differentiate (2.48), (2.50), and (2.51) at
b = 0.

If η' e Λ{T£B)®C(du\ η' can be expanded as

ηf

0, η\ e Λ(T*B).

Set:

Theorem 2.14. Let σu, σ'ueΛ(T£B) be given by

σu = | τ r s |^exp ( - A2

U - da (]/u

C(T{OΛ))\ \Ί)dada

v*)+ v _ ; - d a d ά i ω z ' c ) \ } ' (2.52)
4]/u ) )\)

σ; = Tr s | NuQxp[ -A2-\-duί]/u(.

Then

_g χ / d2 \

Moreover

' 5̂
?[ΛΓuexp(-^)]) = σu + Tr s | ( NH + - ) exp( - A2) \ -dB[-f)\

or equivalently

κduj

(2.55)

Proof. One immediately verifies that

WTΛ\ Ί
(2.56)

Dividing both sides of (2.48) by b and replacing in the right-hand side of (2.48)

δ- i(s'I b>" 2 ( ^ 2 I f c ' w e obtain (2.53).

Differentiating both sides of (2.50) at b = 0, we obtain (2.54). (2.55) follows from
(2.53) and (2.54). •

The second key step in establishing the asymptotics of Trs[iVu exp( — Al)~] is the
following remarkable formula:
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Theorem 2.15. For u>0, l^i^έ, let Ql, Q'J be the differential operators

s (I) (s{w^ wi w + ( I (157)

Then

ί r- c(T ( 1 '0 ))\ ( Γ ^ *, c(Ti0Λ))\ J Ί 7

Au+da[ \/u(p-\-υ)-\ 7=— \-\-da\ ]/u(d* + v*)-\ τ=— +dadaiω '
\ 4]/M / V 4]/M /

(U\
y-j cwtc Wj x w,, Wj c w . c w j x w,, w}.

'^/®L'« ( Wi, i- ) I + <W®L'« ( £ , , i=i ). (2.58)

/ We will prove (2.58) when v = 0, the extension to the general case being
trivial.

If da = dd = 0, (2.58) is exactly formula (2.13), where we have used the base
(wbWi) instead of (ef). Note that here we also use the fact that by Theorem 1.7,

In general, the extra contributions of da, da to —u Σ (QίQ'u + Q'uQί) is given
by

da]/ud + dα|/w<3* + —^=

, \ (φύdaφμr + c(wj)dyac(wi)dά)

άdά+φjdάφjda). (2.59)
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By (1.4), we know that

(2.60)

Also

φ^dάφjjdf + c(wj)dj/αc(wί)(iά = 0, (2.61)

and a similar relation holds for the conjugate quantities.
Finally, using (2.14), we find that

d) = dadάiωz>c. (2.62)

Equation (2.58) follows from (2.59H2.62). •

g) The Λsymptotics of Tr s[JV t texp(-4J)]

We now establish several explicit results concerning the asymptotics of

Tr s[JV t texp(-,4u

2)]asι/U0.
I denote the identity map on T{U0)Z.

Theorem 2.16. There exist smooth differential forms C-1,C0,...,D_2,D-ι,...inP
and smooth differential forms on B E0,Eί,... such that as MJ,J,O, for any keN,

Trs[JVMexp(-,4u

2)]= £ CjU

j + o(uk),

σ'u= Σ EjU

j + o(uk), (2.63)

= ^ ^ DjUJ + o(uk),

and the various o(uk) are uniform on compact sets on B.
D_2, D-i are closed, and for j ^ O , (dB — dB)Dj = Ej. C_ l 5 C o are closed

differential forms given by

C-i = ί-fS J y 7a(-Λ2)Trί[exp -L«],

a ( 1 6 4 )

f ^

j ί 7H( - Rz) Trs[exp -

Y ί Td(-Λz)Tr,[JVirexp-Lf]-
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If E0 = E0(v), then

(2.65)
and so

dBE0(v) = dBEo(0)- (^-.J ί ίω73(-i*z) [(£j Trs(exp- (F + y u F ) 2 J

(2.66)

5 W ^ C , . = - M , 0* > 0). (2.67)

Proof. The existence of the expansions (2.63), and the corresponding cancellations
can be proved easily by the methods of the proof of Theorem 2.11.

