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Abstract. The initial value problem of the Vlasov-Maxwell equation has a
unique solution in a time interval [0, T] for each initial data in some function
space. T is estimated by the size of the initial data. The solution is classical, if the
initial data is smooth.

1. Introduction

The density distribution of the charged gas particles changes under the rule
described as the Vlasov-Maxwell equation. In this paper we prove that the initial
value problem for the Vlasov-Maxwell equation has a unique local (in time)
solution for each initial data in a slightly wide class of functions.

Let/t =/ί(ί, x, v) be the density distribution of the charged gas particles of the type
i (l^i^N) at the time ί^O and the point xe#3 with the velocity veR3. The
Vlasov-Maxwell equation for {/•} is described in the following form:

d N

-E - cVx x B = - 4π £ q^vf^t, x, v)dv, (1.2)
dt κ = 1

—B + cVxxE = 0.
dt

where E and B denote the electric and magnetic fields generated by the distributions
/f, mt the mass and qt the charge of the single particle of the i-species. The parameter
c^.1 denotes the light velocity. The notations and x denote the scalar and vector
products in R3,' Vx = t(d/dx1 , d/dx2,d/Bx3) and Vv = t(d/dv1 , d/dv2,d/dv3). Sometimes
we use the notations < , > and | | to denote the scalar product and the norm in Rn.
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From the first equation of (1.2) we obtain

^Vx E^-^ΣqΛv VJtdv. (1.3)

It is easy to see that (!.!)-( 1.3) imply

Hence, to solve the above system of equations we have to put the compatiV
conditions,

If we assume

B(t9x) = BQ(x)9 (1.6)

then the second equation of (1.2) reduces to

VxxE(t,x) = 0. (1.7)

Combining (1.4) and (1.5) with (1.7), we have

E(t, x) = VxΣqt ί f j^ϊ/fc K Wydv. (1.8)

The system of Eqs. (1.1) and (1.8) is called the Vlasov-Poisson equation. Many
authors have considered this type of equation. For example, see Arsen'ev [1],
Bardos-Degond [2], Batt [3], lordanskii [6] and Ukai-Okabe [8].

On the other hand the Vlasov-Maxwell equation has been studied by rather few
authors. See Cooper-Klimas [4], Duniec [5], Neunzert-Petry [7] and Wollmann
[9]. In the study of the Vlasov-Maxwell equation the main difficulty occurs from the
term (v/c x VxB) Vvf9 when we estimate VJ/. Wollmann [9] avoided this difficulty by
assuming that the initial data /0(x, ι;) has compact support. To treat general /0 we
introduce a Banach scale Hl

p>β (see (1.10) for the definition) characterized by the
weight function exp(p|ι;|), and obtain an estimate of Cauchy-Kowalevski type
(Lemma 2.4). If we assume that fQ(x,v) = Q for |ι?| g: R, then we can apply a simpler
scheme and do not need such a Banach scale (Theorem 3.2).

With the notations defined below (see (1.10)-(1.12)) we state our main result.

Theorem 1.1. Let fΌ^Hl

ptβ (1 ̂  i g N) and (E0,B0)εHl with I ̂  3, p > 0 and βeR.
Then there exists a solution (f1 , . . . 9fN9 £, B) of the initial value problem for the Vlasov-
Maxwell equation (Ll}-(1.2) in a time interval [0, Γ], which satisfies the following:

?/c( [0, T];//^)nCyy [0, T];̂ ;/ )̂, IZi^N,

(E B)eC"([Q9nH^nC\lQ,nH1-1). (1.9)

Here T>0 and y > 0 depend on \ f i t o \ ι t p t β (1 ̂ i^N), \EQ\t and \BQ\l9 but not on

ce[l,oo). The solution is unique in f| Cj([0, T^H^Lj) x Cj([0, T];/f2"J) with
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β>5/2. Moreover (/^.t,*,»),...,/N(c,t,x>»), £(c,ί,x), B(c,t,x))e Q M>

([l,oo): C°([0,T];#pV-j) x C°([0,T];H'-J)). I f ( E 0 , B 0 ) satisfies (1.5), theή(E,B)
satisfies (1.4).

Remark. Our solution is classical, if /o^C1

We introduce function spaces of measurable functions Hl = Hl(R*) and
= HJ, ^(K6) with / = 0, 1, . . . ,pεR and jδetf by

(i) #Γ /z(x)<K3/dx)α/<x)eL2(#3) for |α| ̂  /.

The norm |/z | , is defined by

I * I ? = Σ f

(ϋ) H^e/fr, v)<*φptίfa)(d/dxr(d/dv)Λ'f(x9 ι;)eL2(£6) for |α| + |α'| g / with
Φp» = ̂ H-|D|y.

