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Inequalities for the Schatten p-Norm. IV
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Abstract. We prove some inequalities for the Schatten p-norm of operators on a
Hilbert space. It is shown, among other things, that if 4, B, and X are operators
such that A + B2 |X|and A + B =z |X*|, then |AX + XB||} + | AX* + X*B|?
22(X (32 for 1<p<oo, and max(|AX + XB|, |AX*+ X*B|)=|X|>
Also, for any three operators 4, B, and X,

IAIX — X|BI|3 + | 14*| X — X|B*| |3 < | AX — XB|3 + | A*X — XB*|3.

1. Introduction

In their work on free states of the canonical anticommutation relations, Powers
and Stgrmer [9, Lemma 4.1] proved that if 4 and B are positive operators on a
Hilbert space H, then |42 — B'Y?||3<||4— B|,. Also, in studying the quasi-
equivalence of quasifree states of canonical commutation relations, Araki and
Yamagami [2, Theorem 1] proved that if A and B are operators on a Hilbert space
H, then |||4| —|B|||, £2'?||A — B||,. This has been recently generalized so that
Al —=1BII3 + | 4*| — | B*||3 < 2|l A — B||3 [7, Theorem 2].

The purpose of this paper, which is in the same spirit as those of [5-7], is to
extend these inequalities to commutator versions and to show that in some cases the
trace norm can be replaced by a general p-norm. In particular it will be shown that
for positive operators 4 and B, |AY*—B"Y?|3 <A —B|,for 1<p < 0.

Let H be a separable complex Hilbert space and let B(H) denote the algebra of all
bounded linear operators on H. Let K(H) denote the closed two-sided ideal of
compact operators on H. For any compact operator 4, let s,(A), s,(A),... be the
eigenvalues of |A|=(A*4)? in decreasing order and repeated according to
multiplicity. A compact operator A is said to be in the Schatten p-class C, (1 <p
< o), if Y s{A)? < co. The Schatten p-norm of A is defined by [| A [, = (3s(4)?)*/".
This norm makes C, into a Banach space. Hence C; is the trace class and C, is the
Hilbert—Schmidt class. It is reasonable to let C, denote the ideal of compact
operators K(H), and |||, stand for the usual operator norm.

If AeC, (1=p<) and {e;} is any orthonormal set in H, then | A[5=
Y|(Ae;, e)lP. More generally, if {E;} is a family of orthogonal projections
satisfying EE;=0,E;, then [|A|22Y | E,AE; 5= IY.EAE; 5, and for p>1
equality will hold if and only if A=) E;AE,. Moreover, if Y E;=1 (the identity
operator) and p = 2, then |4 (|3 =) || E;AE;||3. One more fact that will be needed in
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the sequel is that if AeC (1 < p < o), then A, = [|A* |, = [[A*[ll, = | A[ll,. The
reader is referred to [3] for further properties of the Schatten p-classes.

2. On the Powers—St¢rmer Inequality
First we extend the Powers—Stgrmer inequality for the usual operator norm.

Theorem 1. If A, BeB(H) with A+ BZ= + X, where XeB(H) is self-adjoint, then
IAX + XB| z || X |

Proof. Since X is a self-adjoint operator, it follows that there exists a sequence { f, }
of unit vectors in H such that (X f,, f,)—t as n— oo, where [t| = || X'||. But then,

IX fu=thall®> = 1 X ful? + 82 = 24X f,., f,) < 2 = 26X f,, [
Therefore X f,, — tf,—0 as n— co0. Now
|AX + XB| 2 |((AX + XB) f,, f,)I
= |[(AX — 0 fo, f) + (BS, (X = 0)f) + 1((A+ B) [, [,)]
2 [t|((A + B) fo, o) = [(AX = 0)f,, f,) + (Bf o (X — 1) f)]
2 (X ff ) = [(AX =0 f,, ) + (Bfo, (X =0 f).
Letting n— oo, we get that | AX + XB|| = || X ||? as required.
Corollary 1. If A, Be B(H) with A + B = + X, where X € B(H) is self-adjoint such that

AX + XB=0, then X =0.
Next we establish the corresponding inequality for a general p-norm.