Using (2.53), we find that D _ 2, D _ 1 are closed and that for j ^ 0, {dB - dB)Dj = £,,
From (2.37) and (2.41), we also find that C_ 1 ? C o are closed and that for j>6,
(dB-dΈ)Cj = Bj. Using (2.42), we find that for y>0, {Wd^C— -jAs.

We now calculate C_ x and Co.
Clearly

C _ ! = lim Trs[wiVM exp( - yl2)] . (2.68)
«j 40

7 iωH ( A
uNu=-ίuωz>c+ — +u( NH+ -J.

Also

Note that ωZfC has length 2 in c(TZ). In wNu, each vertical Clifford variable has

the weight ]fu. It is then easy to adapt the proof of [B 1, Theorems 4.12 and 4.16]

and obtain the first line of (2.64).

We now calculate Co. Clearly

VM e x p ( - A l y \ = C _ x + Cou + ... + C k u k +' + o(uk + ί ) . (2.69)

One verifies easily that we can differentiate (2.69) so that as wJ,J,O,

T r l u N u e x p ( - A2

U)~] = Co + £ (J + 1 ) C y + o(W

fc). (2.70)

We now will use (2.54). By the methods of [B 1, Sect. 4], one finds that

(2.71)
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We now will prove that lim σu exists and we calculate this limit. Let Ou be the
u l i O

operator appearing in (2.58). We have

O u ; r a . (2.72)

To go back to the formulas in [B 1, Sect. 4], we scale the Grassmann variables

dya, dya, da, da by the factor —=, and replace u by —=. Ou is changed into —-. We

1/2 _ _ 1/2 2

now study the limit as w|J,0 of Tr s

Formula (2.58) shows that we can use the methods of [B 1, Theorem 4.12] since
it has the same structure as the formula of [B 1, Theorem 3.6], given in (2.13). So we

already know that TrJ exp—-— has a limit as wjJ,O.

For the same reason as before, v does not contribute to the limit. Also Lξ

contributes to the limit in a trivial way. So in order to simplify the argument, we
will temporarily assume that ι; = 0, ξ = μ~ι and so Lξ = 0.

We now adopt without further reference the notation of [B 1, Sect. 4] to which
the reader is referred, except that t in [B 1] is now u.

Take x0eZyo. Let w^Orgftrgl) be a Brownian bridge in TXoZyo with WQ
= wΊ1 =0 . Let Px be the law of w'1 on #([0,1]; TXoZyo). We can split wj,1 as a sum

Let XhΦ^h^ί) be the Riemannian Brownian bridge in Zyo with xu

0 = x\ = x 0

associated with γuwrl as in [Bl, Sect. 4]. TQ'" denotes the parallel transport

operator from fibers over x\ into fibers at x0 along xu. Set

h

7Uh= J 4 ' ' " ώ φ , (2.73)

o

and decompose yu

h in the form

yU __ gU _|_ g«. gu E T^'^Z ε "eΓ ' 0 > 1 'Z ί2 74)

Let e l 5 . . . , en be an orthonormal real base of TXoZyo, (/α) a real base of TyoB, dy'a

the corresponding dual base in Ty*B.
Equation (2.58) shows that instead of the equation in [B 1, Definition 4.1], we

now consider the solution Uu

h of the equation

dUu

h=Uϊ\ U~

<S(dxt)fa, fβ} dy'«dy'P + ( y (c(dεt)da -

UO=IΛxo(T£Z)®μ-l' ( 2 7 5 )
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By proceeding as in [B 1, Theorem 4.1], we can integrate Eq. (2.75) explicitly.
We obtain

J (S(dx«h)L,fβ>dy'*dy'P+*dy'P+ ( £ )

J «τ*0 "S(rfxΛ"X, /β> - (τh

0'»S(dx"h,)dεu

h, L))dy"da

ί ((τh

0S(dxt)dε"h,, /β> - <τΛ

0 «S(rfxΛ",)ί/eχ / β » d y « d α

j . (2.76)

/ jL.t\

[B 1, Theorem 4.2] remains formally verified when replacing exp I —-1 by

exp ( J. If PUi(x0, x'o) is the kernel of exp I — - ^ J, the asymptotic evaluation of

Tr s[F"(x0, x0)] can be done as in [B 1, Theorem 4.12], to which we refer for the
main arguments.

