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Abstract. We show that a quaternionic quantum field theory can be formulated
when the numbers of bosonic and fermionic degrees of freedom are equal and
the fermions, as well as the bosons, obey a second order wave equation. The
theory takes the form of either a functional integral with quaternion-imaginary
Lagrangian, or a Schrodinger equation and transformation theory for
quaternion-valued wave functions, with a quaternion-imaginary Hamiltonian.
The connection between the two formulations is developed in detail, and many
related issues, including the breakdown of the correspondence principle and
the Hubert space structure, are discussed.

1. Introduction

A basic theorem [1] in the foundations of quantum mechanics states that a general
quantum mechanical system can be represented as a vector space with scalar
coefficients drawn from the real, the complex, or the quaternion fields.1 Standard
quantum mechanics and quantum field theory correspond to the complex case,
while real quantum mechanics has been analyzed by Stueckelberg [3] and can be
shown to reduce back to the complex case. Over the years a number of papers
studying the quaternionic case have appeared and some useful mathematical and
kinematical results have been obtained [4], but the central problem of finding a
viable dynamics for quaternionic quantum theory has remained unsolved. We
report progress on this problem in this paper. Specifically, we show2 that a
dynamics for interacting quaternionic quantum fields can be formulated when the
numbers of bosonic and fermionic degrees of freedom are equal and the fermions,
as well as the bosons, obey a second-order wave equation.
1 If the requirement of an associative multiplication is dropped, there is a fourth possibility,
octonionic quantum mechanics, in which the scalar coefficients form a division algebra [2]. We
assume an associative (but not commutative) multiplication in this paper, and so our analysis does
not apply to the octonionic case
2 A brief, partial account of the results of this paper appeared in [5]
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We begin with a few general remarks. An element φ of the quaternion field has

(1.1)

with e1 > 2,3 the quaternion units satisfying the algebra

eaeb = -δab + εabcec , a, b, c = 1 , 2, 3 , (1.2)

and with ^0,1,2,3 real numbers. The conjugate quaternion <^is defined by

(1.3)

and so quaternionic quantum theory has three imaginary units instead of the
single imaginary unit e3 or i of complex quantum theory, and these imaginary units
do not commute. The differences between quaternionic and complex quantum
theory all stem from these facts. For example, since there are three imaginary units
we cannot automatically convert an anti-Hermitian operator to a Hermitian one
by multiplying by an imaginary unit.

Since we expect only a subset of the usual formalism of complex quantum
theory to generalize to the quaternionic case, we must step back and ask which
features of the standard formalism should be part of any generalized quantum
mechanics, and which are expendable? We will adopt in this paper the philosophy
that a generalized quantum mechanical system is one which satisfies the principle of
superposition of probability amplitudes. We will show that when there is complete
boson-fermion symmetry, this starting point can be naturally developed by
functional integration methods into a quaternionic dynamics and a quaternionic
transformation theory. Our emphasis will be exclusively on the dynamics of time
development; hence spatial coordinates will never explicitly appear in this paper,
but rather are subsumed in a discrete field index.

The organization of this paper is as follows. In Sect. 2 we summarize the
spectral properties of quaternionic matrices, outline the theory of quaternionic
Gaussian multiple integrals [6], and derive a formula for the quaternionic delta
function. In Sect. 3 we formulate a sum-over-histories (functional integration)
approach to quaternionic quantum field theory in terms of a quaternion-
imaginary Lagrangian. In Sect. 4 we derive the Schrόdinger equation from the
functional integral and thus identify the quaternion-imaginary Hamiltonian. A
quaternionic transformation theory is developed in Sect. 5 and is used to rederive
the functional integral from the Schrόdinger equation. In Sect. 6 we show that the
quaternionic field dynamics can be projected down to a complex field dynamics
(still with second-order fermion wave operator) when the interactions are not
intrinsically quaternionic. The correspondence principle, which relates quantum
to classical field equations, is shown in Sect. 7 to break down in quaternionic
quantum mechanics. In Sects. 8 and 9 we examine the state structure which is
implicit in the preceding derivations; the boson states are discussed in Sect. 8 and
the fermion states in Sect. 9. We show that the fermion states require an indefinite
metric Hubert space, and that a first-order wave operator is probably not
permitted in quaternionic field theory. Finally, in Sect. 10 we discuss open issues
and future directions, including the possible relevence of quaternionic quantum
field theory to elementary particle physics.
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2. Kinematic Preliminaries: Quaternionic Variables, Quaternionic Matrices
and their Spectral Properties, Quaternionic Gaussian Multiple Integrals,
and the Quaternionic Delta Function

We give in this section some kinematic preliminaries which are needed later on.
Throughout this paper we will deal with two kinds of quaternionic variables: (i)
Real or bosonic quaternions φ,φ, as in Eqs. (l.iχi.3), with components φa,
α = 0, 1, 2, 3 which are real numbers, and (ii) Grassmann or fermionic quaternions

Ψ > Ψ >

ψ = ψQ + ψ1eί+ψ2e2 + ιp3e3, Ψ = ψo-ψιe1-ιp2e2-ψ^e3, (2.1)

with components ψa which are real Grassmann numbers. We adopt the
convention (justified in Sect. 9 below) that the product of any number of real
numbers and any number of real Grassmann elements is real. Then from
Eqs. (1. !)-(!. 3) and (2.1) we find that if φ, φ' are two bosonic quaternions and ψ, ψ'
are two Grassmann quaternions, the conjugates of their products are given by

W=?Φ, (2.2a)

φφ^-V/V, (2.2b)

~φψ = ϊpφ, (2.2c)

with the — sign in Eq. (2.2b) arising from anticommutation of the Grassmann
elements.

An AT x AT quaternion matrix M has matrix elements Mij9 z, j = 1 , . . . , N which
are real quaternions. The conjugate matrix M has matrix elements Mij9 while the
adjoint matrix Mf has matrix elements

M5 = M,,; (2.3)

together with Eq. (2.2) this definition implies that any two quaternion matrices
M, N obey

. (2.4)

A quaternion matrix M is called self- adjoint if

M = M f, (2.5a)

anti-self-adjoint if

M--M f, (2.5b)

and these properties are preserved under a general quaternion unitary
transformation

M-^U^MU, [7[/t = C7 t [/=l . (2.6)

Self-adjoint and anti-self-adjoint quaternion matrices have special spectral
properties. For any quaternion self-adjoint matrix M, one can find [7] a unitary U
such that U^MU = D with D diagonal and real,

Di}=dfr}> 4=3;.
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For any quaternion anti-self-adjoint matrix M, one can find3 a unitary U such that
De39 with D diagonal, real and positive,

D^d&j, 4 = 3^0. (2.8)

(The reason that the ά{ can be assumed to be positive is that
permitting any diagonal factors of - 1 to be absorbed in the definition of U.) For
M self-adjoint, a quaternion determinant detM can be defined (see Dyson and
Mehta [4]) which has the product decomposition

detM=ΓK, (2.9)
i = l

with di the eigenvalues of Eq. (2.7). For M anti-self-adjoint, the determinant of
MfM has the analogous product decomposition

det(M tΛf)=Πd?, (2.10)
i = l

with dt the eigenvalues of Eq. (2.8).
We are now ready to state the quaternionic Gaussian integration formula [6]

which plays a fundamental role in our construction of quaternionic quantum field
theory,

- exp ( — φA φ — ψ Bψ + ύφ — φu

= 4M-Ndei2Bdet-1(AϊA)LN^M(-ύA-ίu + ξB-iξ + &), (2.11)

with L! the function defined by

j e 21
Lj(j e) - Cjd) + — djj) , j = lj | , Cj(j) = cos; - — sin; ,

] (2.12)
ι / 9 Γ\ 9 Γ

' cosj .

Our notation is as follows: φ and u are column vectors containing N real
quaternions, and ip and ξ are column vectors containing M real Grassmann
quaternions, A=—A^ is an J V x i V quaternion anti-self-adjoint matrix, B = B^
is an M x M quaternion self-adjoint matrix, ft=— ft is a fixed imaginary
quaternion, and the integration measure is defined by4

dφ^dφ&φttφttφ^, dvi = MMMM- (2 13)

The fact that the argument of L7 is quaternion imaginary follows from
Eqs. (2.2X2.4), and similarly the argument of the exponential in the integrand of

3 The proof of the spectral theorem for anti-self-adjoint matrices is a close analog of the proof of
the spectral theorem for quaternion unitary operators given by Finkelstein, Jauch, and Speiser [7]
4 A supermatrix generalization of Eq. (2.11) is also given in [6], but is not needed for the
derivations which follow. The definitions of Eq. (2.13) differ by numerical factors from those of [6]
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Eq. (2.1 1) is quaternion imaginary, apart from the infinitesimal convergence factor
Qxp(-εφφ). Introducing the abbreviation 3 =j e, the formula for L7 in Eq. (2.12)
can be rewritten as the power series

L (Ά- n* +' (2 14)
Lj(j)- ~ + ^ - }

When 7 = 0, Eqs. (2.12) and (2.14) show that the function L reduces to an
exponential,

(2.15)

and hence when the number of bosonic degrees of freedom N is equal to the
number of fermionic degrees of freedom M, Eq. (2.11) simplifies to

M

lim Πί<W ( 4 π 2 M

(2.16)

Equation (2.16) is the starting point for the analysis of the sections which follow.
We briefly sketch the derivation of Eqs. (2.11)-(2.12), since the methods used

will be needed in the Schrόdinger equation derivation of Sect. 4. We begin by
making the change of integration variables

(2.17)

with ί/1} 2 the quaternion unitary matrices which diagonalize A and B respectively.
Since the substitution of Eq. (2.17) can be shown [6] to be an invariance of the
integration measure in Eq. (2.11), the integral reduces to

=ι
(2.18)

with e3DA and DB the diagonal forms of A and B. Making the rescalings

Φ'a^DΆΓ^Φί,, (2.19)

and noting that since ψlDl

Bψ
l is quadratic in the Grassmann components of ψ1, the

only contributions to Eq. (2.18) come from terms in the power series expansion of
the exponential which contain exactly two factors ψlDl

Bψ
l for each ί, Eq. (2.18)

reduces further to

Γ * Ί/- Λ
3) = lim Π ί^exp(-ε^) Π ίdψ* )

*->oL»=ι J \ i = ι /

(120)

-ε^) Π ίdψ* (4π2ΓN
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To calculate IN M> we write
N _ M