Theorem 2. If A,BeB(H) with A+ B= + X, where XeB(H) is self-adjoint, then
IAX + XB|,z | X |3, for 1 <p = oo.

Proof. Of course the p = oo case is the content of Theorem 1. Now assume that 1 <
p<oo and AX + XBeC, (otherwise we have nothing to prove). Hence AX + XB is
compact. If w: B(H) —» B(H)/C , is the quotient map of B(H) onto the Calkin algebra
B(H)/C,,, then we have n(4)n(X) + n(X)n(B) = 0 and n(4) + n(B) = + n(X). Apply-
ing Corollary 1 now implies that 7(X) = 0, in other words X is compact. (Recall that
the Calkin algebra is a B*-algebra and so it is representable as an operator algebra.)
But it is known that a compact self-adjoint operator is diagonalizable, hence
Xe, =t,e,, where {e,} is an orthonormal basis for H. Therefore,

IAX + XB} =z Y |(AX + XB)e,, e,)I”
=Y [(AXe, e,) + (Be,, Xe,) [ =3 |t,((A + Be,, e,) [P
2 Y It [(Xey en)l? =3It 127 = | X 135

As a Corollary of Theorem 2, we obtain the Powers—Stgrmer inequality [9,
Lemma 4.1] and extend it to other p-norms (including the usual operator norm).

Corollary 2. If A, Be B(H) are positive, then | A — B||3, < || A*> — B?|, for | < p < 0.

Proof. Let X = A— B, and then apply Theorem 2.
The above theorems can be generalized further by removing the restriction on X.
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To accomplish this we first recall the following lemma which has appeared in [7].

B
Lemma. IfA,BeB(H)andT=<g g>isdeﬁnedonH(-BH,then|T|_—_<|0| |2|).

Moreover, | T 5= A5+ | BIZ for 1'<p<co and | T|| = max(| Al [ B).

Theorem 3. If A,B, and XeB(H) with A+ B=|X| and A+ BZ=|X*|, then
|AX + XB|2+ | AX*+ X*B|5=2(| X |32 for 1 £p < oo, and max (| AX + XBl|,
[AX* + X*B)z | X|*

0 4 0 B X*
X* 0
l 0 ! |Xl).FromA+Bg|X|and
A+ B=|X*|, we obtain that T+ S =|Y|. Since Y is self-adjoint, it follows that
T+Sz=|Y|= +Y. Applying Theorem 2 to the operators 7,S and Y we get
0 AX + XB
2 —
[TY+ YS|[,z Y3, for 1 £p<oco.But TY+YS~<AX*+X*B 0 )
Now using the lemma, the proof can be completed as that of Theorem 1 in [7].

B 0 X
Proof. On H@® H, let T=<A O), S=< 0), and Y=< 0). Then Y is

self-adjoint and by the lemma, we have | Y| = (

Corollary 3. If A, XeB(H) with A+ A*=|X| and A+ A*=|X*|, then
IAX + XA* |, 21X 3, for 1 <p < 0.

Proof. This follows from Theorem 3 applied to 4 and 4* with the observation that
[AX 4+ XA*|, = | AX* + X*A*|, for 1 =p < 0.

Remarks. (1) If A is a positive operator and X is a self-adjoint operator such that

. . 1 1
A=+ X, then it need not be true that 4 =|X|. For example, consider 4 = < ) 4)

0
and X = < which act on a two-dimensional Hilbert space.