The norm |/lι ί p > / 5 is defined by

\ϊ.p,β= Σ i 11 s)'' (1.10)

Remark. We can define Hl and H^ for fractional / by the use of Fourier
transformation or the interpolation theory. This remark is used in the proof of
Lemma 2.6.

Throughout the paper we assume that Hl is the set of vector valued (i.e. Rn- or Cn-
valued) functions on R3 and Hl

p>β is the set of scalar or vector valued functions
according to the situation.

For a (closed) domain Ω a Rn and a Banach space Y with the norm | |γ (or
more generally for a linear topological space Y) we denote by Cm(Ω; Y) the space of
Y-valued functions which are m times continuously differentiable on Ω in the
topology of Y. We also denote by Bm(Ω\ Y) the subspace of h(x)tCm(Ω\ Y) whose
derivatives (d/dx)ah(x), \ α | ̂  m, are bounded on Ω. If Y is a Banach space, Bm(Ω; Y) is
also a Banach space with the norm

y , m = P L = Σ SUP
|α|^m xεΩ

(1.11)

We denote by M°(Ω; Y) (respectively Mj(Ω; Y)) the space of Y-valued (strongly)
measurable and bounded functions on Ω (respectively the space of functions whose
derivatives in the distribution sense up to order j are in M°(Ω; Y)). MJ(ί2; Y) is a
Banach space with the ess-sup norm || \\γtj= \\ ||7 .

Using these notations, we define the function spaces:

(i) C0([0,T];#') and M°([09T];Hl) with the norm |Λ| ί / Γ = sup |Λ(ί)|,.

(ii) C^([0,Γ];/f^)9/ (respectively MjίCO^ ff^/J^I^
(d/dvYf(tίx,v)eCQ(l^ T]; L2(R6)) (respectively M°([0, T]; L2(R6))).
The norm is defined by

\f(t)\ltp-yttβ.
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(iii) C;([0,T]:H^)a/ (respectively Mj([0,T];
C?([0, ri H^) (respectively M?([0, ΓJ Hj,,,)).

and df/dte

Remark. In the space of functions /(ί, x, v) defined on [0, T] x R6, we sometimes use
the weight function φp_ylt_s^β(v) instead of φp_γtίβ(v). However there are no essential
differences and no confusions will occur.

We use the notations Cm(Rn) = Cm(Rn Rk or Ck) and Bm(Rn) = Bm(Rn\ Rk or Ck).
Bm(R") is the subspace of h(x)eBm(Rn) such that (d/dx)ah(x\ |α ^ m, tends to zero
uniformly as |x ->oo. For 0 < Θ < 1 , Bm + θ(R") (respectivelyBm + θ(Rn)) is the
subspace of functions of Bm(Rn) (respectively Bm(R")) whose mth derivatives are
uniformly Holder continuous with the exponent θ. Their norms are denoted by || || m
a n d I I | L , Λ :

= Σ SUP h(x)

Σ

sup\h(x)-h(y)\/\x-y\θ. (1.14)

We also use the notation CQ(RΛ) for the subspace of functions feCm(R") with a
compact support. For a (closed) domain Ω of JR", Co(β) denotes the set of functions

K") such that supp/c=ί2.

Remark. After the completion of this work the author learned the work of P.
Degond [10], in which he proved our Theorem 3.2. He also proved the asymptotic
approach of the solution of the Vlasov-Maxwell equation to the solution of the
Vlasov-Poisson equation as the light velocity c tends to oo. The same problem is
studied in [11].

2. The Linear Equation

In this section we solve Eqs. (1. !)-(!. 1)0 and (1.2)-(1.2)0 independently. First we
the Maxwell equation (1.2)-(1.2)0. We rewrite it as

treat

A
CAJBXJ

ΰt\B

E
B

where Aj(l ^j ̂  3) and F(t, x) are defined by

F(t,x)

0

(2.2)
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ίt,x,Ό)dv. (2.3)

We assume with / ̂  1, p> 0, γ ̂  0, p - γT ̂  p/2 > 0 and βeR

Since Eq. (2.1) is a symmetric hyperbolic system, the operator A = Aίd/dx1 +
A28/dx2 + A^d/dxi generates a group etA of unitary operators in Hl. Hence Eq.
(2.1)-(2.1)0 has a solution described as

It is easy to see that F(ί) satisfies

α(p, j8, y, ί) = 4π( J I « 1 2^;_2,t»d»)1/2 g α(ρ/2, ft 0, 0) = φ, j8). (2.5)
Λ3

From (2.4) we obtain the estimate for (E(t\B(ί)\ and we have

Lemma 2.1. Assume [F.l]{,f/LyιΓ αwd [££.0]' wiί/i / ̂  1, p > 0, γ > 0, p - yT ^ p/2 > 0
βπd )8eK. T/zβn £^f. (2. l)-(2. 1)0 /ιαs a solution (£(ί, x), J3(ί, x)) which is described by (2.4)
and satisfies

[EB.1]'Γ

.y.r. O ^ C ^ Γ , (2.6)
ί= 1

where a = a(p9β) is defined in (2.5). The solution (E(t)9B(t)) is unique in

Moreover, iffi(c9 t,x,v) (1 ̂  i ̂  AT) satisfy

iF.τyβtβ y τ fa n M^I, oo

(E(c, ί, x), B(c, ί, x)) satisfies

ΛJT (E,B)e f] M'([l, oo);C°([0, Tl H1-^).

