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Local Behavior of Solutions of Some Elliptic Equations
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Abstract. We study the local behavior of solutions of some nonlinear elliptic
equations. These equations are of interest in differential geometry and math-
ematical physics.

1. Introduction

Here we shall describe the local behavior of singular positive solutions of certain
elliptic equations. Theorem A generalizes in an important manner one of our main
results and indeed answers an open problem posed in [A]. There, corresponding
upper and lower bounds for the singularities of the solution were given. To obtain
Theorem A of this article considerably more arguments are needed.

We point out that when n = 3, Eq. (1.1) below seems to be relevant in Yang-
Mills-Higgs theory. See L. Sibner and R. Sibner [S-S]. We also remark that
equations of type (1.1) seem to be relevant to astrophysics, a fact pointed out to the
author by J. Serrin, (see [C,F,H]).

Our result reads as follows. Let B = {xeUn:\x\ < l,n^.3}. Then

Theorem A. Let ueC2(B\{0}) be a non-negative solution of

Δu + \x\σu{n + σ)l{n'2) = 0 in B\{0}, (1.1)

where — 2 < σ < 2. Then u has either a removable singularity at {0} or

exists and

(The existence of singular solutions was shown in [A]).
It is interesting to observe that a similar result holds for solutions of equations of

the "opposite" sign of (1.1), that is
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in {xe(R":|x| > 1}. Indeed Veron [V] proved

|x|->oo

exists and / is either ±((n - 2)/v/2)""2 or 0; / = ((n - 2)/ v

/2)"- 2 if w > 0.
Next, we would like to say a few words about the proof of Theorem A. In Gidas-

Spruck [G-S] the strategy of the proof of the corresponding statement of singular
solution of

= 09 in (1.3)

was based on the important fact that there is only one non-trivial solution of

Δu + uq = 0 in Un\{0}.

However, there are no non-trivial solutions of (1.1) in IRw\{0}. This makes the
situation very different. The strategy of our proof is to compute the Laplacian
of v(x) = \x\n~2(—\n\x\){n~2)/2u. Then by means of the change of variable
t=—ln\x\ we transform that equation in a time dependent equation. The
transformation into a time dependent equation was also done in [V]. But contrary
to [V], we then use energy methods to prove that

l im I x Γ " 2( - In I x I ) ( Λ " 2 ) / 2w(x) = /,
M-0

exists and

- 2 - 2

It should be noticed that the method of using time dependent equations in the
spirit used here has also been used by L. Simon [S]. For parabolic singularities some
related ideas have been applied by Y. Giga and R. Kohn [G-K].

The proof of (1.2) is the main point of our theorem. Roughly it can be described as
follows. We introduce polar coordinates (|x|,ω) in [R"\{0} and

t= - l n | x | . (1.4)

Because of (1.8) v ^ c, and furthermore satisfies

) ^ ( ^ ) ^ , (1.5)

The point is to prove that

00 00

J J v2dωdt<oo; J J \Vωv\2dωdt < oo,
ίθ sn - 1 ίo S" ~ !

and lim J vfdω = 0, ί0 > 0 a constant. The multiplication of (1.5) by v and the
t-+ + oo 5"-1
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integration over (£0, oo) yields

tosn-l t
< oo. (1.6)

So if v admits positive a limit it should be ((n — 2)/yjl)n 2.

The best strategy to prove the existence of limit is by showing that

(v(t) = l/ωn _ 1 J v(t, ω)dω) decays sufficiently fast and by then showing that v(ή has
s"~ι

a limit as t-> oo.
In Sect. 3 we shall give an extension of Theorem A for non-positive solutions. In

Sect. 4 we shall give a new simple proof of the Harnack inequality for non-negative
solutions of (1.1). This was previously proved in the paper of Gidas and Spruck
[G-S]. But their proof is not easy to follow.

We also mention that radial solutions of A u + uq = 0 have been studied by
Fowler [F] and Hopf [H]. Ni and Serrin [N-S] have informed us of work in
preparation in which they study singular radial solutions for some general classes of
equations.