1

(2) Ifthe assumptions A + B = | X|and A + B = | X*| are strengthened so that 4

>|X*|and B = | X|, then following the proofs of Theorems 1, 2, and 3, we obtain that

| AX + XB|, 22| X ||3,for 1 < p < co. In this case the operators, T, S in the proof of
A 0

Theorem 3 should be takenas T=S = < 0 B)' It should be also noticed that if the

roles of X and X* are interchanged, that is if A >|X| and B > |X*|, then such

1 0 00
inequality may not be true. For example, consider 4 = ( 0 0>, B= < 0 1), and

0 0
X = <1 0> which act on a two-dimensional Hilbert space.
3. On the Araki-—Yamagami Inequality

In [1, Lemma 5.27, Araki proved that if A and B are self-adjoint operators in B(H),
then |[|A]| —|B||l, = ||A — B||,. A commutator version of this result is also true,
namely ||4]X —X|B||| < || AX — XB|, for any XeB(H). This has been recently
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obtained in a more general setting where 4 and B are normal operators [8, Corollary
2]. For general operators 4 and B, Araki and Yamagami [2, Theorem 1], proved
that || A|—|B||, £2'*|| A — B||,. This also has been extended so that ||| 4| — | B|||2
+ 1A% —|B*|3 = 2|l 4 — B|3 [7, Theorem 2].

In this section we establish a commutator version of this Araki—Yamagami type
inequality.
Theorem 4. If A, B, and X e B(H), then

IAIX — X|BI]3 + 11 4*|X — X|B*||I3 < | AX — XB||7 + | A*X — X B*|}3.

0 A4 0 B X 0
Proof. OnH(—BH,letT-(A* 0)’S—<B* O),andY—<0 X).ThenTand

S are self-adjoint. Thus |||T|Y—Y|S||,<|TY— YS|,. Simple calculations and
the lemma show that
|A*| X — X | B*| 0

0 |A|X — X|B|

3 0 AX — XB
"\ A*X — XB* 0 '

Since || T|Y—Y|[S|l|I3 = ||A|X — X|B|||3 + | |4*| X — X|B*|||3 and | TY - YS||3
=|AX — XBJ|3 + | A*X — XB*|2, it follows that |||4|X — X|B||%+ |||A*|X
~X|B*||3=|AX — XB|3 + || A*X — XB*|3.

Corollary 4. If N, MeB(H) are normal, then for any XeB(H), ||N|X —
XMl = INX - XM|,.

|T|Y — Y]S|=< > and TY-YS

Proof. Since N and M are normal operators, the spectral theorem implies that | N|
=|N*| and |M|=|M?*|, and the Fuglede—Putnam theorem modulo the Hilbert—
Schmidt class [10, Theorem 1] implies that [NX — XM |, = N*X — XM*|,.
Now the result follows by Theorem 4.

Inspired by the results of this section and by the fact that every operator A€ B(H)
has a normal dilation in B(H@® H), we obtain the following extension of the
Fuglede—Putnam theorem modulo the Hilbert—Schmidt class [10, Theorem 1].

Theorem 5. If A, B, and X e B(H), then

IAX — XB|3 + | A*X |3+ | XB* |3 = | A*X — XB* |3+ | AX |3 + | XBII3.
A A* B B* X 0
. = = = . N
Proof. OnH®@ H, let N <A* A),M (B* B>,andY (O 0) Then
and M are normal [4, p. 123], and so by the Fuglede—Putnam theorem modulo the
Hilbert—Schmidt class we have |[NY— YM|, =|N*Y— YM*|,. But

AX—-XB —XB*
A*X 0

B <A*X — XB* —XB)

NY— YM=< > and N*Y—YM*

AX 0
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Since
INY—YM|3=|AX — XB|} + | A*X |3+ | XB*|3,

and
IN*Y — YM* |3 = A*X — XB*| + | AX |3 + || XBI|3,

we have the required result.

Remark. If in Theorem 5, A and B are assumed to be normal operators, then we
retain the Fuglede—Putnam theorem modulo the Hilbert—Schmidt class, because in
this case we have

IAX |, =[4*X|; and [ XB[,=I[XB*],.
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