When we solve the transport Eq. (1. !)-(!. 1)0, we can treat A/^-equations for
! , . . . , fN independently. Hence we have only to solve a single transport equation

(2.7)

(2.7).
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Here we have assumed without loss of generality that q/m=l. Consider the
(backward) characteristic equation associated with (2.7):

_
at ~ '

C^-=-E(t,X)--xB(t,X),
at c

(2.8)

and (2.8),

Assume

with / ^ 3 and 0 < Γ < o o . The well known Sobolev theorem shows Hl(R3)c:
βi - 3/2^3^ ancj £θ^ |-Q^ j -j. ffi^ £_ £θ^ ̂  τ^;Bl~ 3/2(jR3)) with continuous inclusion, i.e,

>r/ιeC°([0,T];#<))

for / ̂  2. Hence there is a unique solution (̂ (ί), ^(0) °f
(2.8)-(2.8)s, if ί is close to s. This solution is denoted as

Noting K (K x

X(t) = X(t, s, x, υ) = X(t, s, x, υι E, B/c),

V(t) = V(t9 s, x, v) = V(t, s, x, υ\ £,

= 0, we get

2|F(ί)|

This gives

t;|+i|ί-s|2||£||0,Γ,

H1)) (2.9)

initial value problem

(2.10)

(2.H)

(2.12)

(2.13)

^ T, (2.13)

by solving the forward characteristic equation. The inequalities (2.12) and
(2.13) show that the characteristic equation (2.8) has a global solution
(X(t, s, x, v), V(t, s, x, t;)) satisfying

[Sj'f2 (A', POeCHCO, T]2;C'-2(R6)).

We define a diffeomorphism S(ί, 5) = S(ί, 5; E, β/c) of Λ6 by

S(t,s)(x,v) = (X(t,s,x9v)9 V(t,s9x,v))9 (x,v)εR6. (2.14)

Since the vector field (ι;, E(t, x) -f ^/c x β(ί, x)) is of divergence free, S(ί, s) preserves the
Lebesgue measure in R6. Thus we have

Lemma 2.2. Assume [EB.V~\l

τ with /^3. Then there exists a unique solution
(X(t, 5, x, t;), F(ί, 5, x, v)) of the (backward) characteristic Eq. (2.8)-(2.8)s9 which satisfies
[Sj'f 2, (2 J 2), (2.13) and (2.13)'. The Cl ~ 2-diffeomorphism S(t9 s) ofR6 defined by (2.14)

for 0 ̂  t, s ίS T. Similarly we have
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preserves the Lebesgue measure in R6 and satisfies

S(t, s)S(s, r) = S(t, r) and S(t, t) = I = identity, (2. 1 5)

S(t,s) maps BR (respectively BR) into BR(T} (respectively BR(T})

and R6\BR(T) (respectively R6\BR(T)) into R6\BR (respectively R6\BR). (2.16)

Here BR = {(x9v)eR*;\v\ ^K}, BR = {(x,t;);|x|2 + \v\2 ^R2}, R(T) = R+ T\\E\\0,T

and R(T) = C(T, || E \\0tT)R for R^l. The constant C = C(T, || E ||0>Γ) depends only
on T and \\ E ||0>Γ but not on ce[l, oo).

Before solving Eq. (2.7)-(2.7)s we give a result on the uniqueness of its solution.

Lemma 2.3. Let (£,B)eC°([0, Γ];£%R3)), /c(f)eM°([0, T];#έ,/?) and f0εH^β with
βeR. LetfandgeC°([Q, T]; Jtf J^nC^CO, T]; #0,0-1) be the solution of(2.7)-(2.7)s.
Then f(t) = g(ή for 0 ̂  t ̂  T.