3=j e, Σ^W-Σv5V = v e, (2.21)
ί = l i = l

and rewrite the exponential in Eq. (2.20) as

( j _l_ v) e
exp [(j + v) e] = cos |j + v| + sin | j -f v| . (2.22)

Since INtM must have the general form

7 = I J I , (2.23)

we can project out separate formulas for /*;M(/% giving after a little algebra

(2.24a)

M

j|. (2.24b)
i = l

Hence it suffices to evaluate /#,M0) Writing

s2(φ) = 2(φ2φ3 + ̂ o^) , r2(φ)

we can reexpress Eq. (2.24b) as recursion relations describing the effect of adding
an additional bosonic or fermionic integral to /$>M,

/^M0 )-liml^exP(-ε^)(4π2)-1^_1,M(|j-s(^)|), (2.26a)
ε-> 0

iJUG) = ί dψlξ.u- t(|j + r(V)l) (2 26b)

To simplify the bosonic recursion relation of Eq. (2.26a), we introduce polar
coordinates for the quaternionic integration variable φ as follows,

φQ = R cosθί cos 0/2 , ^3 = # sin 0! cos 0/2 ,

φi=Rcosθ2 sin 0/2 , φ2 = R sinθ2 sin 0/2 ,

φ,dφ2dφι=i] R3dR]smΘdΘ f dθ{ \ dθ2. (2.27)
0 0 0 0

The utility of this parameterization becomes clear when we compute φφ and s(̂ ),

= R2 sin 0 sin(θi - Θ2) ,
(2.28)
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evidently the angles Θ, θ^ — Q2

 are Just the polar coordinates of the vector s.
Writing s = R2 and denoting the angular measure for s by dΩ§, Eq. (2.26a) takes the
form

πΓ1 f sdse~*s$ dΩ,I«_1>M(\)-ss\) . (2.29)

Letting y = |j — ss\, the angular integral in Eq. (2.29) can be reduced to an integral
over y, giving finally

f (2.30)
ε^O 0 \j-s\

To simplify the fermionic recursion relation of Eq. (2.26b), we use the fact that
the components of r(φ) obey the identity

r.r~ -SδijipvψiViψi. (2.31)

Developing /^,M- ι(IJ ~ΓI) in a power series in r, only the term of order r2 survives
in the Grassmann integral, giving

«.Mθ>ίdv^ι(φ) φ2/U-ιU)= -4^|j2|J5,M-ιU). (2.32)

A simple induction in N and M now shows that the recursion relations of Eq. (2.30)
and Eq. (2.32), and the initial condition [cf. Eq. (2.24b)]

/o.o(/) = cos/, (2.33)

have the unique solution

(2.34)

To conclude this section, we use Eq. (2.16) to derive a formula for the
quaternionic delta function

δ(φ, v>) = Π δ(φ\))δ(φ\)δ(φ'2 WaMvi ψWi , (2-35)
i = l

which is defined by the property (for arbitrary smooth F)

Π ί dfidψ*) δ(ψ, ιp}F({φ, ιp}) = F({0, 0}) . (2.36)
i=l /

Let us consider Eq. (2.16) with A = ae^ B = b, Λ^O, and with φ interchanged
with M, ψ interchanged ξ, for which it reads

(4π2) M Qxp(-aΰe^u-bξξ-εuu + ψu-ΰφ + ψξ + ξιp)

(2.37)

We will now show that in the limit α, b^O, the right-hand side of Eq. (2.37) is
proportional to the quaternionic delta function. Consider the integral

Π i^wWv^W^ (2.38)
i=l /
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Rescaling ^-»α1/2^, t/;->b1/2φ, this becomes

(2.39)

and expanding F in a Taylor series and applying Eq. (2.16) to the leading term
gives

F({0,0}) + 0(α1/2,fc1/2). (2.40)

Hence we conclude that

δ(φ,ψ)= lim
α,b,ε->

• exp( - aΰe3u — bξξ — βΰu + φu — ΰφ + \pξ + ξψ) . (2.41)

We will henceforth write this formula with the infinitesimals α, fo, ε suppressed.
Since the integration measure duidξi is invariant under the rescaling u-^uc, ξ-+ξc
for any c,5 it is convenient to rescale by c=j and to write Eq. (2.41) as

M \ / M \

Π^duidξί}(2πΓ4Meφ^ Π f <W (2πΓ4McoshΦ,
i=ί J \ i=l /

(2 42)
*=i Σ (Φ'u'-ffφ'+ψ'ξ' + ξ'ψ').

i=l

As an explicit check on the above reasoning, let us specialize to the case M = 1
and verify that

)= lim J dφ(b2/a2)QXp(a~ίφe3φ + b~lψιp) . (2.43)
α,b-»0

According to Eqs. (2.11H2.14), the right-hand side of Eq. (2.43) is given by

lm (2.44)

with the series terminating because (ψip)3 = 0. In the limit of vanishing b only the
quadratic term contributes, giving

A(w)2=ά(r e)2= ~ιhr2 = ψQΨιΨ2Ψ3> (2.45)

where we have used Eqs. (2.25) and (2.31).
It is also instructive to write down the complex analog of Eq. (2.42). In the

complex case all imaginary quantities commute, and so we can treat the bosonic

5 The scale invariance of the measure can be used to show that the reexponentiation property
exhibited in Eq. (2.16) has the following generalization to a wide class of functions. Let f(κ) be a
generalized "positive frequency" function of the imaginary quaternion TC, defined by f(κ)

00

= J dμρ(μ)eμκ, with μ real and with ρ(μ) a quaternion-valued measure. Then
o _

J dψdιp(4π2) ~ lf(κ + φe^φ + ψψ) =f(κ)
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and fermionic cases separately, and we lose no generality by taking M = 1. In the
bosonic case we have

1 1

(2.46)

and similarly in the fermionic case

^^^^ = ddζeφ

9

These equations show that Eq. (2.42) should be thought of as a quaternionic
analog of the Fourier representation for the delta function in the complex case.
This analog has the surprising feature of requiring the inclusion of quaternionic
Grassmann variables !

3. Sum Over Histories Approach to Quaternionic Field Theory

Let us now turn to the central problem of formulating the dynamics of a
quaternionic field theory. We consider a system containing M bosonic and M
Grassmann quaternion degrees of freedom, and take as our fundamental postulate
the assumption that the quantum mechanical transformation function for an
infinitesimal time interval Δt = tj+1 — tj has the form

(3.1)

with L a quaternion-imaginary Lagrangian, L = L1e1+L2e2 + L3>e3. The argu-
ments of L in Eq. (3.1) are to be evaluated in accordance with the trapezoidal rule
at the midpoint of the interval [see Eq. (4.3) below]. Equation (3.1) is of course
simply the natural quaternionic generalization of Dirac's famous observation [8]
in the complex case, which forms the basis for Feynman's [9] sum-over-histories
formulation of complex quantum mechanics. The quaternion imaginary quantity
L is the analog of the complex quantum mechanical zL; as pointed out in Sect. 1,
we cannot convert L to a quaternion-real quantity by multiplying by an imaginary
unit.

Compounding N infinitesimal transformations, we get for finite time evolution,

[J V - 1 / M

j=ι V=ι
• C~* exp[zkL(W- 1/2)]C~* exp[ΛfL(N-3/2)] ... C~1 exp[JίL(l/2)]

(3.2)

in an abbreviated notation according to which the exponent in Eq. (3.1) would be
written as ΔtL(j+l/2). In passing to the continuum limit, we must take into
account the fact that the infinitesimal phases in Eq. (3.2) do not commute, and
hence the product in Eq. (3.2) is not the exponential of the Riemann sum of
exponents, as it is in the complex case. Formally, we can accomplish this by giving
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the quaternion units ea a time label, ea-+ea(t), and defining a time-ordering
operation T as one which orders the eα's with the later time on the left, giving
the functional integral formula

N, VN}> tN\{φo, Vo}> ίo> = const x f d[£|d[γ>]Texp Γf Λ*β(ί)£«(ί)J . (3.3)<{Φ

This construction guarantees that the transformation functions satisfy the
quantum mechanical composition law (the principle of superposition of wave
amplitudes)

/ M

K ί0> = ( Π
\ i=l

for any arbitrary intermediate time ίf.
At this point we will assume a specific functional form for L,

M
=έ Σ

, φ, φ, φ}, ί) = Lkίn- P({0, φ}, ί)

with F quaternion imaginary, and with A1 and βl, respectively, general bosonic and
Grassmann quaternion velocity ("vector") potentials. The term in Lkin quadratic in
time derivatives clearly has a form motivated by the Gaussian integral formula of
Eq. (2.16), with A — e3 and B = 1 . The use of the quaternion unit e3 is arbitrary; by
the gauge transformation φi->qφi with q a constant quaternion with qq=l, which
is an invariance [6] of the integration measure, e3 can be converted to the general
quaternionic imaginary unit qe3q, while preserving the general structure of
Eq. (3.5). Hence Eq. (3.5) is consistent with the principle of quaternion covariance
enunciated by Finkelstein et al. [10], which states that quaternionic quantum
mechanics should not pick out a preferred quaternion frame. (This would not be
the case had we instead used e^φφ to get a quaternion-imaginary quantity, since
the imaginary unit e3 would then be unaffected by gauge transformations of φ.) The
fermion kinetic term in Eq. (3.5) is unconventional in that its leading term is second
order in time derivatives. The Grassmann Hubert space structure implied by this,
and the question of whether our construction can be extended to first-order
fermion actions (probably not), are discussed in detail in Sect. 9 below.