Finally, we shall explicitly recall the known results about (1.1) and (1.3). In
[G-S], Theorem 3.3, and in [A], Theorem 1, it was proved that if u ̂  0 is a solu-
tion of (1.3) or (1.1), then either u has a removable singularity at the origin or in
case u satisfies (1.3)

u(x)<C\xΓ2/{q-1\ (1.7)

and

limsup x\2/iq-1)u{x)^C~\ (1.7)1

or in case u satisfies (1.1)

φ ) ^ C | x | 2 - " ( - l n | x | ) ( 2 - " ) / 2 (1.8)

and

C > 0 a constant. As a matter of fact in [G-S] as well as in [A] the reverse inequality
of (1.7) and (1.8) was claimed. However, in both cases there is an assertion which
seems to require further explanation. The precise statement is given in Sect. 5. This
statement is either an immediate consequence of Theorem C given in Sect. 5 or in
case of solution of (1.1) follows at once from the much more delicate result in
Theorem A of this paper.
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2. Proof of Theorem A

We begin by considering the average

ΰ(r) = ί u(r, ω)dω, 0 < r < 1,

where ωπ_ x is the volume of the sphere Sn~ *. From now on we shall assume that in
Eq. (1.1), σ = 0. The cases σ Φ 0, — 2 < σ < 2 are treated in exactly the same manner.
Taking the average in (1.1) we obtain

ΰ" + ̂ — U ' + ΰn/(""2) ^ 0,0 < r ̂  1.
r

We show the following

Lemma 1. Any non-negative solution of (1.1) satisfies

n-2\n'2
, 0 < r < r o , (2.1)

for some r0 > 0.

Proof. Define Λ(s) = ϋ(s-1/("-2)). Then

(n — 2)2

Let B(r) = vA(r~ι) with r closes to zero. Then B satisfies

1 1

(n - 2)2 r2

It follows from [A] p. 778 that B is non-decreasing and B(0) = 0. These facts imply
that

,/!/(«-2)

(See proof of Lemma 1 of [A].) By considering C(p) = B(λp), 0 < λ < 1, we may
suppose that the above relation holds for 0 < p ^ 1. Integrating from p to 1 we obtain

2/(»-2)-|>_^1n

z (n — 2)2

Hence

Since 5(1)^ Owe get

2
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So

<«-2)/2 (n-2)("~2)

The definition of B(p) yields

ίn-2

Setting p = rn~2 we obtain Lemma 1.

Lemma 2. For any γe(0,1], there exists Cγ>0 such that

for t ^ ί0.

Proo/ We follow Veron [V]. Set

ί = - l n | x | , φ{t,θ) = \x\n

then

φ(t,θ)^Cti2-n)l2, (2.3)

and φ satisfies

φtt + (n - 2)0, + zlωφ + 0»/<»" 2> = 0. (2.4)

We consider the average of φ, φ(t). We recall the Poincare inequality

f (φ - (?Mω((/> - ^)dω ^ (1 - n) J Iφ - φ\2dω. (2.5)
sn-l sn-l

We now subtract from (2.4) the corresponding equation for φ9 then we multiply that
equation by (φ — φ) and we use Holder inequality and the inequality

to get from (2.3) and (2.5) that

\-φ t*t09 (2.6)

where X(t)= \\φ(t9-) — φ(t)\\2^-^ and Cx > 0 is a constant. The homogeneous
associated equation to (2.6)

yw + ( » - 2 ) y t - ( B - i ) y = o , (2.7)

admits the two linearly independent solutions

I = exp((l - n)ί)

,y2(ί) = exp(t)
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A particular solution of

is given by

As X(t)^Ct2~n, basic comparison principles implies X(ή^C2Y1(ή + Yp(t) for t
large, where C 2 > 0 is a constant. This is because Yp{t) ̂  C3t~

n for t large, C 3 > 0 a
constant. Hence (2.2) follows.

Lemma 3. v,vnvtt and \Vωv\ are uniformly bounded.

Proof. From Lemma 1 and the Harnack inequality cf. [G-S] Theorem 3.1 (or see
Appendix I of this paper) we get

u(x)=c—^r—'
from which it follows that v is bounded. It is now standard from well known elliptic
estimates to have that vt9vtt and |Vωι>| are uniformly bounded.

