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Abstract. We show that a quaternionic quantum field theory can be formulated
when the numbers of bosonic and fermionic degrees of freedom are equal and
the fermions, as well as the bosons, obey a second order wave equation. The
theory takes the form of either a functional integral with quaternion-imaginary
Lagrangian, or a Schrodinger equation and transformation theory for
quaternion-valued wave functions, with a quaternion-imaginary Hamiltonian.
The connection between the two formulations is developed in detail, and many
related issues, including the breakdown of the correspondence principle and
the Hilbert space structure, are discussed.

1. Introduction

A basic theorem [ 1] in the foundations of quantum mechanics states that a general
quantum mechanical system can be represented as a vector space with scalar
coefficients drawn from the real, the complex, or the quaternion fields.! Standard
quantum mechanics and quantum field theory correspond to the complex case,
while real quantum mechanics has been analyzed by Stueckelberg [3] and can be
shown to reduce back to the complex case. Over the years a number of papers
studying the quaternionic case have appeared and some useful mathematical and
kinematical results have been obtained [4], but the central problem of finding a
viable dynamics for quaternionic quantum theory has remained unsolved. We
report progress on this problem in this paper. Specifically, we show? that a
dynamics for interacting quaternionic quantum fields can be formulated when the
numbers of bosonic and fermionic degrees of freedom are equal and the fermions,
as well as the bosons, obey a second-order wave equation.

L If the requirement of an associative multiplication is dropped, there is a fourth possibility,
octonionic quantum mechanics, in which the scalar coefficients form a division algebra [2]. We
assume an associative (but not commutative) multiplication in this paper, and so our analysis does
not apply to the octonionic case

2 A brief, partial account of the results of this paper appeared in [5]
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We begin with a few general remarks. An element ¢ of the quaternion field has
the form
p=¢otPie1+dre,+dse3, (1.1)
with e, , 3 the quaternion units satisfying the algebra
ep=—0um+Eme:s ab,c=123, (1.2)
and with ¢, ; , 3 real numbers. The conjugate quaternion ¢ is defined by

d=do—ie1—dre,—pses, (1.3)

and so quaternionic quantum theory has three imaginary units instead of the
single imaginary unit e, or i of complex quantum theory, and these imaginary units
do not commute. The differences between quaternionic and complex quantum
theory all stem from these facts. For example, since there are three imaginary units
we cannot automatically convert an anti-Hermitian operator to a Hermitian one
by multiplying by an imaginary unit.

Since we expect only a subset of the usual formalism of complex quantum
theory to generalize to the quaternionic case, we must step back and ask which
features of the standard formalism should be part of any generalized quantum
mechanics, and which are expendable? We will adopt in this paper the philosophy
that a generalized quantum mechanical system is one which satisfies the principle of
superposition of probability amplitudes. We will show that when there is complete
boson-fermion symmetry, this starting point can be naturally developed by
functional integration methods into a quaternionic dynamics and a quaternionic
transformation theory. Our emphasis will be exclusively on the dynamics of time
development; hence spatial coordinates will never explicitly appear in this paper,
but rather are subsumed in a discrete field index.

The organization of this paper is as follows. In Sect. 2 we summarize the
spectral properties of quaternionic matrices, outline the theory of quaternionic
Gaussian multiple integrals [6], and derive a formula for the quaternionic delta
function. In Sect. 3 we formulate a sum-over-histories (functional integration)
approach to quaternionic quantum field theory in terms of a quaternion-
imaginary Lagrangian. In Sect. 4 we derive the Schrddinger equation from the
functional integral and thus identify the quaternion-imaginary Hamiltonian. A
quaternionic transformation theory is developed in Sect. 5 and is used to rederive
the functional integral from the Schrodinger equation. In Sect. 6 we show that the
quaternionic field dynamics can be projected down to a complex field dynamics
(still with second-order fermion wave operator) when the interactions are not
intrinsically quaternionic. The correspondence principle, which relates quantum
to classical field equations, is shown in Sect. 7 to break down in quaternionic
quantum mechanics. In Sects. 8§ and 9 we examine the state structure which is
implicit in the preceding derivations; the boson states are discussed in Sect. 8 and
the fermion states in Sect. 9. We show that the fermion states require an indefinite
metric Hilbert space, and that a first-order wave operator is probably not
permitted in quaternionic field theory. Finally, in Sect. 10 we discuss open issues
and future directions, including the possible relevence of quaternionic quantum
field theory to elementary particle physics.
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2. Kinematic Preliminaries: Quaternionic Variables, Quaternionic Matrices
and their Spectral Properties, Quaternionic Gaussian Multiple Integrals,
and the Quaternionic Delta Function