Before proceeding to applications of Eqs. (3.1H3.5), one final issue deserves
comment. The alert reader will have noticed that the conjugation convention
which we have adopted for fermion fields is opposite to that conventionally used in
complex field theory, where one takes ψψ — + φφ, and where the corresponding
term in iL would be ίψ\p cereal x ψQψι, as contrasted with ψψ cereal x ίψQψι in our
convention. This point is discussed in detail in Sect. 9, where we show that because
total fermion number is governed by a superselection rule, complex field theories
have the same physical content in either convention. The convention which we
have adopted is necessary in the quaternionic case, because since the imaginary
units do not commute, it is essential that there be no imaginaries hidden in the
definition of the Grassmann variables.
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4. Derivation of the Schrόdinger Equation from the Functional Integral

Let us now use the functional integration formalism of the preceding section to
derive the Schrόdinger equation satisfied by the wave function

(4.1)
According to Eqs. (3.1)-(3.4) we have

M

i= 1

M \

ί=ί (4.2)

with

(4.3)

Making the change of integration variables φi

0 = φi-{-(2At)ί/2η\
ψ^ = ipl + (2AtY/2ζ\ and substituting Eq. (3.5) for L, the right-hand side of Eq. (4.2)
becomes

/ M \

( Π ί dtfdζ1} C'1 exp[JίI*]!P*,

M

({̂  ψ}, 0

u 3 / . d d \
£=Σ ΣUi^7r+Cijτ (4 4)

i = l o = 0 \ Oφa Oψ'J

To simplify our notation in what follows, we will henceforth suppress the
arguments {φ, ψ}, t of the potentials and of Ψ, and use a summation convention for
repeated indices i, j and α, b. Let us now make the change of integration variables,

+ Δt'ϊ)']Aί ,

In terms of these new variables, JίL* and Ψ* become

A tL* = fe3n" + ζ'lζrί -Δt\V+ ̂ A^A' + βiβi)'] + 0((Δ ί)3/2) ,

(4.6)
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while the integration measure becomes

J 9 (4.7)
i=l i=ί

with J the Jacobian of the transformation of Eq. (4.5). To order At accuracy, the
inverse transformation is

= ( 2 / ι + Λ ί > / + 0 Λ ί 2 ) ,
which implies that

Hence to requisite order the Jacobian is

(4.10)

At this stage there is no confusion if we drop the primes on the new integration
variables. Taking into account the fact that when Eq. (4.6) for Ψ* is substituted
back into Eq. (4.4), the term ΐ>'Ψ and the fermion-boson cross-term part of (D')2f
both integrate to zero (since the exponent Δtΐ? is even in the shifted integration
variables), we have altogether

(4 ">
Note that if we had omitted the velocity potentials we would already have reached
this stage at Eq. (4.4).

We can now proceed by applying the Gaussian integration formula of
Eq. (2.16), with A= — e3 and B= — 1. To reproduce the Ψ term on the left-hand
side of Eq. (4.1 1) we must clearly take C = (4π2)M, and then the first line of the curly
bracket (which is independent of the integration variables η, ζ) contributes

(4.12)
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with

Σ [^({^ψKOM'α^V},*)

(4.13)

The second line of the curly bracket in Eq. (4.11) can be evaluated by noting that
terms with ίή=j integrate to zero; for each ί we can then use Eq. (2.16) with
M->M— 1 to integrate out M — 1 degrees of freedom, yielding

ΛtfJ ψ-ΔtH^Ψ,

with

I** = ί dη dζ(4π2) " *ηaηb exp(^ + CO , /£, = ί dη dζ(4π2) ~ ̂ ζaζb exp(ήe,η + ζζ) .
(4.15)

To compute the integrals in Eq. (4.15), we first use Eq. (2.11) to evaluate the
fermionic integral in lE

ab and the bosonic integral in IF

ab. Restoring the infinitesimal
convergence factor to /fb, we get

/* = π- 2 lim j dη exp( - εήη)ηaηbL. .(ήe.η) , IF

ab = 4~ * f dζ ζaζhLM)

(4-16)

The integral for IF

ab receives a contribution only from the term ζζ/3 in the power
series expansion of L^ [Eqs. (2.14) and (2.44)], giving [cf. Eq. (2.25)]

Iΐt,=l2ίdζζaζb[2ei(ζ0ζι-ζ2ζ3) + 2 cyclic permutations], (4.17)

from which we find

'01= -/ίo= -IF23=IF32= -&ι , (4.18)

with the remaining IF's given by cyclic permutation of the 1,2,3 indices. To
compute 7ffe, we substitute Eq. (2.12) for L_ t and make the change of integration
variables of Eq. (2.27), giving

(4.19)

ΐdθi fdθ2ΩaΩb,
0 0

0 0 0

• \ev sin Θ sin(θl — Θ2) + e2 sin Θ cos^j — Θ2) + ez cos 6>] ,
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with Ωa the angular part of ηa,

Ω0 = cosθ1 cos θ/2 , Ω3 - sin Θ1 cos θ/2 ,
(4.20)

Ωj = cos Θ2 sin Θ/2 , Ω2 = sin 02 sin Θ/2 .

We proceed first to evaluate the radial integrals. Substituting R2 = u, we have

( 2 \
/ 1 =lim4 f u2due~εu\ cosw-f -sinw I

ε-+0 o V U J

00 d
J due~εu-:-(u2smu)
o du

J

° (4-21)

/2=lim(— i) J l
o fltt\ U J

o

j due~εu

o

Γ d Ί
\ — (wsinw) + sinw
[_du J

? - . i / i i \= lim } due εusinw = lim — 1 = 1.
o 2ί\ε — i ε-M/

Hence the quaternion-real part of Jfft vanishes, and to complete the calculation we
must evaluate the quaternion-imaginary angular integral J2ab^^2ba f°r the 10
independent choices of α, b. These integrations are straightforward, and yield

IB =IB = — IB — — IB =—e IB =IB =0
00 ^33^ ^ 1̂1 22^ 3 > ^ 0̂3 ^ 12 » ^

Substituting Eqs. (4.18) and (4.22) into Eq. (4.14), we get

a a
7Γ +

ί/3 (JψQ L/(

a a a a a

Λ Λ O -5
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which by comparison with Eq. (2.25) can be rewritten as

Λ

 M _ _ d d d d

d d d d
Dψ= — -+elir-+e2-— +e3jr-. (4.24)ψ dιp0 dψ1 dιp2 dιp3

Finally, combining Eqs. (4.11), (4.12), and (4.14), we get the Schrόdinger equation
for Ψ,

fiψ
— = -HΨ, # = #kin + #pot, (4.25)

with Hkίn and Hpoi given by Eq. (4.24) and Eq. (4.13) respectively.
The fact that the general form of the quaternionic Schrόdinger equation is

independent of the number of modes M is a direct consequence of the fact that,
when the numbers of fermionic and bosonic modes are equal, the source-
dependence in the Gaussian integral formula of Eq. (2.11) remains exponential.
What happens if we formulate a quaternionic quantum field theory with unequal
numbers N and M of bosonic and fermionic degrees of freedom? We can still define
a functional integral, as in the preceding section, and we can still derive a
Schrόdinger equation, as above, but the coefficients in the Schrόdinger equation
will now explicitly depend on N and M. The one case, when N φ M, where the form
of the Schrόdinger equation does not depend on the numbers of degrees of freedom
is when \M — N\-+ao. In this limit Eq. (2.12) implies that

with the function on the right a fixed point (up to normalization) of the recursion
relations of Eqs. (2.30) and (2.32). We then get a Schrόdinger equation in which
/(j e) of Eq. (4.26) replaces exp(j - e) in analogs of Eqs. (4.12) and (4.15). A little
calculation shows that the effect of this is to multiply the first line in Eq. (4.13) by
1/3, while leaving the second line in Eq. (4.13), and Eq. (4.24), unchanged f apart

from the appropriate changes in the limits of the boson and fermion sums ]Γ\ We

do not pursue this direction further in this paper, but in principle it gives an
alternative method of formulating a quaternionic field theory, and deserves
detailed study.

5. Derivation of the Functional Integral from the Schrδdinger Equation

In the preceding two sections we have very closely followed Feynman's [9]
approach to quantum mechanics, in which the Lagrangian functional integral is
taken as fundamental and the Schrόdinger equation is derived as a consequence.
In the modern literature the customary treatment is to proceed in reverse, starting
from the transformation theory based on the quantum Hamiltonian and showing
that this implies the functional integral formula for the transition amplitude for a
finite time interval. As a check that Sects. 3 and 4 define a consistent quantum
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mechanical scheme, let us show that this reverse procedure works in the
quaternionic case, by deriving Eq. (3.2) from Eq. (4.25). Since the details are quite
complicated, we will consider only the simplified problem in which the velocity
potentials A1 and βl are neglected, and so we take as our starting point Eq. (4.25)
with „

We begin by noting that the reasoning used to derive the V term in
Eqs. (4.12H4.13) shows that for any smooth function / we have

2ζ})Π I dη'dζ (4π2)'M exp ΓΣ (ife^ + CO -AtV]f({(2At^\ (2At
v=ι / L* J

= exp(-zlfF)/({0,0}) + zlί x (F- independent terms) + 0((zlί)3/2)

i = l

• exp(- AtΫ)f({(2At)V2η, (2Ai)"2ζ}) , (5.2a)

and so within a functional integral we have the equivalence (denoted by <-»)

Qxp(AtLkίn-AtV)<-*exp(AtLkjQxp(-AtV) . (5.2b)

Hence it suffices to prove the following modified version of Eq. (3.2),

p v - i / M \Ί
<{ΦN>ΨN}>tN\{Φθ>Ψθ}>tθ>=\ Π Πϊdφ'jdψ}}

]_j=l V = l /J

in(N- 1/2)] eχp[-zlίF(7V- 1/2)]

• (4π2) - M exp \_Δ tLkin(N - 3/2)] exp [ - A tV(N - 3/2)] . . . (4π2) " M

• exp[JίLkin(l/2)] exp[- Jίf (1/2)] . (5.3)

According to the transformation theory based on the quantum Hamiltonian of
Eq. (5.1), we have

<{^N, VM, ίNlWθ> W> *0> = <{̂

(5.4)
Applying the Trotter product formula [11] to the finite-time evolution operator
exp [ — H (t N — ί0)] , we have

= jexp[- f f^( t N - ί0)/ΛΓ| exp[- V(tN- ί0)/N] + 0 j^Jj , (5.5)

and so taking (tN — t0)/N = At, and inserting N—l complete sets of intermediate
states between the N factors on the right-hand side of Eq. (5.5), we get

[JV-1 / M

Π Π
7 = 1 \ f = l
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Hence to prove Eq. (5.3) it suffices to prove that

= (4π2ΓMexp(AtLkin)exp(-AtV). (5.7)

Without loss of generality [12] the coordinate eigenstates \{φ', t//}, ί> can be taken
to be quaternion real,

they are then eigenstates of V and exp( — ΔtΫ) can be moved outside the ket and
factored away. We can now use translation invariance to set {φ\ ιp'} = {0,0}, and so
we have reduced the path integral derivation to the problem of proving

Γ M Ί
<{^,φ},ί|exp(-^ίHkίn)|{0,0},ί>=:(4π2)~Mexp Σ (φie^φi + \pi\pi)l2Δt .

