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Abstract. We discuss the action of diffeomorphisms on spinors on an oriented
manifold M. To do this, we first describe the action of the diffeomorphism
group D(M) on the set Π = H1(M, Z2) of inequivalent spin structures and show
that it is affme. We argue that in the presence of spinors the gauge group of
gravity is a certain double cover of D(M) which depends on the spin structure.
We explicitly compute the action of D(M) on Π when M is a closed Riemann
surface; Π is seen to consist of exactly two orbits, corresponding to even and
odd spin structures.

1. Introduction

It is often said that spinor fields transform as scalars under diffeomorphisms and as
"spinors" under local rotations of the orthonormal frames. While this statement is
true at the level of local components, it does not specify the transformation
behaviour of the spinors regarded as intrinsic geometric objects. Therefore, in
handling global geometric properties of the spinors, anomalies and similar
problems, it is convenient to have a coordinate-free description of the action of the
diffeomorphism group. This is more complicated than the action of the dif-
feomorphism group on tensors, for the following reason. The tensorfields on a
manifold form an infinite dimensional linear space and diffeomorphisms transform
this linear space into itself. On the other hand, the definition of spinorfields on a
manifold M requires a previous specification of a metric tensor; for each metric
tensor there is a distinct space of spinorfields. There is no natural way of identifying
these spaces. Therefore, the configuration space of coupled spinors and metric
tensors is not the cartesian product of the separate configuration spaces but rather
an infinite dimensional vectorbundle ifr* over the configuration space of the metric
tensors. The fiber of this bundle over a particular metric tensor g is precisely the
space of spinors for g. Since diffeomorphisms transform the metric tensor by
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f:g-+f*g, the linear space of spinors over g will be transformed into the linear
space of spinors over f*g. Therefore, each / will define a vectorbundle morphism
of ifr which covers the action of / on metrics.

Additional complications arise when M is multiply connected: for each metric
tensor there are inequivalent spin structures, and we have to keep track of the way
in which diffeomorphisms which are not connected to the identity permute the spin
structures.

We denote D(M) the group of orientation preserving diffeomorphisms of M
and D0(M) the normal subgroup of diffeomorphisms which are homotopic to the
identity. The quotient Ω(M) = D(M)/D0(M) is the group of connected components
of D(M). Given a spin structure α, we will denote D(M, α) the subgroup of D(M)
consisting of diffeomorphisms which preserve α. Since D0(M) C D(M, oc) for all α, we
can define ί2(M, α) = D(M, α)/D0(M).

In Sect. 2 we discuss the transformation of spinors for the spin structure α
under diffeomorphisms /eD(M,α). In the case of isometries this has been
discussed in [1,2]. Our general framework for spin structures is that of [3-6], but
in order to make the discussion as independent of the metric as possible, we prefer
to talk about prolongations of the bundle of linear frames to the double cover of
the linear group.

In Sect. 3 we generalize the transformation rule to arbitrary feD(M).
Although the notion of transformation of spin structure is fairly natural, to the best
of our knowledge it has not been defined precisely anywhere in print. We prove
that the action of a diffeomorphism on the set of inequivalent spin structures is
given by an affme transformation. We also observe that the action of D(M) on
spinorfϊelds yields in general only a projective representation. If the diffeomor-
phism group is thought of as the gauge group of pure gravity, then this observation
shows that in the presence of spinors the gauge group, in general, has to be
extended to a double cover which depends on the spin structure. In Sect. 4 we study
the special case of compact oriented two dimensional manifolds without
boundary. This is directly relevant to the study of spinning strings and superstrings
[7,8]. Using only elementary methods from fiber bundle theory, we determine the
action of Ω(M) on the set of spin structures. We show that this action has two
orbits, consisting of even and odd spin structures. We also determine the double
cover of D(M, α) for any genus and any spin structure.

Throughout this paper we work in the category of real smooth manifolds. We
will not be concerned with the functional analytic properties of the diffeomor-
phism group.