With the notations of [B 1], we know that

1 ) . (2.77)

Since wΊ1 - 0, we have y\ = v2(]/ΰwfl). By [B 3, Eq. (4.178)] (with V = 0), we find

v2(]/uwrl)
that as wjJA — >0, or equivalently

u

l _ 0 , ^ - - 0 . (2.78)
u u

The same argument as in [B 1, Eq. (4.43)-(4.45)] shows that

I —— I J vx^o vyuXfrjUGfof) Ja/ — \ ^ o dyuXfrjuSfo Ja/)

1

o

By Theorem 1.14, S(wfl)dη = S(η)dη, S(dwrl)η = S(dη)η, and so the right-hand
side of (2.79) is exactly

0. (2.80)
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A similar analysis can be done on the conjugate term. Finally, using (2.77), we
find that

, dηhy - <ηh9 dηh»

i \ 1

(2.81)

Using [B 1, Theorems 4.12 and 4.14] and returning to the initial scaling, we find
that

limTr s[exp(-OM)] =
ullO \Z.ΊUJ Z I 0 )

(2.82)

In (2.82), expΛ indicates the exponential in the algebra Λ(T^M)0C(da,dά).
Let A' be the complex Hirzebruch polynomial. If B is a (/, /) complex matrix

with diagonal entries yu ...,>v, we have

Λ'(B)=U

Using a formula of P. Levy as in [B 1, Theorem 4.16], we find that

lim Trs[exp(- 0J] = \J-\ J A\RZ - Uzdadά). (2.83)

With a general ξ, we obtain

lim Trs[exp( - OJ] = ( - ί - I f A\RZ - iJzdαdα)
\ 2πz / -

x exp(-|Tr,RZ) Trs[exp(-Lξ)~] .

Using (2.84), we find that

(2.84)

x e x p ( - | T r ^ z ) T r s [ e x p ( - L ^ ) ] . (2.85)

Using (2.54), (2.70), (2.71), (2.85), and the fact that on T{1>0)Z, Jz = il, we get

*-ιέri"
^j ί Td( - RZ) Trs ]^NB + 0 exp( - (2.86)

If β is a (/, ί) matrix, we have
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and so

which implies that

£ ) Td(-B-bI)j = [±A' - Q Td(-B).
b = ° (2.87)

F r o m (2.86), (2.87), we o b t a i n (2.64).
W e n o w study the d e p e n d e n c e of Eo o n ξ, Vξ a n d v. , α , -α ,
W h e n scaling the G r a s s m a n n variables dyα, dyα, du in to —-, — = , —-—, we m u s t

study the c o n s t a n t te rm in the expans ion as wJ,JO of V V V

(2.88)

By proceeding as in Theorem 2.11, we see easily that NH+- does not

contribute to this term.
We now use Proposition 2.10 to obtain a probabilistic representation of the

kernel of

e χ p U_ A2 + du (γu{D + γ) +

( 4|/w

c(θ )du
As ullO, in (2.88), a first sort of term will come from the factor —1—=^. Since v

2]/u
contributes by terms which are factor of u, the same argument as in (2.45)-(2.46)
shows that v does not appear in this part of the constant term in the expansion of
(2.88). After rescaling, we obtain Eo(0).

A second sort of term in the expansion of (2.88) comes from du\fuV. Then γ\ιVv

and ]/u\_D, F] necessarily contribute to the constant term, while uV2 does not

ultimately appear. We obtain after rescaling

>} / J \ "•> / ΛV~v i v / i i / - / i A s r ~'N^v ' |/ •"'' / / i ( Z . δ y j

0

We thus obtain (2.65).
By [BGS 1, Theorem 1.15], we know that

( 2 9 0 )

Equation (2.66) follows from (2.65) and (2.90). The theorem is proved. •

Remark 2.17. It is elementary to verify directly that C_ x and C o are closed.
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In the case of finite dimensional complexes, we saw in [BGS 1, Sect. 1 c)] that
the analogue of C o is the derived Euler characteristic, which is naturally a closed
differential form. In particular, C(

0

0) is an integer.
In our infinite dimensional context, the closed form C o plays formally the role

of a derived Euler characteristic, but in general C(

0

0) is no longer an integer. It is
remarkable that in cohomology C o is given by characteristic classes, i.e. C o has a
topological interpretation.