We give in this section some kinematic preliminaries which are needed later on.
Throughout this paper we will deal with two kinds of quaternionic variables: (i)
Real or bosonic quaternions ¢,d, as in Egs. (1.1)~(1.3), with components ¢,,
a=0, 1,2, 3 which are real numbers, and (ii) Grassmann or fermionic quaternions
v, P,

p=potyie;trestypses, P=yPo—yPie;—Pre;—Pses, 2.1)

with components 1y, which are real Grassmann numbers. We adopt the
convention (justified in Sect. 9 below) that the product of any number of real
numbers and any number of real Grassmann elements is real. Then from
Egs. (1.1)—(1.3) and (2.1) we find that if ¢, ¢" are two bosonic quaternions and v, p’
are two Grassmann quaternions, the conjugates of their products are given by

P9 =99, (2.2a)
vy’ = -y, (2.2b)
Pp=TF¢, (2.2¢)

with the — sign in Eq. (2.2b) arising from anticommutation of the Grassmann
elements.

An N x N quaternion matrix M has matrix elements M;;,i,j=1, ..., N which
are real quaternions. The conjugate matrix M has matrix elements M, while the
adjoint matrix M" has matrix elements

Mj,=M,; (23)

together with Eq. (2.2) this definition implies that any two quaternion matrices
M, N obey

J?

(MN)'=N'M?". (2.4)
A quaternion matrix M is called self-adjoint if
M=M", (2.5a)
anti-self-adjoint if
M=-M", (2.5b)

and these properties are preserved under a general quaternion unitary
transformation

M-U'MU, UU'=U'U=1. (2.6)

Self-adjoint and anti-self-adjoint quaternion matrices have special spectral
properties. For any quaternion self-adjoint matrix M, one can find [ 7] a unitary U
such that UM U =D with D diagonal and real,

jo
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For any quaternion anti-self-adjoint matrix M, one can find® a unitary U such that
U'MU = De,, with D diagonal, real and positive,

DlJ:d15117 dl=a_lZ_0. (2.8)

(The reason that the d; can be assumed to be positive is that é,e;e, = —ej3,
permitting any diagonal factors of —1 to be absorbed in the definition of U.) For
M self-adjoint, a quaternion determinant detM can be defined (see Dyson and
Mehta [4]) which has the product decomposition

N
detM =TT d;, (2.9)
i=1

with d; the eigenvalues of Eq. (2.7). For M anti-self-adjoint, the determinant of
M'M has the analogous product decomposition

N
det(M'M)=T] 42, (2.10)
i=1

with d; the eigenvalues of Eq. (2.8).

We are now ready to state the quaternionic Gaussian integration formula [6]
which plays a fundamental role in our construction of quaternionic quantum field
theory,

N . M .
1ing< f d¢') ( 1S dwl) (4m7)
-3nd i=1 i=1
~exp(—¢Ap—pBy +i1g — fu+ Ly +pE + K—edg)
=4M"Ndet?Bdet 1 (ATA)Ly_ (=04 'u+EBE+R),  (2.11)

with L; the function defined by

. Lode - . R

Li(j-e)=c,(j)+ !‘—dl(.]) ,j=lil,  clj)=cosj——sinj,
J

; o o (2.12)

d; ()= ——c,(j)=|1—=-)sinj+ —cosj.