2. The Action of Spin Structure Preserving Diffeomorphisms

Let M be an n-dimensional oriented manifold and let F be the bundle of oriented
linear frames on M. It is a principal bundle with structure group GL+ (n). A
riemannian structure g is equivalent to a principal S0(n) subbundle Og C F, namely
the bundle of frames which are orthonormal with respect to g. For simplicity we
shall only consider the positive definite case from now on, but similar consider-
ations apply also to other signatures of the metric and also to nonorientable
manifolds.
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In order to define spinors for the metric g we first have to give a spin structure,
i.e. a principal Spin (n)-bundle Og over M together with a principal bundle
homomorphism ηg :0g-+0g over the identity of M [4]. A spinor field (of type T) is
a section of the vectorbundle associated to Og via the spinor representation T of
Spίn(n) in the linear space V, or, equivalently [9], a Γ-equivariant map from Og

to V. Typically, T comes from a representation of the Clifford algebra of Rn.
In order to avoid having to define a spin structure independently for each g, we

make use of the following construction. Let ρ : GL+(n)->GL+(n) be the (unique)
nontrivial double cover (universal for n^3). The kernel of ρ is isomorphic to Z2

and is contained in the center of GL+(n). The inverse image of S0(n) under ρ is
precisely Spin (n). Let (F, η) be a prolongation of F to GL+(n), i.e. F is a principal
GL+(n)-bundle over M and η\F-*F is a principal bundle morphism over the
identity of M (η is a double cover). Given a riemannian structure g, define
Og = η~ l(0g) and ηg = η\0g. It is clear that 6g C F is a principal Spin (n)-bundle and
ηg is a principal bundle morphism Og-*0g over the identity of M, so (0^, j^) is a
spin structure for g.

We have seen that if F admits a prolongation to GL+(n), then 0^ admits a
prolongation to Spin(n), for any 0. Conversely, if a spin structure (Og,ηg) exists
for some metric tensor 0, we can use the action of Spin (n) on GL+(n) to construct
the associated bundle F = 0gx Spin(n)'GL+(n) and we can define η:F-+F by
77 : \e, a] \-> [_ηg(e), ρ(fl)], where (£, α) ε 0^ x 6L+(n), and we canonically identify
F with OgxSO(n}GL+(n). (F,η) is a prolongation of F to GL+(n). Therefore,
the topological condition for the existence of the prolongation (F, η) is the same
as the condition for the existence of a spin structure, namely the vanishing of
the second Stiefel- Whitney class [3].

Two spin structures (Og, ηg) and (O'g, ηg) are said to be equivalent if there exists a
principal Spin(n)-bundle isomorphism βg :0g-+0'g such that ηg ° βg = ηg. Similarly,
two prolongations (F, η) and (F', vf) are said to be equivalent if there exists a
principal GL+ (n)-bundle isomorphism β : F->F' such that η'°β = η.It can be seen
that if two GL+(n)-prolongations (F,η) and (F',f/0 are equivalent, the spin
structures (Og9 ηg) and (O'g, ηg) constructed as above are equivalent for each g.
Conversely, if two spin structures for a fixed metric g are equivalent, the
prolongations of F obtained by association as described above are also equivalent.
Therefore, the set of equivalence classes of prolongations of F, denoted Π, is in
bijective correspondence with the set Σg of equivalence classes of spin structures for
any riemannian metric g.

It is known [6] that the cohomology group Hl(M,Z2) acts freely and
transitively on Σg, and hence on Π. Therefore, Π is an afίϊne space for the
vectorspace H1(M,Z2). If (F,ή) is a prolongation of F and αe/ί1(M,Z2), then
acting by α on (F, η) we get another prolongation (Fx, η*) in the following way.
Choose a good cover {UA} on M and a bundle atlas for F with bundle charts
ΨA: UA

χ &L+(n)-*F\UA and transition functions φAB:UAnUB-+GL+(ri); also,
represent α by a Cech 1-cocycle uAB: UAr\UB-+Z2. Then F' is constructed a la
Steenrod [10] from transition functions

and η':ψA(x,ά)ϊ-+ψA(x,ρ(a)), where ψA are bundle charts for F such that
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If we pick up an arbitrary element of Π, represented by some prolongation
(F0, η0) and denote (Fα, ηj the prolongation obtained acting with α on (F0? η0),
then we have a bijection H1(M, Z2)->Π by αi—>(the equivalence class of (Fα, ̂ α)).

Now let /e D(M); / has a natural lift to an automorphism 2J of F. If we call
g'=f*g, then the automorphism Tf of F maps orthonormal frames for #' to
orthonormal frames for g, and therefore defines an isomorphism of principal S0(n)
bundles Og,-*Og over /, which we stilΓdenote Tf. Let us assume that the GL+(n)-
automorphism Tf of F lifts to a GL+(n)-automorphism Tf of F such that
f/ o ff= Tfo η. In this case we say that the diffeomorphism / does not change the
spin structure (this is certainly the case if/ is homotopic to the identity; we discuss
the general condition for the existence of the lift in the next section). Restricting ff
to 00'CF induces an isomorphism of the spin structures associated to g' and g
denoted again Tf: Og.->6g, such that ηg ° ¥f= Tfo ηg,.