(5.9)

Since the proof of Eq. (5.9) is quite complicated, it will be instructive to first
derive, by a method which generalizes to the quaternionic case, the analog of
Eq. (5.9) which appears in the conventional complex path integral for a single
degree of freedom,

m Y / 2 / mx2

Writing λ = L4ί/2m, and using the coordinate representation form p2= — (d/dx)2,
the left-hand side of Eq. (5.10) is

<x, ί|exp(/W2/δx2)|0, ί> = Qχp(λd2/dx2) <x, t|0, ί> exp(-A52/δx2) . (5.11)

[Derivatives acting to the right of all x's vanish, so exp( — λd2/dx2) is equivalent to
1 in Eq. (5.11).] The matrix element <x, £|0, ί> is just the Dirac delta function <5(x),
which has the Fourier representation

<x,ί|0,ί> = 5(x)=^- ϊ dpeipx, (5.12)
2π -oo

and so Eq. (5.11) becomes

exp(λd2/dx2)^- I dpeίpxQ*p(-λd2/dx2). (5.13)
2π -oo

Let us first give an exact evaluation of Eq. (5.13), and then an approximate
computation [with an error of order 0((At)2J] which is equivalent to the exact
treatment inside a functional integral. For the exact evaluation, we bring the
differential operator inside the exponent in Eq. (5.13) to give

-ί- f dpexp[φexpμδ2/ax2)xexp(-/l32/δx2)]
2π -oo

(5.14)
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where we have again used the fact that d/dx vanishes when acting to the right of all
x's, and have employed the identities

eBAe-* = A + [B,A], e

A + B = eA-*A B*eB , (5.15)

the first valid when [B, [,4,£]]=0 and the second valid when \_A, [_A,B~]~\
= \_B, [;4,#]] = 0. Finally, the standard Gaussian integral

oo /τΛ 1 / 2

J dye-a* + b*=(-\ eb2>4a, (5.16)

allows us to do the final integral in Eq. (5.14), yielding

(5 17)

which is the right-hand side of Eq. (5.10).
In the quaternionic case the presence of non-commuting quaternionic units

invalidates the identities of Eq. (5.15), and so an exact derivation in analogy with
Eqs. (5.10)-(5.17) is not possible. However, to complete the derivation of
Eqs. (5.1)-(5.9), an evaluation of Eq. (5.9) is needed only through terms of order At.
There are two ways of seeing why this should be so. The first is to note that terms
of order (At)2 are of the same order as the error 0(l/N2) in the Trotter product
formula, and so they formally do not contribute to the functional integral in the
zlί-»0(JV->oo) limit. The second way is to note that we need only evaluate the
matrix element of Eq. (5.9) up to an equivalence (<-») inside the functional integral.
Two different forms of Eq. (5.9) are equivalent inside a functional integral if their
0th, 1st, and 2nd moments with respect to the coordinates φl, ψl agree, since these are
all that enter into the Schrόdinger equation derivation of the preceding section.
Since H^in is fourth order in coordinate derivatives, terms of order (At)2Hlin and
higher do not contribute to coordinate moments of Eq. (5.9) of degree £Ξ2, and so
can be dropped from the derivation.

Applying these remarks to the complex analog, we must only prove the identity
of Eq. (5.10) up to an error of order (At)2, or equivalently, since

0, (5.18)

we must prove

/ m \ ι / 2 f — mx2\
<x,φxp(-yίp2/2m)|0,t>H—77 exp —— , (5.19a)

where F(x)<->0 iff

oo

I dx(l,x,x2)F(x) = 0. (5.19b)
— oo

It is now convenient to use a Fourier cosine representation for δ(x\

1 oo

δ(x)=— J dp cosh Φ, Φ = ipx. (5.20)
2π -oo
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Developing Eq. (5.20) in a power series expansion, substituting into Eq. (5.11) and
keeping only terms through first order in λacΔt, we have

MJM

dp£
(5.21)

The commutator in Eq. (5.21) can be evaluated in terms of

/I[δ2/&c2, Φ2] - - 2p2λ + δ, (5.22a)

with δ the differential operator

δ=-4p2λxd/dx, (5.22V)

which has the commutator with Φ2

[δ, Φ2] = - 8p2λΦ2 . (5.22c)

So the power series on the right-hand side of Eq. (5.21) becomes

Γfφ2

/O \ ! «-\

+ Φ2δ(Φ2)n~2+ ...
oo 1

= Σ 7^^L(Φ2r + n(
n = o (2n)l

where we have obtained the final line by commuting all (5's through to the right,
where they vanish. Combining the two terms proportional to p2λ, we get

n = Q i/nj!

oo ^

To show that Eq. (5.24) is equivalent to the exact result of Eq. (5.14), we must show
that

F(χ) = -ί J dp eίpx(e ~p2λ -1 + p2λ) = ̂ - f dp eίpxO(λ2p4)^0. (5.25)

The most direct way to see this is by integration by parts,

oo oo ΓY β \m ~|

f dxxmF(x)= f dp — i^r-l δ(p)\0(λ2p4) = 09 m<3. (5.26)
-oo LV SpJ J

An alternative way, which generalizes easily to the quaternionic case, is to use
dimensional analysis: Scaling p-*p/λ112 in Eq. (5.25), we see that F(x)
= λ~ll2f(x/λll2\ and so

I dxxmF(x)ocλml2. (5.27)
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However, since the power series expansion of F begins with order λ2, the moments
of Eq. (5.27) must vanish for m^3. We conclude, then, that

1 oo
<x,ί|exρ(-Ld£p2/2w)|0,ί>^ J dpexp(ίpc-p2/ί), (5.28)

2π -oo

which on integration yields Eq. (5.19a). Although the approximate derivation just
described is more complicated than the exact analysis, it has the virtue of
generalizing directly to the quaternionic case.

Let us now return to the quaternionic analysis which we left at Eq. (5.9). Using
the coordinate space representation of Hkin given in Eq. (4.24), the left-hand side of
Eq. (5.9) can be rewritten as

). (5.29)

The matrix element <{^, ψ}9 ί|{0, 0}, ί> is just the delta function δ(φ, ψ) defined in
Eq. (2.35), and by the arguments given above, the coordinate moments of Eq. (5.29)
through second order are unchanged if we drop the quadratic and higher degree
terms in J¥kin, giving

}, ί|exp( - A ί£kin)| {0, 0}, ϊ>~δ(φ, ψ)-A ί[Hkin, δ(φ, φ)] . (5.30)

Substituting the representation ofδ(φ, ψ) given in Eq. (2.42), and developing coshΦ
in a power series expansion [with Φ henceforth defined by Eq. (2.42)], the right-
hand side of Eq. (5.30) becomes

(5.31)
=ι

We now introduce some definitions which facilitate the algebra of simplifying
Eq. (5.31). To make the quaternion-dependence of Φ and Hkin explicit, we write

+ Φ2e22 2

ι= Σ ($>ι4-fι4+^2-^^
ί=l

M

2= Σ
1=1

M

3 = Σ

1 __ d ___ δ
l ~ * ~

ĵ  __ d__ J __ d d d

^^
(3 dψ\ dιplQ d\

d d d d d d

dιp\ dψ

dφ\ dφ\ dφ2 d(

(5.32)
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A computation of the commutator \ha, Φ6] gives

IX>Φfc] = 3<5αbK+;k;,A,
d a a a . a . a a

i l ' " " l

(5.33)

and a computation of the commutators of K and λa with Φb gives

M

= Σ 2(4uι

3+4M\+^l2-^

Σ 2 [i(t4«'3 + MΌ4 - MX - M'2M
1

2) + ^
t = l

In terms of these quantities, we find

[-#kin,Φ
2]=i/c + <$, (5.35)

where (5, given by

δ = -¥a*cΦ^cea-lΦκ , (5.36)

has all differential operators ordered to the right, and has a commutator with Φ2

given by
[(S,Φ2]=-tΦfcΦ. (5.37)

Let us now apply these commutators to the evaluation of Eq. (5.31), taking
note of the fact that

is quaternion-real. On substituting Eq. (5.35), the sum in Eq. (5.31) becomes

»=o(2n)!

= Σ
n=o (2n)l
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where to get the second line we have commuted all of the factors δ to the right, and
to get the third line we have set n-+n+ 1 in the final two terms.

We now compare the power series in Eq. (5.39) with the corresponding power
series obtained from the right-hand side of Eq. (5.9), which by the Gaussian
integral formula of Eq. (2.16) has the integral representation

Γ M _• Ί / M

(4π ) exp Σ (φle3φ
l + ιplιpl)/2Δt = 1 Π J duldξl

LJ=ι J V = ι

= (Π ίduldξl )(2πΓ4Mi[exp(-iΛίfc + Φ)

(5.40)

By a /dί-scaling argument analogous to that of Eq. (5.27), the moments of Eq. (5.40)
up to second order are unaffected if we replace exp(—\Δtk±Φ) by the first two
terms in its power series expansion in Δt, giving after some algebra,

Γ M Ί / M \
(4π2ΓMexp Σ (φ'e^ + ψWβΔt \++( Π ίditdξ* (2π)~4M

b = ι J V = ι /

Comparing Eq. (5.41) with Eqs. (5.30), (5.31), and (5.39), we see that to prove the
desired result

Γ M Ί

^ (5.42)

we must show that the integral of the difference between the power series in
Eq. (5.41) and Eq. (5.39) vanishes, i.e.,

/ M \ oo 1

0= Π !duίdξi)(2πΓ4M Σ 7^—^^n + 4)(Φ2γk + n(Φ2

\t = ι J n = o(2n+l)l

This will be true iff

/ M \

0 = Π ί dttdξ* [(3 n + 4) (Φ2)"/c + n(Φ2)n ~ x ΦfeΦ] = 2( - V)neaAa ,
V = ι /

Λa= ( Π ί d i f d ξ * ) l(n + Ί)(Φlna + n(Φlγ^kcΦcΦa-\ ,
\ i=l /

where to get the final line we have substituted Φk=-kΦ- 2kcΦc.
We will prove that the quantities Λa vanish by showing that the integrand in

Eq. (5.44) is a total u, ξ derivative. To do this we note that Φ is invariant under the

interchanges φ1-* — ̂ , u{-^φ\ ψl-+ζ\ ζl^>ψ\ which suggests considering differen-
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tial operators κ\ λf

a obtained by these interchanges from κ;, λa above,

633

a

These have the following commutators with Φa and ka

(5.46)

where

M

Ί = Σ

'2 = Σ
i = l

M

'3= Σ

(5-47)

- V3 V i

Since (fci)
that

(i) 0 =

(ii) 0 = 8flMΛ

M

Π

to prove the vanishing of Λa it suffices to show

ΦckaΦa-] , (5.48a)

(5.48b)
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Now working with the commutators of Eq. (5.46), we find that

(X, (ΦC

2)"MVI -ie^Di;, (Φί)nkhΦc-\ = (n + 2) (Φΐ)"kak'a + n(ΦlΓ lkcΦck'aΦa ,
(5.49a)

which proves that the integrand of Eq. (5.48a) is a total u, ξ derivative, and

[i;, (Φc

2)"/c6Φβ] - DC', (ΦC

2)"«W A* J = - 6(Φ2)"Φfl<F + 2n(Φ2)"- ^.ΦAfcAfci

l)(Φ2)«εa6A/ci, (5.49b)

)"ΦaΨ , (5.49c)

K, (Φ2)"/c6Φ6] = -2(ΦΪ)"ΦaΨ + 2n(Φϊγ-lkeΦeεabdΦbk'd + (ΦfTεabdkbk'd ,

(5.49d)
which, since

/-6 2n -2(n+l)\

det -2 0 0 =4n(2n + 3)Φθ, (5.50)

\-2 In 1 /

proves that the two terms in the integrand of Eq. (5.48b) are individually total u, ξ
derivatives. Thus our proof of Eq. (5.42) is complete.