0= e = (125 sinj+ Lo

Our notation is as follows: ¢ and u are column vectors containing N real
quaternions, and p and ¢ are column vectors containing M real Grassmann
quaternions, A= — A" is an N x N quaternion anti-self-adjoint matrix, B= Bf
is an M x M quaternion self-adjoint matrix, = —8& is a fixed imaginary
quaternion, and the integration measure is defined by*

df' =dgdg'dghdds,  dy'=dpodyidpidys . (2.13)
The fact that the argument of L; is quaternion imaginary follows from
Eqgs. (2.2)+2.4), and similarly the argument of the exponential in the integrand of

3 The proof of the spectral theorem for anti-self-adjoint matrices is a close analog of the proof of
the spectral theorem for quaternion unitary operators given by Finkelstein, Jauch, and Speiser [7]
4 A supermatrix generalization of Eq.(2.11) is also given in [6], but is not needed for the
derivations which follow. The definitions of Eq. (2.13) differ by numerical factors from those of [6]
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Eq. (2.11) is quaternion imaginary, apart from the infinitesimal convergence factor
exp(—ed¢). Introducing the abbreviation J=j - e, the formula for L, in Eq. (2.12)
can be rewritten as the power series

2 Jean| L 21 ~omt 1 4I(n+1)
L’(S)=n§o{‘52 [(211)! _(2n+1)!] +3 1[(2n+1)! - (2n+3)!]}‘(2‘14)

When I=0, Egs.(2.12) and (2.14) show that the function L reduces to an
exponential,

Ly(J)=exp3, (2.15)

and hence when the number of bosonic degrees of freedom N is equal to the
number of fermionic degrees of freedom M, Eq. (2.11) simplifies to

lm (ﬁ i d¢idwi) (4n2) ™

-exp(—GA¢—PBy +i— fu+Ep+ P&+ K —edg)
=det?Bdet ! (4t d)exp(—iid " 'u+EB ¢+ R). (2.16)

Equation (2.16) is the starting point for the analysis of the sections which follow.

We briefly sketch the derivation of Egs. (2.11)2.12), since the methods used
will be needed in the Schrodinger equation derivation of Sect. 4. We begin by
making the change of integration variables

p-U,p—A"'u, J-gUl+ad™"', yp-Uwp+B ¢, $-pUL+EIBT!,
(2.17)

with U, , the quaternion unitary matrices which diagonalize 4 and B respectively.
Since the substitution of Eq. (2.17) can be shown [6] to be an invariance of the
integration measure in Eq. (2.11), the integral reduces to

lim <I=NI1 § d¢i> <f[1 § dw‘) (4n*)" " exp(—desD 4 —PByy + I —e¢9),

2.18
J=—iA 'u+EB 1+ K, 18)

with e;D, and Dy the diagonal forms of 4 and B. Making the rescalings
¢~ DY)~ 24, (2.19)

and noting that since $'Dyy' is quadratic in the Grassmann components of y’, the
only contributions to Eq. (2.18) come from terms in the power series expansion of
the exponential which contain exactly two factors ('Diy’ for each i, Eq. (2.18)
reduces further to
det?Bdet (AT A)Iy 143,
. M . (2.20)
Iy w(®=lim [ I1 g exp(—s&?«s“)] (n I dwi) (4?7

i=

-exp[j

M=z

M
Fest'= 5 w3
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To calculate Iy ,, we write

J=j-e, é’:l Jie3¢i—i§1 Pyi=v-e, (2.21)
and rewrite the exponential in Eq. (2.20) as
exp[(j+v)-e]=cos|j+v|+ (‘i;Tv)v'lgsin[j +v|. 2.22)
Since Iy, must have the general form
=15+ T, =, 2.23)
we can project out separate formulas for I¥'},(j), giving after a little algebra
T = = G 1), (224

15, =tim| I fadexp(—e9) |( [T ' )am)costy+41. 2240
Hence it suffices to evaluate I§ ,,(j). Writing
Fesp'=s(¢)-e, Pp'=—ry)-e,
$1@) =230, —dob2),  T1(W)=2(P2p3—Poyy),
$2(9)=2(P203+ dodb1),  r2(¥)=2(V3v1 —Wo¥2),