The transformation law of a spinor field, regarded as an equivariant map
φ:Og-+V,isφ' = φ°ff.Iϊ the spinorfield is regarded as a section ψ of the associated
bundle _Sg = dgxSpin(n)V9 then φ' is a section of Sg, = 0g, x sPίn(n)V given by
\pf—Tf ^ o ψ o f , where Tf:Sg<-^Sg is the isomorphism defined by Tf[e9v]
= [ff(e),v]9 for eeOg , veV. We check that this action is consistent with the
statement that "spinors are scalars under diffeomorphisms." Let e be a local field of
orthonormal frames for g on an open set U C M, i.e. e is a section e: U-*Og> and let e
be a local field of spin frames for g on U9 i.e. eisa, section e: U-^Og and ηg o e = e.
The local representative of the spinor field on U is φ: 17-»F defined by φ(x)
= ̂ (e(x)). As before, e'=Tf~1°e°f is a local field of orthonormal frames for
g'=f*g on U/=f'1(U) and e ' = f f ~ ί o £o/ is a local field of spin frames for gx on
U' such that ηg,°e' = e'. We cannot give the components of the transformed
spinorfield in the old basis e, because e is not a spin frame for g'. The components of
the transformed spinor fields in the transformed spin frame is φ7: [/'->• V given by

3. Diffeomorphisms Which Change the Spin Structure

We now generalize the discussion of the previous section to diffeomorphisms
which change the spin structure. For each pair of prolongations (F, η) and (Fx, η")
and each /e D(M), we define a class K e H1(M, Z2) which gives the obstruction to
the lifting of Tf to an isomorphism Tf: FX->F such that

η°Ίf=Ίf°η'. (3.1)

Let {UA} be a good cover of M, and ψA be bundle charts for F with transition
functions φAB. There is a bundle atlas for F with bundle charts ιpA such that
η:ψA(x,a)\-+ψA(x,ρ(α)) and transition functions φAB~Q°ΦAB We construct
another bundle atlas for F: the new cover is {U'A} with U'A=f~1(UA), the new
bundle charts are ψA such that ψ^(/~1(x)5β)=7Γ~1v?^(^?α) and the new
transition functions are <p'AB(f~l(x)) = <PAB(x)- K ^s always possible to find a
bundle atlas {U'A9ψ'A} for Fx (not unique) such that
η':ψA(f~1(x),a)\-+ιpA(f~1(x),ρ(a)) for xeί/^; the transition functions of this
atlas are denoted φAB and they satisfy: ρ o φAB = φAB. We define a Cech 1-cochain
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on the cover UA by

^W = ̂ n(/"1W) ΨAB^Γ1 - (3.2)

It is easy to see that ρ o KAB = 1 , so KAB has values in Z2 C GL+(n) and is constant on
f/^n t/β. Furthermore, using the fact that Z2 is in the center of GL+(n\ we have for
xeUAπUBnUc, κBC(x)κAC(x)~1κAB(x) = l, and therefore KAB defines a Cech
cohomology class K e H1(M, Z2). If K = 0, there exist a 0-cochain Λ^ : ί7^-»Z2 such
that κAB = λBλA

l, and in this case we can define ff\F'-*F by
ff: ψA(f~ 1(x), α)h->ι/5^(x, ̂ (x)0). It can be seen that this definition is independent
of the trivialization and that η ° Tf — 7/Ό 77'. Conversely, if such a Tjf exists, then we
can define λA: UA-+GL+(n) by ff(φA(f~1(x\a) = ψA(x,a) λA(x); applying η to

> both sides, we find ρ<>λA = l9soλA has values in Z2. Comparing the definitions of
λA and λB on UAnUB and using the transition functions twice, we get φAβ(x)λB(x)
= (PΆB(f~1(x))λA(x)ϊΐom which it follows that κAB = λB λA'

i

9so κ = O.We have
thus proven

Proposition 1. Given feD(M) and two prolongations (F9η) and (F\η'} of F, the
automorphism Tf of F lifts to an isomorphism Tf: F'^F with η ° Ίf= Tf°η' if and
only if κ=0.