6. Projection onto Complex Quantum Mechanics6

Since the complex number field C(l, e3) is a subspace of the quaternion field, we
should be able to recover complex quantum mechanics (with a second order
fermion wave operator) as a special case of the quaternionic quantum mechanics
formulated in Sects. 3-5. We will explicitly verify this here, limiting ourselves for
simplicity to the case M = 1 in which a single bosonic and fermionic degree of
freedom is present. We assume that the potential V has the special form

φ3,ψ0,ψ3) (6.1)

with V quaternion real. Then if the wave function Ψ has, at any one time, the form

Ψ=Ψc(ΨQ,Ψ^,Ψι)eC(l,e3), (6.2)

this form will persist in time, and Ψc will obey the complex Schrodinger equation

(6.3)
1-3

In the complex Lagrangian path integral formalism, the Hamiltonian of Eq. (6.3)
corresponds to the transformation function for infinitesimal time interval At

<Φo, Φτ, Ψo, Vs. ί|exp( - M tH)\φ0, φ3, ψ0, ψ3, ί>

_ 1 I 3 0 0

= (2π) exp ^3(^0 + ̂ 3+^0^3)\exp( — e3AtV). (6.4)

' I wish to thank N. Seiberg for raising the question discussed in Sect. 6
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Consistency with the quaternionic path integral formalism of the preceding section
requires that Eq. (6.4) be equivalent to the quaternionic transformation function of
Eq. (5.9) when the unobserved components ^ιf2, Vι,2 are integrated out. Taking
into account Eq. (5.2), which allows us to factor away the potential dependence
exρ(— ezΔtV\ we thus require

j" dφ1dφ2dψ1dψ2(4π2yί exp [(φe^φ + ψψ)/2Δf]

H2π)-1exp ^e^φl + φl + lψ^) ' (6'5)

with <-* the equivalence discussed in detail in Sect. 5. We will verify Eq. (6.5) in this
section by explicitly computing the integral on the left-hand side, and then
comparing the relevant coordinate moments of the left- and right-hand sides.

For convenience in the calculations which follow, we rescale φ-+φ(2At)112,
ιp^np(2At)ί/2, and so (including a convergence factor) Eq. (6.5) becomes

lim J dφidφ2dιpldψ2(2π)~ΐ exp(φe3φ + ψψ — εφφ)+-+exp[3e3(w + 2ψQιp3y] ,
ε->0

,2 , ,2 (6.6)
W = ΦO + Φ3

The first step in the evaluation of the left-hand side is to eliminate the quaternion
dependence, using the method of Eqs. (2.21)-(2.24) above. Writing φe^φ -\-\p\p
— v e, we have ,

( V Θ \
lim^ dφίdφ2d\pidψ2(2π)~1Qxp^ — ε(φl + φ2J]\ cosv-\ -- sini; , v = |v|,

V v ) (6?)

and this must have the general form a + be3, giving the projected formulas

a(v) = lim f dφ1dφ2dψ1dψ2(2π) ~ 1 exp [ - ε(φl + φl)~] cos v ,
ε"° (6.8)

b(v) = lim j" dφldφ2d\pld'ψ2(2π) " 1 exp [ - ε(φl + φ2}] (v3/v) sinv = — ~^— a(v) .
ε-»0 OV3

Hence it suffices to evaluate the integral a(v\ keeping the component v3

distinguished until the end, or equivalently we evaluate

,δ)|), (6.9a)

to first order in <5, in terms of which

a(υ) = a(v, 0) , b(v) = - ̂  a(v, δ)\δ=0. (6.9b)

The remainder of the calculation consists of straightforward differentiations (to do
the Grassmann integrals) and integrations, using the polar coordinates

φ2 = Rsinθ. We skip the details, and proceed to the final answer,

lim J dφ^φ^ψ^ip^π) ~ ί Qxp(φe3φ + ψip — εφφ)
ε-» 0

w = Φo + Φl > /ικ(w) = cos w + 2w si(w) ,
(6.10)

/2jR(w) = — 2 sin w — 4 si(w) ,

/ι/(w) = sin w + 2vv cos w + 2w2 si(w) , /2j(w) = — 6 cos w — 8w si(w) ,
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with si(w) the sine integral

00 QJ1-I f

• / \ ί* -i ^-l ll * / s Λ * \

sι(w)=-J dt - . (6.11)
w t

Clearly, Eqs. (6.10) and (6.1 1) are not the same function as appears on the right-
hand side of Eq. (6.6),

exp [3e3(w + 2φ0φ3)] = cos 3w — 6φ0φ3 sin 3w + e3[sin 3w + 6ψQψ3 cos 3 w] .
(6.12)

However, straightforward integrations show that the moments through second
order of Eqs. (6.10) and (6.12) agree,

00

lim j dφ0dφ3$dψ0dψ3exp[ -ε(φ% + φl)']{l,φ% + φl,ψ0ψ3}
ε^O -oo

• [Eq. (6.10)-Eq. (6.12)] -0. (6.13)

[The needed integrals of si(w) can all be obtained by differentiation of the integral

I dwsi(w>" ε v v---tan~1ε, (6.14)
o ε

which serves as a moment-generating formula.] Hence Eqs. (6.12) and (6.10) are
equivalent within a functional integral, thus proving Eq. (6.6). Beyond second
order the moments of Eqs. (6.10) and (6.12) do not agree; for instance the fourth
order moment difference

lim I dψ0dψ3$dψ0dψ3expί-ε(ψ2

0 + φi) ](ψ2

0 + ψi)ψ0ψ3[βq. (6.10)-Eq. (6.12)]

oclim J dwexp( — εw)w/1R(w) — lim J dwexp( — εw)wcos3w=^ — (— J) (6.15)
e->0 0 ε-"0 0

is non-vanishing. We thus see in this section the same general feature excountered
previously: In quaternionic quantum theory, all identities hold at the infinitesimal
transformation level only! By contrast, in complex quantum theory, many of the
formulas for infinitesimal transformations [such as Eq. (5.10) of the preceding
section] extend to formulas valid for finite time steps as well.

7. Breakdown of the Correspondence Principle

In Sects. 4 and 5 we have seen that there are quaternionic analogs of the
connection, in both directions, between complex quantum theory and the complex
path integral. These, however, form only part of the apparatus of complex field
theory; as shown in Fig. 1, a large part of the formalism of complex field theory
relates to the correspondence principle, which establishes connections, in both
directions, between the quantum theory and the corresponding system of classical
field equations.7 Starting from the complex quantum theory, we have (i) the

7 A brief discussion of the lack of a quaternionic analog of S-matrix theory is given in Sect. 10
below
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Fig. 1. The logical interrelations between complex classical field theory, complex quantum theory
and the complex path integral

Ehrenfest theorem, which states that expectation values of the quantum equations
of motion obey the corresponding classical field equations. The canonical
quantization procedure can be viewed as an algorithm for inverting the Ehrenfest
theorem, by reconstructing the complex quantum theory from its classical or
correspondence limit. Starting from the path integral approach, the identity (ii)

with 5 the action, F an arbitrary functional and d/dxj the derivative with respect to
a canonical coordinate, yields [9] both the Ehrenfest theorem and the canonical
commutation relations with appropriate choices of F. An alternative route from
the path integral to the classical field equations is provided by (iii) the stationary
phase approximation. We will show in this section that the avenues (i), (ii), and (iii)
leading from complex quantum theory to the classical field equations all break
down in quaternionic quantum mechanics.

We begin with (i), the Ehrenfest theorem. We start from the Schrόdinger
equation for Ψ({φ,ψ},i),

dΨ
(7.2)

and for simplicity we orriit the velocity potentials A1 and βl so that

7? = Hkin + F, (7.3)

with Hkin given by Eqs. (4.23)-(4.24). As a start, we must define our Hubert space
inner product, in terms of which we can construct operator expectations. A
reconsideration of the analysis of Sects. 3-5 shows that we have already implicitly
specified the inner product [see, for example, Eq. (3.4)] to be

HΠ
V i = l

_
Φ({φ9 ιp}9 f)Ψ({φ9 ψ}9t). (7.4)

As a check, we note that H is anti-self-adjoint with respect to this inner product,
and consequently the inner product is time-independent for states which evolve in
time according to Eq. (7.2),

δt '

f)ψ
,— = -(HΦ,Ψ)-(Φ,HΨ) = (7.5)
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We will see in Sect. 9 below that the quaternionic Hubert space splits into two
superselection sectors, in which Ψ is respectively even and odd in the Grassmann
variables. In the even sector the norm (Ψ, Ψ) is real and we can define the
expectation value <0> of an observable 0 by

(θy = (Ψ,ΘΨ)/(Ψ,Ψ). (7.6)

In the odd sector (Ψ, Ψ) is quaternion-imaginary, and since the quaternion units
do not commute the expressions (Ψ, Ψ)~\Ψ, ΘΨ) and (Ψ, βψ)(Ψ, Ψ)~ 1 in general
differ, and so in this sector we cannot define an unambiguous expectation value.
Henceforth in this section we confine ourselves to the even sector, in which we
consider the expectation of a bosonic variable

{φiy = (Ψ,^F)/(Ψ,Ψ). (7.7)