Proof. By the same calculation applied to prove (2.25), we have

g2 | j8-l | | |£ | | 0 f T | /-f l f |§ .o f /ι- 1 , s^t^T. (2.17)

This proves the desired result.
Now we start to solve the transport Eq. (2.7)-(2.7)s. Assume [£B.Γ]Z

Γ and
f0eHl

pfβ with / ̂  3, p > 0 and βεR. Associated with the C/~2-diffeomorphism 5(ί, 5),
we define a linear operator U(t,s) = U(t,s',E,B/c) acting on /0:

I7(ί, 5)/0(x, t;) = l/(ί, 5; £, B/c)/0(x, ϋ) =/0(S(ί, 5; £, B/c)(x, t;)). (2.18)

Clearly U(t, s)f0 is in H{0"c

2(jR6) for ίe[0, T] and satisfies Eq. (2.7)-(2.7)s with k = 0. If
we assume

[F.2']-r,VιT *eC?([0,Γ]; //£,,)

with m^l , p>0, y ^ O and βeR, then Eq. (2.7)-(2.7)s has a solution /(t,x,ι>)
described as

/(t) = t/(t, s)/0 + l/(ί, r)fc(r)dr. (2.19)
s

To estimate f(t) in //^ tβ we make temporary assumptions

supp/o cz BR, supp fe(ί, •) c:BR,R^ 1. (2.20)

Then S(ί,s) is a C/ + 1-diffeomorphism in K6, and hence /eC°([0,Γ];
C1

0

+ H^6))π CH[0S T]; C'Q(K6)) and supp /(ί, -) c 5^ by Lemma 2.2.
Denote by | |0 and (,) the usual norm and scalar product in L2(R6). By applying
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the identity v(υ x B) = 0 and partial integration we can easily show the equality

~ 9 9 ) (2.21)

for a nice function g(t, x, v) and the differential operator L of (2.7). Recall the weight
function φ = φp_γ}t_^υ) (see (1.10) and (1.12)). We put

g = g(t,x,v) = φf (2.22)

with / of (2.7); L/= k. Since v (v x B) = 0, we have

(2.23)

If p ̂  0 and γ £ 0, (2.21) and (2.23) imply

0 ̂  5 ̂  t ̂  T. (2.24)

We intend to apply (2.24) to d*f= (d/dxΓ(d/dv)**f, α = α t + α2. It follows from
(2.7) that

L8«f=d"k-G(«\

G(α) = [aα,L]/=[3α,t; V;c]/+[δα,£ VJ/+ d«,(-xB\Vv\f. (2.25)

This gives

ίτlWo^ ~y\ \v\l'2φd"f\l + (p + \β\)\\E(t)\\0\<t>d*f\l
2 at

. (2.26)

The estimate of \(φG(*\φdαf)\ is given by the following

Lemma 2.4. Assume \_EBΛ'JT and [F.l]^fy>τ with I ̂  3, p ̂  0, y ̂  0 and j&eR. Lβί
d* = (d/dx)*l(d/dv)*2 = d*ld?9 φ be the weight function and ce[l,σo). Then for 1 ̂
7 ̂  /, we

|(G(α),W)| g

N^'
(2.27)

b(/) and c(ΐ) are positive constants depending only on I

Proof. By Leibniz formula we have

(2.28)
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This implies

Σ l(Φ[^ vj/, W)|^MO Σ \φd«f\2

0. (2.29)
N^ W^

Similarly we have

Each term with |σ| fΞ / — 2 is estimated as

The remaining terms (if they exist) are estimated by using Sobolev theorem as
follows.

ίb1}dxE\l*(R,)\Vvd?-a^f( ,v)\1 for |α | = /- l ,

|3/£-V1,5;'-^/(-,t;)|L2(Jl3)^|3/£|ol|V1,/(-,i>)||o

Zb2\dx'E\0\Vvf(;v)\2 f o r | σ | = /.

Summing up the above results we obtain

Σ K^E VJ/.^ /JI^OIVEl,-! Σ \φVf\l (2.30)
|α|S; |a|^7

Finally we have,

+ Σ i ( f x ^ / B ) - v
0<σ^ a ι \ σ /

Calculating similarly as above, we obtain

-ι Σ IΦ3yi§ +^1^1. Σ N1/2W|*. (2.31)

Summing up (2.29)-(2.31), we have the desired result (2.28).
If y satisfies

\^τ (or 7 = γ(c) ̂  c(ΐ)\B\^τ/c\ (2.32)
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then (2.26) and (2.27) give

b = b(l){ί + (p + \β\ + l)|£| | fΓ + |S|,_ liΓ}. (2.33)

This implies

+ eb(t-*\k(r)\j,p-π,βdr, QίjZl. (2.34)
S

Recalling Eq. (2.7) and the fact that C1

0

+ l(R6) is dense in Hl

ptβ (p > 0), we obtain under
the condition (2.20)

with the weight function φ = φp_y\t_s^β.
We also note that under the assumption [EB.Γ]Z

Γ /= U(t9s'9E9B/c)f0 satisfies
DF 2]p702

y,:r with the weight function φ = φp_ylt_s\tβ. This is shown by differentiating
U(t,s'9E9B/c)fΌ, recalling the condition [S]̂ 2 and applying (2.34) with j = l-2.
Thus U(t, s; £, B/c)/0 defined by (2.18) is the unique solution of Eq. (2.7)-(2.7)5 with
k = Q.