Lemma 4. (i) $%$s

n-wfdωdt < oo, (ϋ) \?Q\sn-ι\Vωυ\2dωdt < oo and (iii) fa-ivfdω
= 0.

Proof. Equation (1.5) implies after a multiplication by υt:

\ J (vf)tdω + (n-2) f Λ - i V d ω - I J \Vωv\fdω

= 7 ί ( ^ ( A - I ^ C ^ - 1 - - - ) , ) ^ - ^ , - J W*. (2.10)

Lemma 3 and integration by parts on (ί0, oo) yields (i).
We prove (ii). We multiply (1.5) by v - ϋ to get

J j \Vωv\2dωdt=\ J υtt{υ-ϋ)dωdt + {n-2)\ J (1 - Γ xMυ- v)dωdt

+ } ί t-ιυnl{n-2\υ-v)dωdt
toS

n~λ

— i(n — 2)2J J t-ιv{υ-ϋ)dωdt
toSn~l

+ (n-2)-J J Γ2v(v-v)dωdt.
4tosn-l

It follows from (i) and Lemma 2 that

T T

J J \Vωv\2dωdt<\ J υtt{v - ϋ)dωdt + C
t0 s» - i ί o s« - 1
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with C > 0 a constant independent of T. We next observe that

T T i T /

$vtt(υ - ϋ)dt = vt(v - ϋ)\J0 - \v2dt + \υt[ J vtdω )dt.
to ίo v^n -1 to Ks"'1

Hence by Fubini's theorem and Holder inequality we obtain

183

J J ^ ( ^ ~" v)dωdt

with C > 0 a constant independent of Γ. Therefore we obtain (ii).
We show (iii). Let

g(t)= J vfdω.
sn-l

Since υtυtt is uniformly bounded we get that

g(t) = 2 J vtvttdωf

sn-l

is uniformly bounded. If g(t)-ftθ as ί-> oo, then given ε > 0 there exists a sequence
ί( -> oo so that g(tι) > 2ε. Let M be chosen so that \g(t)\ ̂  M. Therefore if \t — tj\ <
fi/M, then

tj

\g{s)ds
t

Let now {tj} be a subsequence of {tj} satisfying t'j+1 > ή + ε/M, ίr

0 > ί0. Since

we obtain

f g(t)dt>-— N-+co as
M

contradicting (i).

Lemma 5. v(t) admits a limit as ί—• oo.

/. From Lemma 3 and Arzela-Ascoli's theorem for any sequence {tn} -* oo
there exists a sequence {ίΠk} and /(ω) such that v(tnk,ω)^l(ω) uniformly on 5"" 1 .
Hence v(t ) -• / and l(ω) = I from Lemma 2. Assume now

/= lim v(tnk,ω\ ΐ= lim φ Π k ,ω).

Since Lemma 1 implies

we have

( n - 2 ) 2

(2.11)

- — t;
4ί2

- 2) — ^fiCfi - 2) )
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Hence from (2.11) we have

, ^ l ( z 7 ^ w - 2 > - ^ T ^ 3 ^ ) - ( Π

 2

2 ) n i;. (2.12)

But

-H/(H-2) pfi/(«-2)= Γ ftfi/(n-2) _vn/(n-2

So from Lemma 2 we have

Q'
\ S II V - ^IILV-1) ύ —

To this end we observe that by taking subsequences we may suppose that tnk > snk.
Since from (iii) in Lemma 4 we have vt -• 0 as t -» oo, and since the right-hand side of
(2.12) is integrable in (t0, oo), we conclude by integrating the above relation from snk

to tnk and letting nk -> oo that

In the same way / ̂  Γ and v(t, •) -> / uniformly on 5W~1.
ί-> + oo

Proof of Theorem A. It is consequence of (1.6) in the introduction and Lemma 2 of
[A]. See also Lemma 3.3 of this article.

Remark. It is clear that the proof above can be easily modified to get the results
stated in the introduction for

Au + \x\σu(n + σ)/in-2) = 0, - 2 < σ < 2, σ Φ 0.