53 (D) =g+ P37 — 03, (W) =2(w1p,—Povs),

we can reexpress Eq. (2.24b) as recursion relations describing the effect of adding
an additional bosonic or fermionic integral to I§ ,,

(2.25)

I, () =lim [ d exp(—edg) (4n*) "' IN 1 w(li—s(@)]), (2.26a)

IV, (D= dpI§ -1 (i + @)D (2.26b)

To simplify the bosonic recursion relation of Eq.(2.26a), we introduce polar
coordinates for the quaternionic integration variable ¢ as follows,

¢o=Rcosf,cos®/2, ¢,=Rsinb,cos@/2,
¢, =Rcosf,sin®/2, ¢,=Rsinf,sin@/2,

© T 2n 2n

{ddodd dp,dg,=% [ R3dR [sin@OdO | db, | do,. (2.27)
0 0 0 0

The utility of this parameterization becomes clear when we compute ¢¢ and s(¢),
dp=R*, s,(#)=R*sin@sin(h; —0,),

(2.28)
s,(#)=R*sin®@ cos(0, —0,), s3(#)=R*cos@;
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evidently the angles ©, 0, —0, are just the polar coordinates of the vector s.
Writing s = R? and denoting the angular measure for § by dQ,, Eq. (2.26a) takes the
form w
I}\‘,,M(j)=lirré (16m) ! [ sdse™* [dQJIR | \(li—ss]). (2.29)
g 0

Letting y=|j— s3], the angular integral in Eq. (2.29) can be reduced to an integral
over y, giving finally

© jts
Iy, () =1im (&))" {) dse‘“l ] |ydylﬁ- 1, m(¥) - (2.30)
£ j—s
To simplify the fermionic recursion relation of Eq. (2.26b), we use the fact that

the components of r(yp) obey the identity
riti= =80, o1 Yo (2.31)

Developing IX 4 (li—r|) in a power series in r, only the term of order r? survives
in the Grassmann integral, giving
. 1.d ,d .
I§ () =T dp3(e(y) - BIR - 1(D = ~4]72— a}-‘]zd—jlﬁ,M— (). (232

A simple inductionin N and M now shows that the recursion relations of Eq. (2.30)
and Eq. (2.32), and the initial condition [cf. Eq. (2.24b)]

I§ o(j)=cosj, (2.33)
have the unique solution

I () =4¥ " [cosj— 3“—\’]1@ sin,] . (2.34)

To conclude this section, we use Eq.(2.16) to derive a formula for the
quaternionic delta function

o(g, )= ilAfIl 3(P0)d(#1)3($2) 3o 1 waws (2.35)
which is defined by the property (for arbitrary smooth F)
(fll | d¢"dwi> o(¢, wF({4,w})=F({0,0}). (2.36)

Let us consider Eq. (2.16) with A=ae;, B=b, =0, and with ¢ interchanged
with u, v interchanged &, for which it reads

li_{ré (ﬁ | duidfi> (4n*) "M exp(— aiiesu— bEE — eitu + du— tig + Pé + Ep)

=(b*/a’) exp(a” ' Pesp+b™"py). (2.37)

We will now show that in the limit a, b—0, the right-hand side of Eq. (2.37) is
proportional to the quaternionic delta function. Consider the integral

(iIIfI1 I d¢"dwi> (4n*)M(b*/a®)™ exp(a”'desp + b~ " PW)F({g, v}) . (2.38)
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Rescaling ¢—a'/?¢, w—b'/?yp, this becomes

M
(H f d¢idwi> (4n*)"Mexp(esd +Pw)F({a'4,b'*y}), (2.39)
i=1
and expanding F in a Taylor series and applying Eq. (2.16) to the leading term
gives
F({0,0})+O0(a''?,b'/?). (2.40)

Hence we conclude that

M
o w) =a£11£11 . <l1=_11 J dlfdf') (2m)~*M
- exp(— atiesu — b&E — eitu+ Pu— iigh + P& + &) . (2.41)