Summing up the above, we have

Lemma 2.5. Let I ;> 3, p > 0, βeR and f0eHl

ptβ.
(i) Assume [EB.\'~]l

τ and choose y satisfying (2.32). Then f = U ( t 9 s ' 9 E 9 B / c ) f 0

satisfies \_F.2~]1 ~£y^τ (with φp_y\t_s\ β) and is a unique solution of(2.7)-(2.7)s with k = 0. //
k satisfies [F.2]̂ ' y§Γ (respectively [F. l]^,y,Γ), 1 ̂  m ̂  / - 2 (w/ί/z 0 / | f _sl^), ί/z^π £ήf.
(2.7)-(2.7)s /zαs α unique solution f which is given by (2.19) and satisfies [F.2]pt^>yιΓ

(respectively [FΛ^β^τ).
(ii) Suppose (E,B)eC°([0,T]; Cz+1(^3)) additionally. Then the linear operator

U(t, s; E, B/c) is continuous from Hj

pίβ to Hj

p_γ]t_s]tβ9 0 ̂  j ^ /, αnrf satisfies the estimate

I ί/(ί, 5; £, B/c)/0 1̂ .̂ .̂  ̂  e^-5' I /o I j f p > /, (2.35)

/or ce[l, oo ), t, se[0, T] 0 ̂  j ̂  / and b m (2.33). Moreover U(t, s; £, B/c) is continuous
in H^β and satisfies

(2.36)

(iii) Let H '̂(BK) be the closure ofCl

0

+ \BR) in Hj(R6). Let f0eHj(BR) with 0 g j g /.
Tfeen, under ίfee assumption of (ii), (7(ί,s;E,B/c)/0eC0([0, T ] '

satisfies (for ce[l,oo))

, s; £, B/c)/0 17,0>/? ̂  ̂ - | /0 |J i0 f/ ϊ, 0 ̂ j ^ /,

(2.37)
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Remark. By virtue of the interpolation theorem, the estimates (2.35) and (2.37) hold
for fractional 7*e[0, /]•

Now we are at the final stage of this section. We prove the next

Lemma 2.6. Assume \_EB.¥]1
T and f0€Hl

p>β with I ̂  3, p > 0 and βeR. Let y satisfy
(2J2)αm/ce[l,oo). Then:

(i) U(t9s;E9B/c)f0 satisfies [F.2]l

ptβtytT (with the weight function φp_y |,_s | /?), (2.35)
and (2.36).

(ii) // supp /O

c#κ (respectively suppfQc:BR) with R ̂  1, then t/(ί,s;
E9B/c)f0(x,Ό) = 0 for \Ό\^R + \t-s\ \\E\\QtT (respectively for \(x,v)\ ̂
C(T, \\E\\0tT)R) and satisfies (2.37).

(iiϊ) Moreover, if \_EB.ΐ]l

τ is assumed, then there holds

ίF2]p.β.y.τ fε Γ|
7 = 0

Proof. To prove (i) and (ii), we have only to show that we can remove the first
condition of the temporary assumption (2.20). Since Hl r\Cl + 1(R3) is dense in Hl, we
have an approximate sequence (En,BJeC0([Q,Γ\;HlnCl+ί(R*))9

\En-E\l,τ + \Bn-B\l,τ-+Q (n->oo)

by using Friedrichs' mollifier. (This procedure is independent of ίe[0, T] and
ce[l, oo).) We define the sequence of evolution operators Un(t, s) = U(t, s; £„, BJc)
by (2.18), replacing (£,£) by (En,Bn). Then fn(t,x,v)= Un(t,s)fΌ satisfies all the
conditions and estimates described in Lemma 2.5 (with k = 0) and also the equation

Ofn = Q, 0 ̂  t £ T. (2.38)

/Jr-.=/o(*>4 (2.38)s

Since |£M |/> Γ and |jBw | / > Γ can be assumed to be bounded by \E\ltT + ε and \B\^T -f θ,
respectively, with a small constant ε > 0, we can choose y to satisfy the condition
(2.32) uniformly for all (En9 Bn). All Un(t, s) satisfy the uniform estimates such as (2.35)
and (2.37). An easy calculation shows

= -(En-Em) Vvfm-V- x (B, - BJ V,fm = kn,m. (2.39)