If K is nonzero, we can use it to pick a unique, up to equivalence, prolongation
(F", η") such that Tf lifts to an isomorphism ff: F"^F with η o Tf= Tfo η". The
bundle F" is constructed a la Steenrod [10] on the cover /" 1(UA) from transition
functions φ'AB f~1(UAnUB)-+GL+(n) defined by φ^C/"1^))
= κAB(x)~1φ/

AB(f~ί(xy) = φ^B(x). The homomorphism ^x/ : F"-+F is defined by ^/x

(ψ^(/~1(x),α) = φ^(/~1(x),ρ(α)). The obstruction class for the lifting of Tf to
Tf\F"-*F, defined by the cocycle φAB(f~ 1(x)) φ^fiCx)" 1, vanishes. We observe
that F" is the pullback of F by / and, denoting i : F"-*F the canonical map which
arises in the pullback construction, η"=Tf~1°ηoi. Therefore the prolongation
(F'\η"} can be regarded as the pullback by Tf of the prolongation (F,ή).

We define the action p(f) of a diffeomorphism / on the set Π of equivalence
classes of prolongations by assigning to the class [F, η] the unique class \_F\ η'~\ for
which there exists a lift Tf : F-»F with η o 7jΓ= Tfo η'. Since p(/ " x) o p ( f ) = /d and

a permutation of 77. Furthermore p(/ι°/2)
^at if/! is homotopic to /2, p(/ι) = p(/2).

Having fixed an origin in the set 17, we have a bijection between 77 and
Hί(M, Z2), and hence we can regard p(f) as a permutation of H1(M, Z2). As in the
previous section we denote (Fα5 ^ J a fixed representative in the equivalence class
corresponding to %eH1(M,Z2); given α, /J, and / let κf(β,a) denote the
obstruction class for the lifting of Tf to ff:Fβ^Fa. Notice in particular
fcId(M)(0,α)= — α. From (2.1) and (3.2) it is easy to see, that

ic/α + β, y + δ) = κf(*, y)-δ + (f-*)*β. (3.3)

The action of a diffeomorphism / on a Cech cohomology class ω is defined as
follows: if ω is represented by a cocycle ωAB on the covering {UA}, then f*ω is
represented by the cocycle (f*coAB) (f ~ 1(x)) = COAB(X) on the covering {/ ~ 1(UA)} .
If in the previous discussion we put (F, η) = (FΛ9 ηa), (F, tf) = (Fβ, ηβ), then it is clear
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that the prolongation (F'\η"\ which by definition is equivalent to (Fp(f)(Λ)^p(f)(a)\
is obtained from (Fβ, ηβ) by subtracting the pullback of the obstruction cocycle
κf(a, β)AB. Therefore, at the level of cohomology classes

From (3.3) and (3.4) it follows that

(X/))(α)=/*α-/*/c/0,0). (3.5)

We can summarize these results in

Proposition 2. The map /V-»X/) defines a homomorphism from Ω(M) to the group
of affine transformations of Π.

We can now give the transformation rule for spinors under arbitrary
diffeomorphisms. Let φ be a spinorfϊeld for the riemannian metric g and a spin
structure (Og,η%) with 0^cFα, i.e. φ is an equivariant map Oa

g-^V. Let / be a
diffeomorphism and βeH1(M,Z2) be such that Tf lifts to an isomorphism
Ίf:Fβ-*FΛ with ηa°ff=1f°ηβ i.e. j8 = p(/)(α). With g'=f*g we construct the
spinstructure ((?£, ηβ

g,)9 with Oβ

g,tFβ\ Tf restricts to an isomorphism 6p

g>-+0*. The
transformed spinorfield is a spinorfield for the pullback metric g' and the
transformed spin structure β, defined by φ' = φo Tf.

The lift Tf of a diffeomorphism / is not unique. Assume that there are two
isomorphisms u and u' from F' to F such that η°u = Tf°ηf and η°u'=Tf°η'. It
follows that u ' o w " 1 is an automorphism of F over the identity and
u'vu'1 °ψA(x9ά) = ψA(x9aλA), where λA is a constant map from UA to Z2. The
choice of λA in Z2 over UA determines λB for all other charts UB. Indeed, it follows
from the definition of λA and λB that λA = λB if l/yln(7βφ0. Therefore, there are
exactly two lifts of / and they differ by the automorphism y of F9 where γ is the
multiplication by the generator of Z2cGL+(n).