Finally observe that J ( — ) [ r a ( - Λ z - W ) ] f t = 0 Tr s [exp(-L^)] will be inter-
z\dbj

preted as a secondary characteristic class in [BGS 3], when we study the varia-
tion of the analytic torsion with respect to the metric.

We finally state a consequence of Theorem 2.16.

Theorem 2.18. For w>0, let σ"u be the differential form in P,

c{T(i,oy

< = TrJ

c(Ti0Λ))\0,l)\\ \~\dada

There exist smooth differential forms in P, F_ ι,Fθ9..., such that for any keN,as

σu= h r 0 τ r 1 w + . . . + o(u). (2.92)
u

Also

F-i= (T-)' ^(-WPίTd^- RZΪ T r ^ e x P( - L^)]' Fo} = 0. (2 9 3)\2πιj z\ 2 /

If ωH = 0, F0=
d^-.

Proof Using formula (2.54), we know that

' d'

. (2.94)

It is now easy to prove that σ"u has the expansion (2.92). By using the methods of
[Bl, Sect. 4], we find that

lim Trs[zwωz'cexp( — Al)~]

( 2 9 5 )
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Using (2.63), (2.94) and (2.95), we obtain the first line of (2.93). If ωH = 0, (2.94) is
equivalent to

u exp( - Al)J\ - Ίτs\_Nu exp( - ,
dBσ

f

u

[Ίrs[Nu exp( - A2m + - ^ . (2.96)

Since w( — [Trs[JVuexp( — A2)']'] does not contain a constant term in its
You]

asymptotic expansion, we find that Fo=
 B °.

In degree 0 in A(T^B), we can always neglect ωH, i.e. assume that ωH = 0.
The theorem is proved. •

h) Double Transgression of the Chern Character Forms

By Theorem 2.16, we know the asymptotic expansion as w|J,0 or
ΎrslNuexp(-A2)']. We are thus ready to imitate [BGS 1, Sect. 1 c)] in order to
calculate the double transgression of the Chern character forms Trs[exp( — A2)'].

We do the basic assumption that the double complex (£, d + v) is acyclic.

It is then not difficult to show that as wfΐ + oo, Trs[exp( — A2)~], T

H — )exp( — A2) , Trs[NMexp( — A2)~] decay exponentially uniformly on com-

pact sets in B.

In fact, one can show that A\ is a small enough perturbation of D2 and that
Trs[exp( — uA\)~] decays exponentially. By rescaling the Grassmann variables in
T*B, we therefore obtain the exponential decay of Trs[exp( — A2j]. A similar
argument also works for the other considered quantities.

Definition 2J9. For se C, Re(s)> 1, XE(s)eP is defined by the relation

+ 00

J us ~ι Ίvs\_Nu exp( — A2)'] du. (2.97)

Because of the expansion (2.63) lE(s) is indeed well defined for Re(s)>l. It
extends into a meromorphic function on C with simple poles, which is holo-
morphic at s = 0. In particular

Uo)=-c09

V C \du ( 1 9 8 )

ζ'E(0)= ~ ί Tr s [ iV M exp(-^ 2 )]- - ^ - C o -
0 \ U J U
+ 00 Ay,

- I Trs[Nβexp(-Λ2)]-+C-1
1 U

If αeC*, we can change ]/u(d + v) τ=— into ]/ua(d + v ) τ = ^ ?
4l/ΰ Wud

Γ-- c(T(0Λ)) r- - c(T{0Λ))
]/u(d* + v*)--—-=J- into 1/Mfl(a* + t ;*)- ^ and Nu into Nlaμu. A2 is

4|A 4|/wα
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changed into Λfa^u and *ζE(s) into \a\~2slE(s). It follows in particular that l'E(0) is
changed into ζ'E(0)-2Log(\a\)ζE(0).

Theorem 2.20. // the chain complex (E, d + v) is acyclic, then

7 τJ(]/u(D
(2.99)

J Tί/(-J

Proof. Observe that by Theorem 2.11, the left-hand side is indeed well defined
since as uj, | 0

By Theorem 2.9, we find that

Using Theorem 2.11, we immediately obtain the first line in (2.99). The second
line follows from Theorems 2.2 and 2.9. •

i) The Case where (ξ, v) is Acyclic

We now do the assumption that (ξ, v) is everywhere acyclic. Hence (E, δ + v) is also
everywhere acyclic.