From the uniqueness of /„-/„, (Lemma 2.3) it follows

fn(t) -fM = } UJit, r)Kn,m(r)dr. (2.40)
S

The estimate (2.34) established for Un(t,s) = U(t,sm,En,BJc) gives
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x sup|V/m(r)|^_ r | f_ r W,, (2.41)
s^r^t

where bQtn = (p + \β-l\)\E^τ£(p + [β-l\)(\E\Q9T + b2ε)£bQ. Since
|V/w(r)|0)p_y|ί_r|5^|Vί/m(ί,r)/0|0;^7)ί_^ is estimated by (2.35), it is uniformly
bounded in m and ί, re[0, T] (and in ce[l, oo)). Hence {fn(t)} converges in
Hp-yi,.^-! uniformly in ίe[0, T1]. Noting that (2.35) implies the uniform bounded-
ness of (fn(t)} in C°([0, T]'9H

l

ptβ) and applying the interpolation theorem between
tfp-yU-^-i and H{,_y|f _„,,_! and then between ffj,-* ,,_,,,,_! and Hj,_y|ί _,,.,, we see that
{/„(*)} converges in Hl~^t_^_&, 0<δ^l, uniformly in ίe[0, Γ], and the limit
/(t)eC°([0, T];H^;/_,) (with '<£,_,„_,,,_,). Taking the equality (2.38) into account,
we see also that /eCjίCO^Π H^ί-Y-J and satisfies Eq. (2.7)-(2.7)β (with fc = 0).

If we construct E7(f,s) = U(t9s;E,B/c) by (2.18) from the original (£,£), then
l/(ί,s)/0 satisfies [F.2]̂ T and Eq. (2.7)-(2.7)s (withfc = 0) (Lemma 2.5 (i)). By
virtue of Lemma 2.3 we have

C/(t, 5; £, B/c)/0 - s-lim l/(ί, 5; £B, Bπ/c)/0

inH'plV^-^ 0<δ^l, te[0,T] (and c€[l,oo)). (2.42)

On the other hand, (fn(t)} is weakly pre-compact in Hl

p_y}t_2^β and the only
accumulation point is /(ί). Thus we see

l/(ί, 5; £, β/c)/o - w-lim l/(ί, 5; £Λ, 5π/c)/0 in Hl

p^t_^9 (2.43)

and that the estimate (2.35) holds for U(t,s\E9B/c)fQ constructed from the original
(£,#). Since the Hubert space Hl

p__γ\t__slβ is separable, weak measurability of/(ί) in
[0, T] implies strong measurability. /

lίf0eήl(B^9 we can apply Lemma 2.5 (iii) to the sequence {fn(t) = Un(t, s)f0} in
the same way as in the above argument. Then, we have

/(ί) = l/(ί, s; £, β/c)/o - s-lim/^ί) in H' ~ %R6), 0 < δ ̂  1 , (2.44)

/(ί) = t/(ί, s; £, β/c)/o - w-lim/n(ί) in ίf(R6), (2.45)

(2.46)

for ί, ί'e[0, T] and all n. Here 5 can be chosen to be independent of n (see (2.37)).
Since /eC°([0, Tj H1"1^6)) and Hl + l(R6) is dense in tf(R6), it follows that/(ί) is
weakly continuous in Hl(R6) on [0, T].

We define the Fourier transform fi(ξ, f/) of Λ(x, ϋ) by

δ(ξ , ij) = (2π) ~ 3/2 J6 e ~ i(x'ξ + v'η}h(x, v)dxdv.

If we define the norm \h\j of heHj(R6) by

|Λ|? = j 6(l + l ί l 2 + |»/|2y|fi(ξ,ιj)|2dWι;, O^j^/, (2.47)

the estimate (2.37), and hence (2.46), still hold for = 0, 1, . . . ,/ with 5 replaced by
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some appropriate constant (if necessary). We note that the norm | h |7 defined by (2.47)
is monotone increasing and continuous in je[0, /] if heH\R6).

Let n -> oo and then δ -> 0 in (2.46). Then (2.44) and (2.45) with the above remark
give

l/WI/^'-Wίlz, t,te[0,T]. (2.48)

This means that \f(t)\l is continuous on [0, T]. Thus we have proved that
/(t)eC°([0, T]; H'(R6)). Since supρ/(t) <= BR(T} for te[0, T], it follows that / satisfies
[F.2']^>)sΓ, and hence [F.2]p^>y>Γ for each p ̂  0, βeR and y ̂  0. Since the union of
Clo'i(BR) is dense in Hl

ptβ9 the proof of Lemma 2.6 (i) is completed.
The proof of (iii) is easily carried out.

3. The Nonlinear Equation

In this section we study the nonlinear Vlasov-Maxwell equation (1.1)-(1.2). For
simplicity we study the following equation for the plasma of a single species:

x v = Q 9 ί>0, xeK3, veR\ (3.1)
dt

— E - cVx x B = - 4π J vf(t, x, v)dv,

—B + cVxxE = Q, t>0, xεR\ (3.2)
(Ji

F ί = 0 = F0(x), B\t = 0 = B0(x). (3.2)0

We prove the existence and uniqueness theorem for Eq. (3.1)-(3.2) (Theorem 3.1).
However no essential differences occur in the proof of Theorem 1.1.