We will henceforth write this formt;la with the infinitesimals a, b, ¢ suppressed.
Since the integration measure du'd& is invariant under the rescaling u—uc, £—¢&c
for any c,’ it is convenient to rescale by ¢ =% and to write Eq. (2.41) as

p,p)= (ﬁl { du'df’) (2m) " *Me® = <ﬁ | duid€i> (2n) " *M cosh @,
.y o 2.42)
0=} 3 Ful— 4 + P+ B,

As an explicit check on the above reasoning, let us specialize to the case M =1
and verify that

Wow1w2ws =] dgd(4, v)= Jm [dg(v*/a*)exp(a™ fesp+b ™ py). (243)

According to Egs. (2.11)+2.14), the right-hand side of Eq. (2.43) is given by
b -1,= b2 11,7 10— 1,=0\2
lim ==L, (b~ "py)=lim Z-[—1+3(}""py) +5(b~ " Pw)7], (2.44)

with the series terminating because (py)® =0. In the limit of vanishing b only the
quadratic term contributes, giving

27(PY)* =74(r - €)* = — 341’ = oY, Y, 5, (2.45)

where we have used Egs. (2.25) and (2.31).
It is also instructive to write down the complex analog of Eq. (2.42). In the
complex case all imaginary quantities commute, and so we can treat the bosonic

5 The scale invariance of the measure can be used to show that the reexponentiation property
exhibited in Eq. (2.16) has the following generalization to a wide class of functions. Let f(x) be a
generalized “positive frequency” function of the imaginary quaternion x, defined by f(x)

@
=jdug(,u)e““, with p real and with o) a quaternion-valued measure. Then

[ dgdp(4n®)~f -+ Fead + ) = £ (1)
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and fermionic cases separately, and we lose no generality by taking M =1. In the
bosonic case we have

1 ous - 1
5(¢0)5(¢1) = W" duodule‘(¢0“l $1uo)

| dugdu,e®,

2n)?
o - _ ) (2.46)
P=opu—ig), ¢=¢o+ip,, u=uo+iu,,
and similarly in the fermionic case
=fd€f d¢ ei(wofl_lﬂlgo).__j'dé aé e<1>,
PYo¥1 14¢o 1460 (2.47)

P=3PE¢+Ly), w=wot+ip,, E=&+ik.

These equations show that Eq. (2.42) should be thought of as a quaternionic
analog of the Fourier representation for the delta function in the complex case.
This analog has the surprising feature of requiring the inclusion of quaternionic
Grassmann variables!

3. Sum Over Histories Approach to Quaternionic Field Theory

Let us now turn to the central problem of formulating the dynamics of a
quaternionic field theory. We consider a system containing M bosonic and M
Grassmann quaternion degrees of freedom, and take as our fundamental postulate
the assumption that the quantum mechanical transformation function for an
infinitesimal time interval At=t;,, —t; has the form

<{¢j+191~pj+ htieilldp it
=C™! exp[Atf,({¢j+ 1/2a¢.j+ 12 Wi+ 12 Wjs 128 L+ AL2)], (3.1)

with I a quaternion-imaginary Lagrangian, L=L,e, +L,e,+ Lse;. The argu-
ments of L in Eq. (3.1) are to be evaluated in accordance with the trapezoidal rule
at the midpoint of the interval [see Eq. (4.3) below]. Equation (3.1) is of course
simply the natural quaternionic generalization of Dirac’s famous observation [8]
in the complex case, which forms the basis for Feynman’s [9] sum-over-histories
formulation of complex quantum mechanics. The quaternion imaginary quantity
L is the analog of the complex quantum mechanical iL; as pointed out in Sect. 1,
we cannot convert L to a quaternion-real quantity by multiplying by an imaginary
unit.