In general, it is not possible to choose consistently one lift Tf for all /e D(M),
i.e. the composition rule holds only up to Z2 = {IdF9 y}. For simplicity consider the
group D(M, α) preserving the spin structure α. In general, D(M, α) will only act
projectively on the spinors in the spin structure α. In order to have a group which
acts on spinors in the ordinary sense, we have to go to a double cover. Let D(M, α)
be the group of GL+(«)-automorphisms (M,/) of F such that ηΛ°u = Tf°ηQ[.
The homomorphism D(M,α)->D(M,α) defined by (u,f)-*f is a double cover
and the map (u,f):φ\-^φ' = φ°u is a true (not a projective) representation of
D(M, α) on spinorfields.

4. Spin Structures and Diffeomorphisms on Riemann Surfaces

We now apply our general formalism to the case when M is a compact connected
oriented 2-dimensional manifold without boundary, i.e. the real manifold
underlying a closed Riemann surface. Topologically, M is entirely characterized by
its genus g (number of handles). In most of this section we consider the case g^. 1.
We visualize the surface M as in Fig. 1.



Spinors and Diffeomorphisms 697
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The loops aA and ί>^ for A = 1,..., g generate the group H^M, Z) = (Z)2g. The Euler
characteristic of M is I = 2 — 20; the second Stiefel-Whitney class of M is the Euler
class mod2, so M admits spin structures. Since H1(M, Z2) = (Z2)

2ί7, there are 22^
inequivalent spin structures. In order to describe them, we start by introducing
coordinates (χA, XA), (&A, yA), and (ζA, ZA) in open neighbourhoods XA, ΎA, and ZA,
each with the topology of a cylinder, of the loops aA, bA9 and CA respectively. The
coordinates χA, 9A, and ζA are periodic with period 2π, and we take the
fundamental domain to be (— π, π] the coordinates XA, yA, and ZA run from — ε to ε
with ε sufficiently small. On the intersection regions, the coordinate transform-
ations are given by the following table:
_ V Λ V lA=~yA for -8<χA<ε (4

for -

on YAnZΛ

on
_ π n

i — 9 — # Λ

for

for

for f —

— π<ζA< — π + ε

π — ε < ζA < π (4.3)
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In the following we shall regard the loops aA, bA, and CA as the images of maps
S1 ->M, which we denote by the same symbols. In local coordinates — π < s < π on
S1 and on XA, YA, and ZA we have aA: s\-+(χA, XA) = (s, 0), bA: s\-+(8A, yA) = (s, 0),
and CA : s\-*(ζA, ZA) = (s, 0), respectively (see Fig. 2).
We now describe the bundle of frames F. It is sufficient to consider a cover of M
consisting of two open sets U and [/', where

A h
A=ί J \A=l

. Sf-1

7' = M \ ι

We fix the local trivializations of F by giving smooth fields of frames e = (el,e2) on
17 and βx = (βί,4) on U'. The open set U' is topologically a punctured torus; a
simple form for ef is

*'=(—>1ΓΓ-) o n *Λ> (4.4)

(4.5)

onZ^, (4.6)
π-2ε

\ \
on ZA . (4.7)

π-2s

Here Zj = {p e ZJz^ ̂  0}, K(s) is the matrix representing an 80(2} notation by the
angle s in the counterclockwise direction and λ is a smooth real function such that
(̂5) = 0 for s ̂  0 and λ(s) = π for s ̂  1. The region of U' where e' is not specified by

(4.4)-(4.7) consists of g disjoint disks; the precise form of e' on this region is
irrelevant for our purposes.

We choose the field of frames e on U as follows:

nXA, (4.8)

on 7,, (4.9)

onZ^. (4.10)
'.A'dzJ

The intersection UnU' is 17\(/U c Λ . The transition function φ = φUV'
\A /

-+GL+(2) defined by e' = eφ is H everywhere except on each ZA, where
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The rotation matrix on the right-hand side of (4.10) is important. In working with
spin structures it is convenient to have a bundle atlas for F whose transition
functions are of the form φAB = ρ ° φAB, where φAB are transition functions for F.
This implies in particular that for any loop t : S1 -> UAn UB the map φAB ° f has
even winding number. The rotation in (4.10) ensures that the function φ°t always
has even winding number [e.g. winding number two on t : s\-*(ζA, ZA) = (s, ε/2)].

The maximal compact subgroup S0(2) of GL+ (2) is isomorphic to 17(1), so F is
topologically characterized by its first Chern class. Since the transition function
(4.11) has winding number two on each of the g — 1 regions ZA, c^F) = 2(0 — 1).
The maximal compact subgroup Spίn(2) of GL+(2) is also isomorphic to [7(1) and
the covering homomorphism ρ can be written ρ:eί<x\-^e2ίa. Therefore, F is
topologically characterized by ci(F) = g — 1. This shows that we can use the same
principal bundle F to describe all prolongations. F can be trivialized on the open
cover {[7, [7'}. We call e and e' local sections of F over U and U' respectively; the
transition function φ — φuυ, : [7n U'-+GL+(2) defined by e'^eφ, satisfies ρ°φ = φ.
The inequivalent prolongations arise from inequivalent bundle homomorphisms
F->F, which we now describe.