Recall that ζξ(s) has been defined in [BGS1, Definition 1.16] (where ξ was
instead denoted E). In particular

dMdMζf

ξ(O)= -Tr 5 [exp(- ίί)] . (2.100)

Also, if α, at! e P, we write a = a' if α — α7 e P'.
We now state the basic result of this section.

Theorem 2.21. // (ξ, v) is acyclic, then

I Td(-R%(0). (2.101)

Proof. We briefly explain the two main steps of the proof. The first step is to show
that if for ί>0, lEj{s) is the zeta function associated with the chain complex
(E, ]/td + v), then lE,t(0) is constant in P/P'. The second step will consist in proving
that as

Note that since P is generally not closed in P, we will have to be careful in the
convergence arguments. However in degree 0, (2.101) is simply an equality of
numbers, and P' is irrelevant. The argument is much simpler in this case.

Only the degree 0 part of (2.101) will be used when we study determinant
bundles in [BGS 3].
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Step 1. For ί^O, we scale d, d* by the factor j/ί. Namely, let A[ be the
superconnection over B

A<u=V + \/u(]/tD+V)-^l. (2.102)
v v A]/ut

If Λu = y4M(ϋ), we have the obvious

(^j (2.103)

The total number operator corresponding to Al

u will of course be Nut.
Let XEft(s)eP be defined by

By Theorem 2.20, we find easily that

^j ί K ( - K z ) T r s [ e x p - L ^ ] . (2.105)

Definition 2.22. For ί > 0 , seC and Re(s) large enough, set

T M'

* ) ) \ d u .- v )-λA4V)+du[]/ϋϊd*+ K

 r-
β + ]/ΰυ*))\ du. (2.106)

4]/ϊiί κ / V 4j/ϋί κ //J

By proceeding as in the proof of Theorem 2.11, we find easily that for a given
t > 0, as wj, JO, the expressions appearing in the integrals which define oφ) and βt(s)
have asymptotic expansions where only integer powers of u appear. In particular
αf(s) and βt(s) are meromorphic functions of s, which extend holomorphically at
5 = 0.

Recall that Eo(0) was defined in Theorem 2.16.

Theorem 2.23. For any ί > 0 , the following identity holds:

lfiM ^(5B+5>ί(0) ^

+ ί(^JI Td(-Rz)Trs[exp(-tfβ\ -~

(2.107)
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In particular, for any f>0, -^-^^(O) is an element of Pr.

Proof For Re(s) large enough, we have

— IJrE^'

+ 4:1 T rsl ^«t e χp( -(Λtu)2-b\ AlirAu\} I I \du- (2 1 0 8 )

By proceedings as in [BGS 1, Eq. (1.106)] we find that

\b = 0

(2.109)

As in Theorem 2.6, we split A*u into a holomorphic and a antiholomorphic part
so that

Λί = K + < ' ; (Λu)2 = W)2 = 0; (AD2 = IAΪ, Άn. (2.110)

By formula (2.18) in Theorem 2.6, we find that

lAlNut-] = lu^{-At:

,ut ^ u

We thus find that

d

db[
τ*s\ (^^)exp(-K)2 + ^ ^ J )

1

Ytίb {Ύΐs[N'v "'6XP(~{A'u)2 + 2bU[A" ~ A " ' T u ( j y
(2.112)

Using (2.110), we know that

< , ( < + < ) ! = γu{Auf. (2.113)
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The second term in the right-hand side of (2.112) is then given by

M ^ (2.114)

Observe that

From (2.108H2.H5), we find that

u ~ \ 1

dt Ejt 2t 2t

f us —- Tr JN'V u ί exp( —(v4^)2)]rfw. (2.116)
tΓ(s) o ou

For Re(s) large enough, we can integrate by parts in the last integral in the
right-hand side of (2.116), and so we obtain

(A<uf)-]du. (2.117)

In Theorem 2.16, C o depends explicitly on v through Eo. We will now write Cv

0

instead of Co. Set

Cvo,y = σQ- {^jI Td(-Rz)ΎτstNHexp(-

Using Theorem 2.16 and Eq. (2.71), we find that for t>0, as u[ JO, we have the
asymptotic expansion,

^ ^ + O(u). (2.118)

From (2.117H2.118), we find that

jfiM ^ ^ t c ^ . (2.H9)