3. A Suitable Theorem A for Nonpositive Solutions

In this section we shall consider non-positive solutions of (1.1), more precisely of

Δu + u\u\2/{n-2) = 0 in B = {x:0<\x\<l}. (3.1)

For such solution no estimate of the form

\u(x)\SC\x\i2-n)(-ln\x\Y2-n)/2, (3.2)

is known, but we shall assume (3.2) is satisfied for some C > 0. Then as in [V] (for the
equation of the opposite sign) we obtain.

Theorem B. IfueC2(B\{0}) satisfies (3.1) and (3.2) then

exists and 1= ±((n — 2)/λ/2)("~2) or 0. If 1 = 0 then the singularity is removable.
Because of the inequality

\v\vr1 -ϋ^-
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we get

v\v r
1

f v\vΓ1dω\SC\\v\\l«1(\v-

(see [V] p. 35). Hence using the notations of Lemma 2 we get with the help of (3.2) the
differential inequality

Xtt(t) + (n- 2)Xt(t) -(n-1- ε)X(ή ^ 0,

for t large enough, ε > 0 arbitrarily small. As in Lemma 2 this implies: For any
ye(0, n — 1) there exists Cy > 0 such that

||υ{u•) - v(t)\\L2{Sn-i} ̂  Cyexp(-yί), (3.3)

for ί ^ ί o

Next we multiply (1.5) by v — v to obtain

J \Vωυ\2dω= J B{t,ω)(v-v)dωdt, (3.4)
sn-l sn-l

where B(t,ω) is bounded. Hence it follows from (3.3) that fs»-i|Vωι;|2dω is
exponentially decaying.

Since Lemma 1 does not remain valid we replace it as follows.

Lemma 3.1. The energy associated to Eq. (1.5)

E{t) = \t J vfdω-l-t J ^ \
Z « l Z

rs" J I τ ω v I w w ' /%/ -|\ J I " I
£ nd — 1 ^ ^ f ί 1 I ς« — 1

4 «-1 8 ) - \ V '

/zαs the following properties

(a) — — < 0 /or t>t0,

(b) lim £(ί) = L > - oo exists.

Proof To see the first part we multiply (1.5) by tvt and we integrate over S"'1 to
obtain

— = - J* vfdω — (n — 2) j (t—l)υfdω— J \Vωv\2dω — (n — 2)- j t~2v2dω,

Hence (dE/dt) < 0 and therefore lim E(t) exists, (b) follows from (3.4).
t->oo

On the other hand from (3.2) we get that Lemma 3 remains valid and therefore
the limit set of {υ(t, •)} is not empty and all its elements are constant. The main point
is now to prove

Lemma 3.2.
lim t J v2dω = 0.

t - + o o s n l
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Such a relation implies that

But the set of leU such that

2(n-l)K I 4 ' L / ω --i '

is discrete (0.2.3, 4 elements). It follows from (1.6), that Theorem B holds.

Proof of Lemma 3.2. From Lemma 3.1 we get that ^tjsn-iv2dωdt < oo. We now
differentiate (1.5) to get

wtt + (n - 2)(1 - Γ > r + (n - 2)ί"2w + zlωw

)2Γ2υ- ^(n - 2)2Γ2υ + (n - 2)-ί" 3y - (n - 2 ) - r 2w, (3.5)

with w = vt. Proceeding as above (see (3.4)) we get that Js«-i| Wωvt\
2dω is exponenti-

ally decaying. Next, we multiply the Eq. (3.5) by tυtt = ίwf and we integrate over Sn ~x

to get the relation

±t

j wfdω — - j |Vωw|2dω, (3.6)

where J(t) is the natural energy associated to Eq. (3.5):

wfdω-^t j |Vωw|2dω+ J ]r1v\v\2lin-2)wtdtdω

O M 00

- 2 ) - J $Γ2vwtdtdω

00

J J *

Now since (dJ/dή^O and J s " " 1 ! ^ ^ ! 2 ^ 6 0 i s exponentially decaying it follows

lim J(t) = ̂ lim ί J wfdω = C < oo exists.

So integrating (3.6) over (ί0, oo) we obtain

J J tv2dωdt<oo. (3.7)
tos"'1
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We conclude the proof of the lemma.