For each ί = (il9...9ig)e(Z2^ and j = (j\, ...J,)e(Z2)* with Z2 = {0,1}, we
define the homomorphism ηtj : F->F by its action on local sections

(p) for p e U ,

r peU\(V'nU),

and extending it by equivariance. The function rί7 : U->SO(2) C GL+(2) is given by

r ( p ) = \ for peU\(XA^YA), (4.13)

for p^^y^Y^X^Y^, (4.14)

for P = (χA,xA)eXA\(XΛnYA), (4.15)

for P = (xA,yA)eXAnYA. (4.16)

The homomorphisms η^ and Ύ\iΊ> define equivalent prolongations if and only if
there exists an automorphism β of F such that η^ o β = ηι:>j,. In a local trivialization
this implies

(4 17>

where β(e) = eR. Now, compose both sides of (4.17) with the loop αA:S
1^U.

From (4.1), (4.15), and (4.16) we have rί>j,oαA(s) = R(i'Aλ(s)'), so this map has
winding number i'A. Similarly r^ oα^s) has winding number iA. Since ρohoαA

has always an even winding number, i'A = iA. Repeating this reasoning for all
homology generators, we find ϊ = i and j'=j. Therefore, F together with
homomorphisms η^ provide all 22g inequivalent prolongations on the Riemann
surface of genus g.

Note that the labels (i,j)^Z2g can be regarded as the homomorphism from
if !(M, Z2) to Z2 which assigns to a loop ( the (mod2) winding number of r t .
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Since Hom(Hι(M, Z2), Z2)^#1(M, Z2) the relation with the Cech cohomolog-
ical classification of prolongations in Sect. 3 is evident.

The group of connected components Ω(M) (the mapping class group) is
generated by 3g — 1 Dehn twists associated to the loops aA, bA, and CA [11,12] (see
Fig. 1). These diffeomorphisms we take in the form

onXB, (4.18)

,yή on7β, (4.19)

onZβ, (4.20)
. fc / /

and equal to the identity elsewhere.
We determine the action of the Dehn twists on the set of equivalence classes of

prolongations (spin structures) by generalizing the method used to prove that ηtj
and ηγj, are equivalent if and only if i = i\ j =/.

Let / be a diffeomorphism of M whose support is contained in the domain U of
a local trivialization of F (this is the case for all Dehn twists). Let h: l/-»GL+(2)
and K: l/->GL+(2) be local descriptions of If and ff respectively, i.e. for pel/,

) = e(f(p))h(p), and ff(e(p)) = e(f(p))K(p). Equation (3.1) implies that

(p) . (4.21)

Given jj; /,/ and /, the function K exists only if the map

* . (h o φ)) (r. o φ)) (4.22)

has even winding number for any loop ( : S1 -̂  (7. Applying this condition to all the
cohomology generators will be sufficient to determine completely f,/ in terms of/
and j, j.

We begin by applying the method to fas for a fixed 5 and a loop aAΐor Aή=B.
The map (4.22) takes the form

s*-+(r_ij ° aA(s)) ~ v - (riΊ o aA(s)) ,

so its winding number is i'A — iA. This implies i'A = iA. Similarly, replacing aA by bA,
for ^IΦB, we get j'A =jA.

Next we apply the method to the Dehn twist faB and the loop aB. From (4.15)
and (4.16), the winding number of r^ ° aB is i'B. Since αβ is fixed by the Dehn twist
faβ, the winding number of rtj °faB°aB is ίB. From (4.2), and (4.18) it follows that

0 1

on Zβ, where λ'(s) = dλ/ds. Thus, the winding number oϊh°aB is zero. Altogether,
the right-hand side of Eq. (4.22) has the winding number iB — ί'B, so we find again
i'B = iB. For the Dehn twist /αjs and the loop bB, the third term on the right-hand side
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of Eq. (4.22) contributes winding number jB. The second term is

H~
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and has winding number zero. Consider now the first term. For -π^s^ -ε,
rij°/αB°V>) = l; for -ε^s^O we have in coordinates (χβ,xβ) ηj0/«B