Theorem3Λ. Let fΌeHl

ptβ and (E0,BQ)eHl with 1^3, p>0 and βeR. Then there
exists a solution (/, £, B) of the initial value problem for the Vlasov-Maxwell equation
(3.7)-(3.7)0 and (3.2)-(3.2)0 in the time interval [0, T] satisfying the following
properties:

/eC°c([0, T];H^)nCj/c([0, ΓJ /ί^1) = Fl

pMc,T, (3.3)

l/l,p^/C5r^y0 = z0ι/0ι^, (3.4)
(3.5)

β). (3.6)

Here y, T, 70 αnrf Z0 depend on /, p, jS, l/okP,/?> l ^ o l z fln^ l ^ o l / ^wί not on c^[l, oo),
are determined by (3.14), (3.15), (3.19) and the solvability conditions of (3.1 7) and (3.26).
The solution (F, F, B) is unique in

Π CJ'([0, Γ];Hί>,y) x CJ([0, T];H2- 0 witΛ j!' > 5/2,
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and f is described asf(t)= l/(ί,0;E,jB)/0. Moreover

(/,£,B)6 Π M'([l, αo);C?([0, T]; #<;/_,.) x
7 = 0

Proof. We define the sequence (fn(t\En(t\ Bn(t)) by

Fn(ί,x)=-4π|ι;/n(t,x,p)ώ, nS O, (3.9)

/Π(t)=C/(ί,0;£Π,βΠ/c)/0, n £ l . (3.10)

If we assume that

with some y, τ t > 0, y t > 0 and p — y^i ^ /a/2, then by Lemma 2.1 and 2.6 there
hold

(fn,En,Bn)eF'p^τxEBl

τ, (3.1 1),

|£11|l.τ + |B11 |I f tg2(|£ol l + |βolι) + βti;-1sG(τr ι l_1) (3.13)

with α = α(p, j8) defined in (2.5) and with some τe^τj] and y^γt satisfying

γ^b(l)G(τY)^b(l)\Bn\l<τ (or γ = γ(c)Zb(l)G(τY)/c), (3.14)

p-yτ^/2 (force[l,oo)). (3.15)

By virtue of Lemma 2.6 (i) and the assumption (3.12)Π_! we have

\fn\,,P,β,y,r =Yn^ ^l/ol ,,,, ̂  e^r^\f0\llp.f = F(τ, F),

|/?| + l). (3.16)

Let F0 > 0 be the smallest positive root of the equation

Y = e«°™+1>\f0\l,p,f( = F(τ,Y)). (3.17)

If τ > 0 is sufficiently small (the bound is estimated by α = a(p, β), d,\E0\ι + \ B0 1, and
I /o \ι,p,β)> tnen Eq. (3. 1 7) has two positive roots 0 < Ϋ0 < yt . We fix such a τ > 0, and
see easily the following,

0 ̂  y__ ! ̂  ϊo implies 0 ̂  y, = f (τ, YB_ t) ̂  F0. (3.1 8)

Noting that |/0 !,,„,/) = F0 < ?o> we have

I /.!/.,./».,,. = ϊ.<?o, »^1, (3.12).

for 7 > 0 and τ > 0 which are chosen to satisfy the additional conditions (3.14) and
(3.15).
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Summing up the above arguments, we have

\EH\ltτ + \Bn\l9τ£G(τYJZG(τΫQ). (3.20)

From the definition of (/„,£„, Bn) we obtain

fn+1 -/»= ί V(t,s;En + 1,Bn + 1/c)kn(s)ds,
o

;

Γ> Γ \ * / /^ /

£n +ι-£Λ= c(1-sM/Gn(s
Bn+1-Bj I V 0

Gn(t, x) = - 4π ί cO, -/„ _ ,)dv, (3.22)

In a similar way as in (2.34) we see from (3.21) that

\Jn+l ~Jn\0,p-yt,β-l = J &
0

)i,27o(|£ji+1_£n|0ir + |5n+1 _βj0ιt). (3.23)

On the other hand applying Lemma 2.1 to (3.22), we obtain

|E. + i-£Jo,t+|B.+ i-B.lo.«^fl(P,)8-l)t|/.-/.-ilo.p./»-i.,.<, O^τ.
(3.24)

Combining (3.23) and (3.24), we have

l/,-n-/,,lo.p.ί-ι.,.,^ί2eίΛ!(t?o)ί'2?oβ(P^-l)l/--/.-ιlo,p,<»-ι.y.,. (3-25)

If we choose TE(0,τ] so that there holds

T2eTdG(T^b2Ϋ0a(p,β- 1) < 1, (3.26)

then {/„} is a Cauchy sequence in C^([0, T];H^_!). By (3.12)n and by a similar
argument as in the proof of Lemma 2.6, we see that {/„} is a Cauchy sequence in
C?([0,Γl;#p7/-a), 0<δ^l. This argument and (3.24) show that {(£„,£„)} is a
Cauchy sequence in C°([0, T]'9H

l~δ)90<δ^l. Putting

/(ί) = s-lim fn(i) in HJ,-.̂ .,, 0 < δ£ 1,

(£(ί),B(t)) = s-lim (En(t\Bn(t)) in H^5, 0 < 5 g 1, (3.27)