Equation (2.107) is proved.
Using (2.100), we know that the differential form Tr s[exp( — Lξ)~] is exact. It is

now clear that jrζr

Ett(0) is in P'. The theorem is proved. •

Step 2. We know that Eo = E0(v) is the constant term in the asymptotic expansion

of σ'u. Also we saw in the proof of Theorem 2.16 that NH does not contribute to

E0(v).
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Therefore E0(v) *s the constant term in the asymptotic expansion as w|J,0 of

Tr s [N'V,U exp ( - A2

U + du (γu(D

In particular E0{0) is the constant term in the asymptotic expansion as MJ,|O of

We now slightly generalize the definition of Eo(0).

Definition 2.24. Ev

0(0) denotes the constant term in the asymptotic expansion as
of

{ ( ( ^ l ) 2 ( ^ ) ) J " . (2.120)

Of course the existence of the asymptotic expansion of (2.120) can be proved as
in Theorem 2.11. Incidentally, note that the proof of Theorem 2.11 shows that
(2.120) is non-singular as u|J,0, so that Ev

0(0) is the limit of (2.120) as M | | 0 . Also one
verifies easily that for h ̂  0, E^(0) is a smooth function of h.

Definition 2.25. For u^0, set

\ V

) [ \db

^ τ Y J 73(-Λz)Tr s[exp-

—) ί Td( - Rz) Tr s[NH exp - (V + ]/uV)2} -

For Re(s)>l, set

λo(s)=(-~Yfus-iCo(u)du,

Note that in Theorem 2.16, we have

e e/_1(0). (2.123)

Also it is obvious that λ0, λι extend into meromorphic functions on C, which
are holomorphic at 5 = 0.
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Theorem 2.26. There is βeP such that as ίjjO,

t)9 (2.124)

and o(t) is uniform over compact sets in B.

Proof Using (2.98) and (2.123), we have

J

(1125)

• Expansion as ίJ,J,0 of Trs[iVuίexp — ( ^ ) 2 ]

We claim that for w>0, as ίjJO, we have the asymptotic expansion

(2.126)

and O(wί) is uniform as u is bounded.
Equivalently, we must prove that as z/jJ,O,

Tr^JV.-exp-

One verifies easily that as i/jJA

] . (2.127)

One is thus led to study the behavior as w'J,J,0 of

Observe that [_N'V u,,v~] = [Nv u>,v*^=0. It is then not difficult to adapt the
methods of [BGS 1, Theorem 1.12] and of Theorem 2.13, in order to obtain a
formula for

in which ]/uV plays only the role of a "parameter."
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We find that

dada \

LTrs[exp-

(2.128)

Using (2.128), we can proceed as in Theorem 2.16 and obtain (2.126).
Note that quite naturally, C'-^O) does not appear in (2.126).

• Uniform estimates as u] + oo. We claim that for any compact set K in B, there
are constants cκ>0, μκ>0 such that for any w^l, t>0, yeK

ί |Tr s[iVM ίexp-μL) 2] |^^exp(-μ^). (2.129)

First note that the factor t on the left-hand side of (2.129) kills the divergence of
T r

s [^ M ί e x P-(^L) 2 ] a s ίU° A result similar to (2.129) was proved in [B2,
Theorem 1.3]. The proof of [B 2, Theorem 1.3] uses essentially the fact that V is
invertible, and can be easily adapted in our situation.

Also if OJuή is taken as in (2.126), for w^l, we find that \OJut)\^Cut.
Therefore, for t > 0,

iOJίuή-
0 U

^Ct, (2.130)

and so using (2.126), we get

1

J \ >> •- Ml X \ M/ -I , 0\ / I

o V ut ) u

κt) 0 \ M / M 0 I

(2.131)

Using (2.126), (2.129) and the dominated convergence Theorem, we find that, as

From (2.125), (2.131) and (2.132), we get

(2.133)
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or equivalently

l'Et(0)= (~^J +°(\) ( 2 1 3 4 )

Also for ί>0, Trs[iVuίexp — (A[)2^ decays exponentially as u] + co and this
uniformly as t stays bounded away from 0. From (2.125) we deduce that

&f(0))=-ί(|-
6 \dt

- j - ( ί T r s [ i V u r e x p - K ) 2 ] 2 ~ + Γ ( l ) C 0 ( 0 ) . (2.135)