—t j vfdω= j vfdω + 2t j υtvttdω.
ttt ςU- 1 ςtl - 1 «̂ - 1

Let {tk}, {sk} be two sequences such that ίΛ,sk-> oo. Integrating from tk so sk. We
obtain

00 00 00

tk J vfdω~sk J vfdω ^ | J v?dωdt+§ J tvfdωdt + J J tv?tdωdt,
s π-i s π-i Iks"'1 Iks"'1 ^ S " " 1

where /fe = min(ίfe, sk). It follows that lim t J ί fdω exists. But since tυf is integrable
t -* oo 5" ~ 1

we obtain the claim.

We finish the proof by proving

Lemma 3.3. If 1 = 0, then the singularity is removable.

Proof. We follow [A] Lemma 2 pp. 778-779. Let

f(x) = (— In Ix|2)~sw(x), s > 0.

Then / satisfies

Σ
f = l

x. = f(x)\ 4s(s — 1) τ

with fti(x)=-4s(-ln|x|2)-1(x,/|x|2). So if in Theorem B / = 0, then Δ\f\ +
n

I/L. ^ 0> n e a r t n e origin, and
ι = l

We then consider the comparison function

« ( —ln |x | ) 2 s

Hence since A φ + Σ bi(x)ψx. = 0, ^(x) ̂  C — 2 — C > 0 a constant we conclude
i = l ' \X\

that if M = max |/(x)|, r 0 small, then for every ε > 0 there exists r(ε) < r < ro(r(ε) -• 0
W=» o

as ε->0) such that /(x)ge^(|x|) + M when r (ε)^ |x |^ r 0 . Therefore, |/(x)| is
bounded and as in the proof of Lemma 2 in [1] the singularity must be removable.

4. Appendix I

In this appendix we shall give a simple proof of the Harnack inequality for positive
solution of (1.1).

To obtain the upper estimate for singular solutions of (1.1), that is, estimate (1.8),
we used the Harnack inequality (see Lemma 1 of [A]). This inequality is a
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consequence of Theorem 3.1 in [G-S]. However, their proof is rather complicated.
We begin by recalling the well known fact

Lemma 4.1. There are no non-negative C00 solutions of (1.1) in Un\K, where K c Un is
a compact set of Un.

Proof We assume OeK and K ^{xeUn:\x\<l}. We then consider the average of
w, w, center at the origin. By averaging (1.1) we get (assuming σ = 0)

ΰ + (n _ γpL + fjniin-2) ^ o,r > 1.
r

Next, we make the following changes of variables

v(r) = ΰ(r~ 1 / ( "~ 2 ) ) , r ^ l , f(r) = rv(r~1\ r ^ l .

We obtain the differential inequality

1 /•«/(«-2)

Therefore / r r ^ 0 and because / ^ 0 we obtain that / r ^ 0. Hence

i ftι/(n~2)( \ 1 fn/(n-2)( \

: ^ ' w ( π - 2 ) 2 r0 '(n-2)2 r
(4.1)

If there is r0 ^ 1 so that

fr(r0) — —j — < 0. (4.2)

Then by letting r -> oo in (4.1) we conclude that fr(r) < 0, for r sufficiently large. This
is a contradiction. So, since (4.2) never holds we have

Hence, by integrating from 1 to r we obtain

Since as r -> oo, f(r)^C ^ oo, we get a contradiction.

Lemma 4.2. // w ̂  0eC°°(ί2) w α so/wίwn of (1.1) in Ω. Then

where Ω czcί2 and C(Ω,n)>0 is a constant depending only on Ω and n but
independent of u.

Proof. This lemma follows at once from Lemma 4.1, (see [G-S, II], pp. 887-890).
Indeed suppose there is a sequence of C00 solutions, say ut ̂  0, and a sequence of
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points Pi^p,Pi,peclosme {&) such that M f = ut(p^-*co as i-+ oo. We consider

where we have assumed that B^p^aΩ and where λt->0 is defined by
λ1~2ui(pi)=l. If Pi->peΩ and Bί/2(p)czΩ, then standard elliptic estimates and a
diagonalization procedure imply we can find υ and a subsequence i -• oo such that

Vi-+v in C2(IR"),

Δv + υn/(n-2) = 0 in R", ι (O) = 1.