To study the quaternionic version of the Ehrenfest theorem, we consider the
time evolution of the expectation in Eq. (7.7),

(7.8)

To simplify the right-hand side of Eq. (7.8) we need the commutator [H, φζ], which
receives a contribution only from the term with i=j in ίϊkίn of Eq. (4.23), giving

-*__*, ±

, , δ , S
(7.9)

The quantities p{ defined in Eq. (7.9) are self-adjoint, but since they are not
quaternion real they have non-vanishing commutators with jF?kin, and so dζp^y/dt
does not satisfy an analog of the Ehrenfest theorem. The #j's also do not satisfy the
standard canonical commutation relations, since

and since

with C the non-diagonal matrix given by

e, — ί

e —e

(7.10a)

(7.10b)

(7.10c)

;3J
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with rows and columns in 0123 order. Clearly, the analogs in quaternionic
quantum theory of the usual canonical momenta are the anti-Hermitian momenta
fa defined by

«=4; (7 u)

these satisfy, together with the φ^s, the commutation relations

[& Φti = [ft, ft] = 0 , Wί, PR = ~ δίjδab . (7.12)

The pl

a's have a vanishing commutator with Hkin, and so satisfy an Ehrenfest
theorem analog

However, Eqs. (7.9) and (7.13) cannot be combined to give an analog of the
Ehrenfest theorem for d2(φj

ay/dt2. The reason is that when we express the pj's in
terms of the pj's we find

<riy=<-cabpiy, (7.14)
and since Cab does not commute with the quaternionic wave function Ψ, we cannot
relate the right-hand side of Eq. (7.14) to the <pj>'s. [In the complex case the pj's
and pi's are related by a factor of i, which commutes with everything, and so the
standard Ehrenfest theorem relating d2(φj

ay/dt2 to ( — dV/dφj

ay immediately
follows.]

We turn next to the path integral formalism, and examine the quaternionic
analog of Feynman's identity of Eq. (7.1). Following Feynman, let F({φ(f),ψ(i)},
*o = * = *#) be a quaternion-real functional of the coordinates along the entire time
path in Eq. (3.3), and define

S = Jduea(u)La(u).
to

Let ql be any individual component φ{ or \p{ at intermediate time ί7; since the
integration measure is invariant under the change of integration variable

/> we Eet the identity

(7.16)

The first line in Eq. (7.16) clearly gives (dF/dq^s, but despite the time-ordering the
second line is not equal to

s, (7.17)

because even for fixed time tI the quaternion units ea(tj) do not commute. Going
back to the ordered product for which Eq. (7.15) is a shorthand, the ^-dependence
of the integrand resides entirely in the following factors (F can appear anywhere in
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the ordering since it is quaternion-real)

eΔtL(I+ ΐ/2)peΔtL(I- 1/2) ^ (7.18)

and we cannot derive Feynman's formula because

and similarly for the right-hand factor. The best one can do is to get a formal result
by using the equation, valid for the parametric variation of exp$ with & any
operator,

- -e-s&e&. (7.20)
OA 0 uλ 0 dA

Hence the quaternionic generalization of Eq. (7.1) states: <F>§ is replaced by 0
when the factor F in the ordered product of Eq. (7.18) is replaced by

. (7.21)
dq1 }

We have not explored the consequences of the resulting formula, but since it differs
in an essential way from Feynman's, the derivation given by Feynman of the
Ehrenfest theorem and the canonical commutation relations breaks down in the
quaternionic case. This is of course completely consistent with what we found from
the Schrόdinger equation analysis of Eqs. (7.2)-(7.14).

We turn finally to the stationary phase approximation, which is an alternative
route by which classical equations are obtained as approximations to the path
integral in the complex field theory case. In the quaternionic case, the stationary
phase approximation breaks down for two reasons: (i) First, because of the time-
ordering in Eq. (3.3), the phase appearing in the functional integral is not the
"classical" quaternionic action,

Texp Jdtea(t)La(t) Φexp[£.clβMical..],
Uo J

. = dteaLa(t). (7.22)

(ii) Second, even if (i) is ignored and the time-ordering in Eq. (7.22) is dropped, in
general the variational problem <5S»classical. = 0 has no solution. The reason for this
is that S<<ciassicai" is stationary if

) = Q9 α=l,2,3, (7.23)
to

and the three real action components of Eq. (7.23) are not in general stationary on
the same trajectories.8 Hence the quaternionic functional integral does not have a

8 It is easily seen that L has stationary action trajectories only in the special case when the
variation of the potential V has the form

δ V=
i

Thus the quaternionic oscillator L=^($e3_φ — ω2φevφ), with ev an arbitrary unit quaternion, has
stationary action trajectories, but L=^(φe3φ — ω2evφφ) does not, and neither does the quater-
nionic gauge field action L = Fμve3Fμv, Fμv = dμAv — dvAμ + \_Aμ, A^\ (with μ, v Lorentz indices)
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Fig. 2. The part of Fig. 1 which survives in the quaternionic case, and the connection (by symmetry
breaking) to the complex case

semiclassical limit, again showing that the correspondence principle breaks down
in quaternionic field theory.

To summarize, then, the only part of the complex field theory formalism of
Fig. 1 which generalizes to the quaternionic case is that shown in Fig. 2.
Quaternionic field theory can have a classical limit only through a projection (in
which a preferred quaternionic unit is singled out) down to a complex field theory,
which then has a complex classical limit of the usual kind diagrammed in Fig. 1.

8. Boson State Structure

In the formulation of quaternionic field theory given in Sects. 3-5, the underlying
Hubert space structure has remained implicit. The aim of this section and the next
is to explicitly exhibit the structure of the Hubert space for bosonic and fermionic
quaternion degrees of freedom. For simplicity we restrict ourselves to M = 1 (one
bosonic and one fermionic degree of freedom), and start in this section with the
bosonic sector. As discussed in Sect. 7, the scalar product implicit in Sects. 3-5 is,
for bosons,

(Ψ'9 Ψ) = $dφ0dφldφ2dφ3Ψ'(φ0, φl9 φ2, φ3)Ψ(ψ0, φl9 φ29 φ3) . (8.1a)

This inner product satisfies the standard Hubert space reality condition

and gives a norm

(Ψ9 Ψ) = ί dφQdφ,dφ2dφ3\Ψ(φQ9 φ,9 φ29

which is positive definite, and vanishes only for Ψ = 0.

(8.2)
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Let us now exhibit a complete set of bosonic states, which are simultaneously
eigenstates of the boson kinetic operator Hkίn= —(l/6)Dφe3Dφ. To do this let us
start from the complex completeness relation

(2π)4

which can be rewritten in terms of real functions as

J dp(cosλ cosΓ + sin A sinΓ) - δ(φ - φ') . (8.4)
(2πT

Defining the basis functions

ψpe(φ)= cosλqe(p), Ψpo(φ)= 2 sinλq0(p), (8.5)

with qβj0 unit quaternions which can depend in an arbitrary way on p, the
completeness relation takes the form

(8.6)

The bases Ψpe and Ψ po are eigenstates of //kin,

, HkίnΨpo = Ψpoλ0(P) ,
(θ.7)

Since

4(pιP3-PoP2)2 + 4(p0p1+p2p3)
2 + (Po + P3-P?-pi) = (Po+P? + Pi+P3)2,

(8.8)
we can rewrite /ie>0(p) as

with eβ9θ unit imaginary quaternions which can be given any orientation by an
appropriate choice of ge>0(p).

In conclusion, we remark that ordering λβ}0(p) to the right in Eq. (8.7) was
deliberate; the completeness relation for a general anti-self-adjoint operator Θ in a
quaternionic Hubert space takes the form

(9= Σ |0'X<0'I, (8.10a)
eigenvalues o'

which implies

0|o">= Σ |0'X<0Ίo"> - |0">o". (8.10b)
eigenvalues o'

We cannot rewrite |ox/Xx as </Ί0//X since both |ox/> and o" are quaternion-valued,
and hence non-commuting. In terms of eigenstates |ox> the completeness relation
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reads

1= Σ |o'Xo'|. (8.11)
eigenvalues o'

To get Eq. (8.6) we let \o'y = \pe,poy and take the < '̂| ... \φy matrix element of
Eq. (8.11), giving

, ,
(8.12)

Thus apart from care in factor ordering, the bosonic Hubert space structure is
entirely conventional.

9. Fermion State Structure

We turn our attention next to the state structure in the fermionic sector. Here we
will find a number of unconventional features, arising both from the quaternionic
structure and the use of a second order wave operator. As already noted in Sect. 7,
the derivations of Sects. 3-5 implicitly assume the fermionic scalar product

We cannot deduce from Eq. (9.1) that (Ψ\ Ψ) = (Ψ, Ψ% because Ψ and Ψ' are sums
of monomials formed from αrcίz-commuting Grassmann variables. To study the
reality properties of Eq. (9.1), we employ the fact that the fermionic state space is
finite dimensional, and so the general form of the wave function Ψ is

Ψ=ψe+Ψ0,

with b,f,cl9gl9... general quaternion coefficients. To determine the quaternion
conjugation properties of Grassmann monomials, we jαse the following simple
lemma: For any real or Grassmann quaternion Q,Q = Q iff Qef — efQ, f= 1, 2, 3.
[The proof follows immediately from Eq. (1.2).] Since we have defined the
Grassmann components \pa to be quaternion-real, we have ψa — ψa, and the lemma
then implies ψaef = efψa, f '= 1 , 2, 3 . This in turn implies that any monomial formed
from the φα's commutes with ef, f= 1, 2, 3, and hence by the lemma is quaternion
real. (Although the argument is elementary, we have formalized it in this way to
stress the distinction from the complex case, where iz = zi does not imply z = z.)

Since we have just shown that the Grassmann monomials obey

(9.3)
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the adjoint wave function appearing in Eq. (9.1) has the form

and the Grassmann monomials can be freely commuted through the quaternion
coefficients in Eqs. (9.2) and (9.4). Substituting Eqs. (9.2) and (9.4) into Eq. (9.1), a
short calculation shows that

We see that the fermion state space splits into two orthogonal sectors; in the sector
spanned by even Grassmann monomials, the inner product of Eq. (9.1) satisfies the
reality condition

(ΨM=(ψe,ψ'e), (9.6a)
while in the sector spanned by the odd Grassmann monomials, the inner product
satisfies an anti-reality condition

(Ψ'09Ψ0)=-(Ψ09Ψ'0). (9.6b)

Equations (9.6) imply that the norms of even and odd monomials satisfy9

ΪΨ Ψ~\ = (Ψ ψ} (9 7a)

(Ψ09Ψ0)=-(Ψ09Ψ0), (9.7b)

and are quaternion-real and quaternion-imaginary, respectively! Furthermore,
there is no way of redefining the inner product, by multiplication by an imaginary
unit, so as to make (Ψ0, Ψ0) manifest real. We conclude that in quaternionic
quantum theory, the physical Hubert space must be constructed from the states Ψe

only. This restriction is consistent if the Lagrangian L is even in the Grassmann
variables, since then only even states can be prepared from the vacuum by any
physical processes.