0frβ(>)
/ /s _|_ g\ \

= rtj I 2λ I 1,5 ) so there is a contribution zβ to the winding number; for 0 ̂  s ̂  ε
. ^ ε / /

there is a contribution^ to the winding number and for ε ̂  s g π, rtj ° /ΛB o fcβ(s) = 1.
Altogether the map ri^fΛB^bB has winding number ίB+jB. The total winding
number on the right-hand side of Eq. (4.22) is j'E +jB + iB. So we find j'B =jB + iB.
Thus, the transformation rule of spin structures under the Dehn twist /flJJ is
QJ)1- '̂?/) with ifA — ̂ A^ΪA=iA^~^AB^B^ where δAB is the Kronecker symbol.

Repeating the same arguments for the Dehn twist fbB, we get ΪA = 1A -f δABjB9

JΆ=JA'

Since only the loops bB and bβ+ί intersect the support of the Dehn twist /CB, it is
clear from the previous considerations that i'A = iA for all A andj'A =jA ΐorAή=B and
A φ B +1. Consider now the Dehn twist fCB and the loop bB:S

1-^ U. The functions
ri.j.°bB and ^7

 o/C B°bβ have winding numbers/^ and jB + iB + iB+ί, respectively.
This time however, the term h°bB(s) has a nonvanishing winding number due to
the nontrivial rotation we had to introduce in (4.10). From (4.10) and (4.20) we have

λ

1

_0

ZA + G \ r
P /

/

π-2ε

2 / . \ -
/ Z ~τ~ F \

ε \ ε /
1 x^

+λ
— ε

π — <
+ π

π-2β

(4.23)

For - f - ε ̂  5 ̂  - f , bB : s H> (£4, zj = (0, 5 + f ) therefore the last term of (4.23) is
constant, the second has winding number 0 and the first 1.

The total winding number on the right-hand side of (4.22) is jB+j'B + ίB

+ iB + 1 + 1 , therefore we find jB =jB + 1B + ίB + 1 -f 1 . Exactly in the same way we find
for the Dehn twist fCB and the loop bB+1,JB+ι =Jn+ 1 + ΪB + ΪB + i + 1-

We summarize the transformation rule of spinstructures under Dehn twists:

(4.24)
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Consider the quadratic function on Π with values in Z2 [13]

φ(i,j)= Σ Oi + lXL + l). (4-25)

A prolongation (spin structure) is said to be even (respectively odd) if φ(jj) is
0 mod 2 (respectively 1 mod 2). The prolongation is even if an even number of terms

in (4.25) is one, and this can happen in Σ ( n ] 3 β ~ k = 2β~1(2β + ί) ways.
(feeven) \K/

Similarly, the prolongation is odd if an odd number of terms in (4.25) is one, and

this can happen in £ }^9 k = 29 1(2flf — 1) ways. It is easily checked that φ is
(Λodd) W

invariant under the transformations (4.24); therefore the property of a prolon-
gation of being even or odd is preserved under arbitrary diffeomorphisms.

We will now show that the Dehn twists act transitively on the sets Π + and Π'
of even and odd prolongations.

Using Dehn twists it is possible to transform any prolongation
(il9 ...9ig Jl9 ...Jg) to the standard form

(0,...,0;1,...,1) .
^—.v—' »—v—' if 1,7 is even

9 9
and

(0, ...,0;!,...,!,0) if j j is odd.

9 9~ 1

If (h Ji) = (0,1), (1,0) or (1,1), we apply IdM9 fbί °/αι or fbί respectively and obtain
(0,z2,...,i,;l,72,...,7,). If (ί1,i2J1J2) = (0,0,0,0) or (0,0,0,1) we apply fCί and
obtain

(0,0,z3,...,/,; 1,1,73,...,7,) or (0,0, z3, ...,i,; 1,OJ3, ...J,)

respectively. If (z1? /2Jι J2) = (0,1,0,0) or (0,1,0,1) we apply /Cl o/&2 o/α2 or fCi ofb2

and obtain (0,0, z'3,..., ig\ 1, OJ35 ...Jg). In all cases, we are able to bring the couple
OΊJi)to the form (0,1). Iterating this procedure g — 1 times we can bring (zj) to
the form (0, ...,0,ig\ 1, ...,\Jg) for some igjg. If (i,7) was an odd prolongation,
since the Dehn twists preserve the even or odd character of the prolongations, we
must have (igj^) = (0,0). If (ίj) was even, then (ιg9jg) = (091), (1,0) or (1,1), and
using the Dehn twists fa , fb we can bring them to the form (0,1). This completes
the proof.