But this contradicts Lemma 4ΛΛfpedii then we argue as in [G-S, II] p. 892. This
completes the proof of this lemma.

Lemma 4.3. Let w^O, eC°°(£\{0}) be a solution of (1.1) in £\{0}, where
B = {xeUn:\x\<l}. Then

!φc)^ |x | 2 - π , M^l/2, (4.3)

sup u{x)<,C inf φ ) , (4.4)
xeB(x,\x\β) xeB(x,|x|/2)

where \x\ < 1/2 and C > 0 is a constant independent of u and x;

sup u(x)^C inf φ ) , (4.5)

where C>0, 0 < θ < ^ , ε o > 0 and small, are constants independent of u.

Proof We prove (4.3). Let x 0 ^ 0 , |x o | ^ | . We consider

By Lemma 4.2 w(x)^C if \x\^h In particular |xo |"~2tι(xo) = w(0)^ C. This
proves (4.3).

Equations (4.4) and (4.5) follow from (4.3) by using standard arguments. Indeed
we write (1.1) as Δu + u2l(n~2)u = 0. Equation (4.3) implies that we can apply
standard results for linear equation to conclude (4.4) and (4.5). We refer to the proof
of Theorem 3.1 of Gidas and Spruck [G-S] for further details.

5. Appendix II.

In this appendix we shall give a new proof of a theorem of Gidas and Spruck.
In [G-S], Gidas and Spruck studied positive singular solutions of

, o m
where B is the unit ball in Un, n ;> 3.

In Theorem 3.3 of [G-S] where they claimed the estimate

2/iq-1\ (5.1)

C > 0 a constant, the statement:
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"If lim inf \x\2l{q~l)u{x) = 0, then the Harnack inequality implies that
JC->0

seems to require more explanation. The same statement was made later in [A].
However, as we shall see below, one can modify their proof of the theorem stated

below in such a way that one only need to use

u(x)SC/\x\2(q~1\ (5.2)

Using (5.2) we prove

Theorem B. (Gidas-Spruck). Let ueC2(B\{0}\ u ^ 0 be a solution of

Δu + \x\σuq = 0 in £\{0}, (5.3)

where

Λ (n + σ) (n + 2) ^

(n - 2) (n - 2)

and qΦ(n + 2 + 2σ)/(n — 2). Then u has either a removable singularity at {0} or

\{2 + σ)l{q-1)u{x) = C o , (5.4)

where

σ)(n-2)

Clearly (5.4) is a stronger statement than (5.1).

Proof. If u is a solution of (5.3), then it follows from the work of Gidas and Spruck
that

u(x)SC/\x\i2+σ)/(q~1) (5.5)

with x closes to the origin and C > 0 a constant. Then we consider

t= - l

r = \x\, ωeSn~\ teU.

Because of (5.5) v is bounded and moreover we have

υtt + avt + Acov-Cq

0~
1v + vq

with

r _
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Repeating the proof of their Theorem 1.4 (it should be observed that here one only
need the fact that v is bounded) we conclude that for each sequence {tk}9 tk -» oo, there
exists a subsequence tk such that

v(tk, ω) -+ ί (ω) as tf

k->co9

and where v(ω) satisfies

Δωv-Co

iq'1)υ + vq = 0 on S""1. (5.6)

It is shown in Appendix B of Gidas and Spruck [G-S] that the only solutions of (5.6)
are v = 0 or v = C o . Hence because the limit set of a smooth function is connected

v(t,ω)-+C0 or ι;(ί,ω)->0 as ί-»oo,

(observe that when q = n/(n — 2), then we do not know a priori that the limit set of υ is
a discrete set). If the latter occurs, it follows that

\im\x\(2+σ)/(q-1)u(x) = 0. (5.7)

Then we define the auxiliary function

v(x) = \x\su(xl s>0.

By computing the Laplacian of this function and then by using maximum principle,
exactly as in the proof of Theorem 2 of [A] pp. 785-786 we conclude that if (5.7)
occurs then the singularity is removable.
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