Before continuing our discussion, let us pause to examine the complex analog
of Eqs. (9.1)-(9.7). In the complex case we have

Ψ

9 These statements generalize readily to the case when the number of quaternionic fermion
degrees of freedom is any M > 1. The product of two monomials of degrees dl9 d2 contributes to
the inner product only if d1 -\-d2~ 4M; hence d1 and d2 are either both odd or both even. The
interchange of the two monomials results in a factor (— I)dld2= —1(+1) in the odd (even) cases
respectively, resulting in an inner product which is quaternion-imaginary (real)
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If we conjugate ψo^i as in Eq. (9.3), so that tp0Vι =/ΨoΨι> then we find

Φ=Ψ'e+Ψ'09 Ψ'e

This gives for the inner product

(Ψ\ψ) = (ψ

(Ψ'e* Ψe) =f'g

and so again we encounter an imaginary norm. However, in the complex case the
lemma used to derive Eq. (9.3) does not hold, and so it is perfectly consistent to
define the conjugation of tp0Vι by v ;oV ;ι= t/ ;ι1Po= = ~VWι The second line in
Eq. (9.9) is then changed to

and the second line of Eq. (9.10) becomes

We, Ψe)=f'g-g'f => We, Ψ e) = ~ (Ψe, Ψ'e) - (9.1 lb)

The norms in the even and odd sectors are now both imaginary, but we can make
them both real by multiplying by ί, effectively making the inner product

With VWl = V l V θ , (9-

The conventions of Eq. (9. lie) are the standard ones used in complex field theory.
The same physics is in fact obtained irrespective of whether the standard
conventions of Eq. (9. lie), or the quaternionic conventions of Eqs. (9.1)-(9.7), are
used. To see this, we note that (i) in theories of physical interest, fermion number is
governed by a superselection rule, and so the fermionic Grassmann variables
always appear in the action in the combination ΨΓψ, with Γ some matrix and ψ a
column vector with components of the form φ0 -f ίιpl (ii) For such combinations,
the two conventions are related by

(ψl VOstandard convention = i l\Ψ* Vvquaternionic convention •> (" 1 )̂

since Eq. (9.12) is the condition for them to have the same Hermiticity properties.
However, the factor ± i can be absorbed in the Grassmann integration measure in
the functional integral formulation [13] of the S-matrix, giving the same S-matrix
up to an unobservable overall phase. With these remarks in mind, in the remainder
of this section we will consistently use the quaternionic conventions, even when
discussing the complex case as an illustration of our formalism.

Since the quaternionic Grassmann vector space is an indefinite metric Hubert
space, let us next discuss some general properties of the indefinite metric
formalism. Let /f(tp)Ξ<ι/;|i) be a complete set of polynomials formed from the
Grassmann variable ψ, orthogonal (but not orthonormal!) with respect to the
inner product f dipj'f. We thus have

cA r J (9.13a)
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with qφO a state normalization which in general can be quaternion valued. In the
transformation theory notation, Eq. (9.13a) can be rewritten as

<vli> = cAr s (9 13b)

which implies the representation of unity

l = f d φ l V > < V > l (9.14a)

Equation (9.14a), or rather its generalization to include bosons

\, (9.14b)

is what we used in constructing path integrals in Sects. 3 and 4, and we see that
these representations of unity are independent of the normalization of the basis.
The c/s do enter explicitly when we construct δ(ψ'— ψ) from the polynomials /i(φ),
since we have the identity

To prove Eq. (9.15), we let

(9 16a)
f c*

and for any index j we consider the integral

J dψ F(Ψ', vO/Xv) =Σ /XvO-ί dv>7MfXvO =Σ ΛvO- V. =//v').
Cί ' Ci (9.16b)

Since the //φ) form a complete basis set, Eq. (9.16b) implies that

K^ (9.17a)

in the quaternionic case, and

(V/-V)o(V/-V)ι (9 17b)

if we specialize to the complex case. A second place where the c/s enter explicitly is
if we try to find linear combinations of the polynomials ft(ip) which are eigenstates
of the anti-Hermitian Hamiltonian operator H. Let us consider the matrix
representation of H,

(9.18)

which defines a finite-dimensional quaternion-anti-self-adjoint matrix <f|/ί|ΐ>.
The general spectral theorem quoted in Sect. 2 guarantees the existence of a
unitary matrix which diagonalizes <ix|JΪ|i>,

ΣU,m<ίW\iyUίn = δmne3dn. (9.19)
rr

The left-hand side of Eq. (9.19) can be rewritten as

ί dψ Σ MψWi'mHΣfiίψWin, (9.20)
i' ί
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but this does not mean that

dn , (9.21)
i ί

since Eq. (9.21) would imply

(9 22a)
i

that is

^^Σϋ^^. (9.22b)
i

Equation (9.22b) is true for cf = 1 (the usual case of orthonormalized states), but
fails for general cb and so the diagonal transformation of <z/|H|i> does not in
general lead to polynomial functions of φ which diagonalize H.

Let us now apply this general formalism, first to the complex, and then to the
quaternionic, case. In the complex case we take as the orthogonal basis functions

, (9 23a)

which have the respective norms

ίdVldφo7β±(v)/β±(v)= ±1 , f ΦMv^>7β±(vO/o±(V>)= T i - (9 23b)

Hence from Eqs. (9.15) and (9.17b) we expect

+f0 + (tpOίfo + (V) -/o - (V0i7o - (V) , (9-24)

and substitution of Eq. (9.23a) shows that this is indeed the case. To illustrate the
remarks of Eqs. (9.18)-(9.22)J let us consider the effect of the second order wave
operator [cf. Eq. (6.3)]

ff-ic--, (9.25)

looking first at the even sector. The matrix O + |//|e±> is

ic( 1-1

2 V -I I,' (9'26)

and is anti-Hermitian, with eigenstates I J and f ). However, the linear

combinations fe+ ±fe- are not both eigenstates of H; we instead have

ff(fe+ -/β.)= -ic(/β+ +/β_), (9.27)

and clearly there is no multiple of fe+ -\-fe- which, when added to fe+ —/e_, makes
the latter an H eigenstate. The reason for this is that the norms of fe± are opposite
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in sign, and so the even sector by itself is an indefinite metric space containing zero
norm states fe+ ±fe-. In the odd sector H vanishes identically, but the odd sector
is also an indefinite metric Hubert space, with zero norm states /„ + ±f0 _ . Since the
action of the time evolution operator exp( — Hi) on fe+ ±fe-, f0+ ±f0- is

exp(-£ί)(/β+ -fe-)=fe+ -fe-+ίct(fe+ +/β_), (9.28)

all states are propagated forward in time and the + and - states in the even sector
are mixed. Hence the use of a second order fermionic wave operator is necessarily
associated with an indefinite metric state structure.

To achieve a definite metric fermionic Hubert space with no zero norm states,
we must eliminate one of the two states in each of the even and the odd sectors.
Eliminating fe_ and /0_ and keeping fe+ and fσ+ (this choice is arbitrary, and is
equivalent to fixing a phase convention), the completeness sum of Eq. (9.24) is
altered into the + state projection operator

XT v- (9 29)Now writing

Ψ = ψ0 + ίψ1, φ' = V/0 + iv>l, V> = ψ0-iv>ι, V^Vo-iv'i , (9-30)

a short calculation shows that

~ ί

and so Eq. (9.29) can be written as

P + (φ',φ)=^5'. (9.32)

Hence the + state projection operator is equal to the exponential of the discrete
action constructed from the symmetrized first order Lagrangian

*-£'-*£•
We have thus recovered the standard result that fermion path integrals construc-
ted using a first order fermion wave equation have a definite, rather than an
indefinite, Hubert space structure, with no zero norm states.10 In writing Eq. (9.31)

10 Usually this result is obtained by using coherent states [14], but since complex coherent states
do not appear to have a quaternionic analog, we have followed an alternative route which extends
in a natural way to quaternions
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we have actually abused the tilde notation, since although L of Eq. (9.33) is self-
adjoint, L = L, the discrete version of AS = iAtL given in Eq. (9.31) is not anti-self-
adjoint. We can get an anti-self-adjoint discrete action AS by adding a term which
is higher order in At, and hence vanishes in the continuum limit,

= ̂ /-(φ/-φ)o(φ/-φ)ι. (9.34)

Exponentiating AS and using Eqs. (9.32) and (9.24), we find

^ P + (φ/,φ)-P_(φ/,φ). (9.35)

Although Eq. (9.35) does not annihilate the - states, it also does not mix the + and
— states, and so an alternative to using %eΔ§' in the path integral is to use eΔ§

9

together with the subsidiary condition of requiring the - components of the wave
function to vanish on any one time slice.11

Having completed this somewhat lengthy analysis of the complex case, we turn
next to the fermionic sector in quaternionic field theory. We choose a 16 state
orthogonal basis as follows,

feO±(ψ)=-7=(l±ΨθΨlΨ2Ψ3)> foO±(ψ)=-7=

fei±(ψ) = y-0/VPι ± ΨiΨi) , Li ±(V>) =-τ=

(9.36)

/e3±(vO=^(VW3±VlV>2), fo3±(ψ)=-7Ξ(

With respect to the inner product of Eq. (9.1), these have the norms

(fea±Jea±)=±ί, * = 0 , 1 , 2 , 3 , (foa± > foa±) = + ̂  , fl = 0, 1, 2, 3 .(9.37)

The completeness relation of Eq. (9.15) thus becomes

Σ

(9.38)

11 If one uses ^eΔ§\ the Hamiltonian is written in the standard form HQQ + iHol\p-\-\p'Hi0

— HQ0)ψ, while to use eA§, one must write the Hamiltonian as H0Q + iH01j(ψ' + ψ)
iψ'(Hίί — HQQ^Ψ' + Ψ), which differs from the standard form by terms of order At
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which is readily verified by substituting Eq. (9.36). Next, we compute the action on
the basis states of the anti-self-adjoint Hamiltonian [cf. Eq. (4.23)]

d d d d

3 \dψ2 dψ3 dψ0 δψi

e2f d d d d \ e3f d d d d .
~t" ~^~ I "^ ^ ^ "^ I "I" ~τ~ I "̂  "^ "T ~τ I . (y.jyj

3 \^tp3 vψi oip0 oψ2J 3 V^ipi oψ2 cψQ o\p^J

In the even sector we find

HfeQ± =

Hfea+=Q, a=l,2,3, (9.40)

Hence there is no way of choosing a subset of four non-zero norm states in the even
sector which propagate without mixing with states with the opposite sign norm.
(The best we can do with a subsidiary condition in the even sector is to restrict to a
basis of three positive norm states fea + , and one zero norm state feQ + +fe0 _ , which
are all annihilated by H, and hence propagate without mixing.) In the odd sector
we find

Hfo0± = Tfe(/βl+ +/ol-)-*l(/o2+ +/o2-)+/o3 + +/o3-] »

^/ol± = ±i[βl(/β3++/o3-) + «2(/oO++/oO-)+/o2++/o2-] ί (9-41)
Hfo2± = ±

We conclude from Eqs. (9.40)-(9.41) that in the quaternionic case, just as in the
complex case, the use of a second order fermionic wave operator is necessarily
associated with an indefinite metric state structure.