We see that/eF^ τ, (E,B)eEBlτδ, 0 < 5 ̂  1, and also (/, £, β) satisfies (3.1)-(3.1)0

and (3.2)-(3.2)0.
Noting that (/Π(ί)} is weakly pre-compact in Hl

p^yttβ, we see

ltβtβ^ Ϋ0^Z0\f0\^β. (3.28)
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Similarly we have

in H\ O^ί^T,

= G(TΫQ). (3.29)

By the separability of the Hubert spaces Hl and Hl

p^yttβ we can show that
(E(t\B(t)) and f(t) are strongly measurable in [0, T]. Then, from the integral
representation of the solution (E(t\ B(t)) of (3.1)-(3.1)0, it is proved that (E, B)εEBl

τ.
By virtue of Lemma 2.6, /eF^y?τ, since /(ί) - t/(ί,0;£, B/c)/0.

The uniqueness of the solution is easily proved by applying the same inequalities
as (3.23) and (3.24) to the solution (f^E^BJand (f2 , E2 , B2) of (3. l)-(3.2). Here we
take p = y = 0 and β = β' with α = α(0, /?' — 1) < oo . No other differences occur. The
last assertion of Theorem 3.1 follows from the fact that fn and (En,Bn) satisfy
[F.T]̂  y Γ and [££.1']̂ , respectively, and the estimates (3.16) and (3.20) hold
uniformly in ce[l, oo). Thus we have completed the proof.

If the initial density f0(x, v) satisfies the support condition

fo(x,v) = 0 for \v\^R09 (3.30)

then we can adapt, instead of the Banach scale, simpler norms to estimate
(υ x VxB)-Vvf. In fact we have

Theorem 3.2. Letf0εHlQ9β and satisfy the condition (3.31), and (E0,B0)eHl with I ̂  3
and β > 7/2. Then there exists a unique solution (/, E, B) of the Vlasov- Maxwell
equation (3.7)-(3J)0 and (3.2)-(3.2)0 in the time interval [0, T] satisfying (3.2)-(3.6)
with p = y = Q and

f ( t , x , v ) = 0 for M^K 0 + ί||E||0iΓ, O^ί^T. (3.31)

T, 70 and Z0 depend on /, β, |/ 0 |/,o,/j5 \Eo\i \&o\i and RO but not on ce[l, oo), and are
determined by the solvability condition of (339) with a = α(0, β). If β — m > 5/2 and
m ̂  /, then

l, oo); C°([0, T];Hl

Q-J-j x Hl~j)).
j=o

Moreover, iffQ satisfies the support condition

fo(x,Ό) = Q for M^R, or \v\^R0, (3.32)

then the solution /(ί, x, t;) also satisfies

/(ί,x,ϋ) = 0 for I x l ^ + f Λ o + i f Ί B I k ί or

| ϋ | ^ Λ o + ί | |£ | lo f r (3-33)

S/ceίc/i of the Proof. The support condition (3.31) and (3.33) are easy consequences of
Lemma 2.2 and the definition of U(t, si £, B/c)f0. Defining (Fn, £π, Bn) by (3.7)-(3.10),
and noting that

/Λ(ί,x,ι?) = 0 for l ϋ l ^ Λ o + ίllfiJIo.,, (3.34)
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we obtain by Lemma 2.6 (iii) and Lemma 2.1,

W

£J«.rλ (3-35)

(3.36)

If we assume

IΛ-ιWτ=i;-ι = r, (3.37)

then we have with d = b(ΐ)(\β\ + 1)4- c(ί) and #! =max{l,R0},

l/J/,o,^ = n^{1+G(τy^^^ (3.38)

If we choose T > 0 so small that the equation

y= βW{i + G(Γιo}{Λ1 + Γ62G(ry)}|yo ̂  (339)

has two positive roots 0 < 70 < 5^, then we can conclude that

0 < Y M _ 1 ^ y 0 implies 0 < Y M ^ Y 0 . (3.40)

Since |/0 | l f 0,/ϊ = ^o < ^o> we have

l/Jι,o,/ l .τ=y»<?o. (3.41)

The rest of the proof is quite similar to the proof of Theorem 3.1.

Remark. The latter part of Theorem 3.2 was first proved by Wollmann [9].

Acknowledgement. The author appreciates the kind advice of Prof. Ukai, Lemma 2.4 was introduced by
his suggestion, and the proof of Lemma 2.5 was much clarified by virtue of this lemma.
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