We conclude this section by discussing the structure of D(M, α). In the case
g = 0, M is the two-sphere S2; there is only one spin structure which is preserved by
all diffeomorphisms. D(S2) is retractable to S0(3) [14] and it follows from the
results in [15] that D(S2) is retractable to Spin (3), so D(S2) is the nontrivial double
cover of D(S2). In the case g = 1, M is the torus T2 and the mapping class group is

) = SL(2,Z)/Z2, where

SL(2,Z) =
a b

c d
; ad-be = 1
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and

1 0\ /-I 0

0 V ' V 0 -1

This group is generated by the matrices ί 1 and f j, corresponding to the

Dehn twists fa and fb respectively. The stabilizers of the spin structures are as
follows: Ω(T2;0,0) = ί2(T2); ί2(T2;l,0) is the subgroup for which b is even;
Ώ(T2;0,1) is the subgroup for which c is even; Ω(T2; 1,1) is the subgroup for
which α + c and b 4- d are odd, or equivalently ab and cd are even [7]. All connected
components of D(T2; ίj) are homeomorphic, so it will be sufficient to determine
the double cover ofD0(T2)CD(T2;ίJ\ which we denote D0(T2; ί j ) . [Notice that
in general D0(T2;ij) is not the identity connected component of D(Γ2;i,j).]
D0(T2) is retractable to the group ί/(l)x(7(l) of translations of the form
ft,s

: (& $)f—>(# 4- ί, θ + 5), where (χ, 5) are periodic coordinates on T2 with period
2π. For each f S t t there are two elements uttS and w M °y in D such that ̂  °W M

= 7Jί,s ° *?u- Since for 77ί5S we have AM = 1, this condition reads in local coordinates

Keeping 5 fixed and varying ί from 0 to 2π, the right-hand side, regarded as a map
from the first factor (7(1) to 80(2), has winding number i, so the endpoints of the
path t\-+KttS(χ, 9) differ by (— I)1. Similarly for t fixed and varying s, the endpoints of
the path sι->/^s(χ,θ) differ by (-1)7. This shows that for each spinstructure ij
there is a different double cover: D9(T2 0,0)^D0(T2) is retractable to 17(1) x (7(1)
xZ2-»t7(l)xl7(l) given by (e**,eiβ, ±l)\-+(eiΛ,eiβ) and is therefore trivial;
D9(Γ2;0,1)^D0(T2) is retractable to 17(1) x l7(l)-» 17(1) x 17(1), given by
(eiΰί,eίβ)^(eίΰί,e2ίβ)ι D0(T2; 1,0)-+D0(T2) is retractable to (7(1) x 17(1)->17(1)
x (7(1), given by (eiΛ,eίβ}^(e2ίa,eίβ} and D0(T2; 1,1)-+D0(Γ2) is retractable to

(17(1) x C7(1))/Z2->17(1) x (7(1) given by [Vα, ̂ ]^(e2ία, e2lO, where [ ] denotes
the Z2 equivalence class and Z2 = {(1,!),( — !, -1)}

Finally, for g^2 D0(M) is contractible [14] so D(M;iJ) is the trivial double
cover for each spin structure ίj.

5. Final Remarks

The transformation properties of spin structures are relevant to the study of global
diffeomorphism anomalies, i.e. noninvariance of the effective action under
diffeomorphisms which are not homotopic to the identity. In gravity it is also
important to look at the behaviour of the theory under rotations of frames which
are not homotopic to the identity. Such global frame anomalies can arise when M
admits inequivalent spin structures [16]. Therefore it is important to know the
behaviour of spin structures under vertical automorphisms of F. A vertical
automorphism u:F-+F transforms the spin structure (FΛ9 η^ to the spin structure
(Fβ> tfβ) f°r which there is a principal bundle morphism ύ: Fβ-*Fa such that ηa o u
= u°ηβ. Given (FayηΛ) and (Fβ,ηβ) there exists an automorphism u of F which
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transforms the spin structures one into the other if and only if Fa and Fβ are
isomorphic as principal GL+(n)-bundles. In particular, on a Riemann surface the
group of vertical automorphisms of F acts transitively on the set of spin structures.

The action of orientation preserving diffeomorphisms on spin structures on
Riemann surfaces has been computed by R. Lee and E. Miller, as announced in
[17], and has also been determined by L. Alvarez-Gaume, G. Moore, and C. Vafa
by using the results of the theory of theta functions [18].
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