Using (2.128) and proceeding as in Theorem 2.16, we find that as ίjjO,

— I (ί Trs[iVuί exp — (^) 2]) has an asymptotic expansion, which is given by

( — 1 (t TτSNut exp - (^L)2]) = C0(u) + Ou(ut). (2.136)
\dtj

On the other hand, by using formula (2.129), and by proceeding as in the proof
of [B 2, Theorem 3.1], we find that for any compact set K in B, there are constants
c'κ>0 and μ'κ>0 such that for any u^l, t>0, ysK, then

(2.137)

Using (2.135)—(2.137) and the dominated convergence theorem, we find that as

d\ ~ ! ~ ~ du +co ~ du ~
(tζ'E t(0)) = - f (C0(u) - Co(0)) f C 0 (M) — + Γ ( l ) C 0 ( 0 ) + o(l) ,

ϋί/ 0 M l W

(2.138)
or equivalently

(2.139)

More generally, by calculating one term more in the asymptotic expansion of

— I (tζΈ ί(0)) ~ t n i s i s possible by the uniform bounds in [B 2, Theorem 1.3] - we
dtj

find that there exists βeP such that

) = λ'o(0) + 2)5ί + o(ί). (2.140)

Integrating (2.140) and using (2.134), we find that (2.124) holds. The theorem is
proved. •

We now complete the proof of Theorem 2.21. By proceeding as in
Theorem 2.11, 2.16, and 2.26, we find easily that as ί | |0, αJ(O) and #(0) have
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asymptotic expansions similar to the expansion (2.124) for lEft(0), and that
moreover, the operators dB and ίF can be applied to these expansions. Using
Theorem 2.23, we find that there are differential forms η_2, η_ί in F, and also
smooth differential forms κrκ't on B such that

ίZE,M r i z l + η z l + d κ t + 3 κ t 9 (2.141)
01 t2 t

and moreover, κ't and K" depend continuously on t together with their derivatives,
and have a limit together with their derivatives as ί JiO

Integrating (2.141) and comparing with (2.124), if we identify the constant terms
in the asymptotic expansion of X'E>f(0), we find that

λ'o(0)-ϊ'E(0)eF. (2.142)

Using [BGS 1, Theorems 1.15 and 1.17], we find easily that for any u>0,

C0(u)= Qri

Proceeding as in [BGS 1, Eq. (1.72)], we get

4,(0) - (J^j I Td( - Rz)ζ'ξ(0) e F. (2.143)

The theorem is proved. •

Remark 2.27. A by-product of the proof of Theorem 2.21 is that the logarithmic
singularity which should appear when integrating the right-hand side of (2.107)

vanishes identically. Also observe that when integrating the coefficient of-y in the

1 ^
right-hand side of (2.107), we obtain the coefficient of- in the expansion of X'EJO).

The fact that this coefficient coincides with X_ 1(0) can be verified directly.
In a preliminary version of this paper, we gave a proof of Theorem 2.21 based

on a slightly different principle.

Remark 2.28. In Gillet-Soule [GS 1, 2], a group K0(X) was introduced, whose
generators are triples (£, h, η\ where £ is a holomorphic vector bundle on the

p
complex manifold X9ha smooth Hermitian metric on E, and η a class in •—. These

are submitted to the relation

(E, h, η' + η") = (S, ft', η') + (β, h\ η») + (0,0, cϋ(ίf)) (2.144)

for every exact sequence ^:0->S-*£-><2->0, and choice of metrics h\ h, h" on S, E,
P ~ P

Q, and forms η\η" e — . Here ch(^) is the element of — defined in [BGS 1, Eqs.
(1.124)]. P

Let Ybe a Kahler manifold and f:Xx Y-+X the first projection. In [GS 1], a
direct image morphism β: K0(X x 7)->K0(X) was introduced using a notion of
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higher analytic torsion similar to l'E(0). If ξ = (ξj)0^j^m *s a n acyclic complex of
holomorphic Hermitian bundles on X xY, the following relation holds in
K0(XxY\

(2.145)

Theorem 2.21 means that this relation is respected by fv The same will hold for
an arbitrary smooth projective map π:M->B.

Acknowledgements. The authors are indebted to Professors J.-B. Bost, J. P. Demailly, N. J. Hitchin,
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