We finally address the question of whether a quaternionic field theory can be
formulated using a first order wave operator for the fermions. We consider only the
free field case with no potentials, take the bosonic kinetic term to have the form of
Eq. (3.5), and examine the term of order (At)0 in Eq. (4.2) for the time development
of the wave function Ψ. A first order formalism will work for an arbitrary number
of degrees of freedom only if, when one bosonic and one fermionic degree of
freedom are integrated out, the sum 51 of quaternion-imaginary kinetic Lagran-
gians for the remaining degrees of freedom re-exponentiates. That is, we must have

e*Ψe+(φ', ψ') = $dψ eΔS^'^Ll(AS(ψ/, ψ) + Λ)Ψe + (ψ', ψ) , (9.42)

where Ψe+ lies in a 4-state definite-norm subspace of the even part of the fermionic
state space, and where we have allowed for the possible presence of a quaternion-
real action term of higher order in At [cf. Eq. (9.34)]

ΔS(ψ', ψ) = B(ψ'-ψ) (φ'-φ) (9.43a)
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in addition to the quaternion-imaginary first-order action.

-V)] . (9.43b)

It is highly implausible that Eq. (9.42) can be satisfied with any choice of the real
constants A, B, C for general quaternion-imaginary ft. A necessary (but not
sufficient) condition is that Eq. (9.42) be satisfied for it = 0, which requires

p = eΔS(v' rt^L1(A§(ψ',ψy) (9.44)
o

to act as a unit projection operator in some 4-state definite-norm subspace of the
even part of the fermionic state space. By a tedious calculation (see appendix), we
have proved that this is not possible in the case B = 0. When B is non-zero, there is
one additional parameter, but symmetries present when B = 0 are broken, and so
further independent conditions on the parameters A, J3, C must be satisfied in
order for P to have the required projection property. It is likely that the
impossibility proof extends to this case also, but because of the algebraic
complexity involved we have not attempted to carry it through.

10. Open Issues and Future Directions

We conclude by discussing in this section a number of specific open issues
connected with the calculations described above, and then sketch directions which
we intend to pursue for the future development of quaternionic field theory.
Among the open issues raised by our analysis are :

1. What is the deeper reason for the simplification of quaternionic Gaussian
integrals when the numbers of bosonic and fermionic degrees of freedom are
equal? One would like to understand why the bosonic recursion relation of
Eq. (2.30) and the fermionic recursion relation of Eq. (2.32) are effectively inverse to
one another.

2. Is there a natural way of rewriting the representation of δ(φ'—φ,\p'—\p)
obtained from Eq. (2.42) in spectral form,

δ(φ'-φ,ψ'-ψ)=
\ί=l

(10.1)

One cannot just write exp(Φ'— Φ) = expΦ'expΦ because the quaternion units do
not commute.

3. Can the derivation of the quaternionic functional integral given in Sect. 5 be
simplified? We note here the following curious fact. Suppose we try to follow the
exact complex derivation of Eqs. (5.10}-(5.17), and make the (unjustified) appro-
ximation, denoted below by ~, of neglecting the non-commutativity of the
quaternion units by replacing quaternion unit products eaeb and ebea by — δab. We
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then get instead of Eq. (5.31),

/ M \
ί Π ί du*d? (2πΓ4Meφ-At[H^φ], (10.2)
\ί= 1 /

with

β, Φbeb-] - -δ a bAt[h a, Φb-]=-Atκ. (10.3)

Substituting Eq. (10.3) back into Eq. (10.2) and commuting derivatives through to
the right (where they vanish) we get

eΦ-Δtκ^eΦ-±[Φ, -Atκ] = eΦ-±Δtk, (10.4)

which is the correct answer! Is this "derivation" an accident, or can a way be found
to justify it?

4. The proof of the absence of a first order formalism in quaternionic field
theory, started at the end of Sect. 9, needs to be completed.

5. We have shown in Sect. 7 that certain features of complex field theory break
down in the quaternionic case. There are many other aspects of the complex
formalism, such as the canonical formalism, coherent states, and the Euclidean
continuation, for which no apparent quaternionic analog exists. Obviously, not
being able to find a construction is not the same as proving none exists; some
definitive results are needed here.

6. As discussed briefly at the end of Sect. 4, can one obtain satisfactory
quaternionic field theories in the limit |M — JV|->oo?

Some major directions which we intend to pursue in the future, and related
questions are:

I. A spatial manifold structure must be included, by reinterpreting the index i
labelling degrees of freedom as a spatial coordinate label. One can then gauge the
quaternionic unit e3 in the bosonic kinetic action, thus realizing the "General Q
Covariance" of Finkelstein et al. [15]. The functional integral formalism of
Sects. 3-6 will have to be extended to constrained systems and Feynman rules
developed in a way which bypasses the canonical formalism; very likely, this can be
done by the heuristic method of dividing the functional measure by the infinite
gauge orbit volume. The quaternionic field theory analogs of the BRS transforma-
tions, Poincare invariance, graded Poincare invariance (Poincare supersymme-
try), the TCP theorem, and the spin-statistics connection will all have to be worked
out, as well as the renormalization group structure of quaternionic field theory.

II. The fermionic structure must be studied in greater detail. The fermions in
the quaternionic field theories we have constructed obey a second-order wave
equation. This has two possible advantages: (i) The normalization constant in the
functional integral is just a phase space factor which is independent of At,
suggesting that perhaps functional integrals with complete boson-fermion symme-
try may be mathematically better-behaved objects than functional integrals
without such symmetry, (ii) Theories with second order fermions may be
manifestly gauge-anomaly free, since they may behave in this regard as do purely
bosonic theories [16]. In the supersymmetric case, they may be free of conformal
anomalies as well. This is clearly an important question for investigation.
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However, second order fermions have obvious problems: they involve an
indefinite metric state space, and they do not correspond to observed fermionic
matter. Methods must be developed to get first order fermions from second order,
either by gauging away the indefinite metric states [17], or by symmetry breaking
which turns the indefinite metric states into heavy, unstable degrees of freedom
which do not appear in the asymptotic spectrum [18]. An interesting possibility
[19] is that the appearance of chiral fermions in the electroweak interaction, and
the fact that these fermions obey a first-order rather than a second-order dynamics,
are related.

III. Symmetry breaking mechanisms must be studied, particularly ones which
break quaternionic field theory down to complex field theory. Since a commuta-
tive quaternionic tensor product does not exist [4,20], asymptotic states and an
S-matrix can probably only be constructed for a complex substructure of the
quaternionic state space, and so symmetry breaking is essential to make contact
with observed physics.

IV. When I, II, and III are understood, particle physics model-building may be
possible. Some interesting questions here are the following: (i) Can the richer
structure of quaternionic field theory lead to the dynamical generation of some of
the Lie group structures of the standard model, such as the SU(3) color12 or flavor
symmetries? Can the breaking of quaternionic field theory down to complex field
theory help resolve the hierarchy problem? Do quaternionic field theories offer
new mechanisms for solving the cosmological constant problem? (ii) In quater-
nionic field theory, e3 and — e3 are related by a unitary transformation which is
continuously connected to the identity, whereas in complex field theory, i and — i
are related by the anti-unitary operation of T inversion. Can the observed small T
violation in particle physics be interpreted as an artifact of the breaking of an
underlying quaternionic field theory down to a complex one?

Appendix: Nonexistence of First Order Formalism (β = 0 Case)

We consider here the 51 = 0 case of Eq. (9.42), specialized to B = 0. Changing
variables according to ψ' = ξ, ιp = ξ + ζ, and suppressing the boson variable φ\
Eq. (9.42) becomes

~

Substituting powers of AS into the expansion

^34, (A.2)

12 For an earlier version of these speculations see [21]; the equations of this reference involve
complexified quaternions (i.e., use 1, el} e2, e3, and i), and hence do not in fact constitute a
quaternionic field theory. I wish to thank C. N. Yang for pointing this out to me
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we find after considerable algebra

~ {̂

3 J4

-^-CoC1GC3^1^3. (A3)

It is convenient to work with a monomial basis in the even sector, labeled as
follows

(A.4)

Computation of the Grassmann integrals in Eq. (A.I) then gives

7 /j4 1

0, Ph0=--g0, (A.5a)
c

and
A2 A2

hί)=-—(gί + h1), P(g1-h1)=—

A2 A2

—(g2 + h2)9 P(g2 -h2)=—(g2- Λ2) , (A.5b)

2A

Equations (A.5b) imply that we can only get three definite-norm P eigenstates with
P=l from0 l52ί3,/ι l j2 j3 by taking

ha) = (ga-ha), fl = l,2,3. (A.6)
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However, Eq. (A.5a) then becomes

PgQ = 21Ch0,
(A.7)

Ph0=-C~^o => P[h0±(*3/l/27Q0o] = ±]/27e3[h0±(*3/l/27Q0o] ,

yielding two zero-norm eigenstates with eigenvalues ±|/27e3. Hence we cannot
find four definite-norm linear combinations of the monomials of Eq. (A.4) on
which P is a unit projection, for any values of the real constants A and C.
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