Compounding N infinitesimal transformations, we get for finite time evolution,

N—-1 M
Adn> vt txl{dos Wols to) = [1131 <;I=—[1 § d¢jdwj)]
-C7lexp[AtL(N —1/2)]C~ L exp[AtL(N —3/2)] ... C~ texp[4tL(1/2)]
(3.2)

inan abbreviated notation according to which the exponent in Eq. (3.1) would be
written as AtL(j+1/2). In passing to the continuum limit, we must take into
account the fact that the infinitesimal phases in Eq. (3.2) do not commute, and
hence the product in Eq.(3.2) is not the exponential of the Riemann sum of
exponents, as it is in the complex case. Formally, we can accomplish this by giving
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the quaternion units e, a time label, e,~e¢,(f), and defining a time-ordering
operation T as one which orders the e,’s with the later time on the left, giving
the functional integral formula

{ws v} tul{do, wol, to) =const x [ d[¢1d[p]T exp [Itf dtea(t)ia(t)] - (33)

This construction guarantees that the transformation functions satisfy the
quantum mechanical composition law (the principle of superposition of wave
amplitudes)

s s (s 0o} to) = (ﬁ fd¢§dw§> o wxds tnl{brn o) i)
w1} til{do, Yo}s o) (3.4)

for any arbitrary intermediate time ¢;.
At this point we will assume a specific functional form for L,

f‘({¢’ (és v, UJ}, t) = f‘kin - 17({¢a w}s t) ’
~ M 5. . —_— . —_— . 3. .
Lin=3% .-=21 [Pesd + 'y’ — A({g, ), D)esd — Pres Ai({g, v}, 1)
'_F({¢9 w}v t)U')i _¢lﬁl({¢s IP}» t)] )

with ¥ quaternion imaginary, and with A’ and ', respectively, general bosonic and
Grassmann quaternion velocity (“vector”) potentials. The term in L, ;, quadraticin
time derivatives clearly has a form motivated by the Gaussian integral formula of
Eq. (2.16), with A =e5; and B=1. The use of the quaternion unit e is arbitrary; by
the gauge transformation ¢‘— ¢’ with g a constant quaternion with gg= 1, which
is an invariance [6] of the integration measure, e; can be converted to the general
quaternionic imaginary unit ge;q, while preserving the general structure of
Eqg. (3.5). Hence Eq. (3.5) is consistent with the principle of quaternion covariance
enunciated by Finkelstein et al. [10], which states that quaternionic quantum
mechanics should not pick out a preferred quaternion frame. (This would not be
the case had we instead used e,$¢ to get a quaternion-imaginary quantity, since
the imaginary unit e; would then be unaffected by gauge transformations of ¢.) The
fermion kinetic term in Eq. (3.5)is unconventional in that its leading term is second
order in time derivatives. The Grassmann Hilbert space structure implied by this,
and the question of whether our construction can be extended to first-order
fermion actions (probably not), are discussed in detail in Sect. 9 below.

Before proceeding to applications of Egs. (3.1}+3.5), one final issue deserves
comment. The alert reader will have noticed that the conjugation convention
which we have adopted for fermion fields is opposite to that conventionally used in
complex field theory, where one takes Py = + Py, and where the corresponding
term in iL would be iy ocreal X oy, as contrasted with Py ocreal x ip,p, in our
convention. This point is discussed in detail in Sect. 9, where we show that because
total fermion number is governed by a superselection rule, complex field theories
have the same physical content in either convention. The convention which we
have adopted is necessary in the quaternionic case, because since the imaginary
units do not commute, it is essential that there be no imaginaries hidden in the
definition of the Grassmann variables.

(3.5)
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4. Derivation of the Schrodinger Equation from the Functional Integral

Let us now use the functional integration formalism of the preceding section to
derive the Schrodinger equation satisfied by the wave function

Y({g, v}, )={d, v}, t|¥). (4.1)
According to Eqgs. (3.1)«3.4) we have

Y({4, v} t+40)= <,ﬁ § d¢5dw‘6> g, vl t+A4t{do, wo} 1 {{do, wol, P

M ~
= (U § d¢f)dll)6> C lexp[4 tL({$1,2, ¢1/z, Y12 W12, L+ A/ 2) TP ({0 Wol» 1),
=l 4.2)

with
¢i1/2=%(¢i+¢i))a Wi =3 + o),
Fia= —g0)/At, = —yh)/At.
Making the change of integration variables ¢} =¢'+(24t)' %y,

ph =y + (240, and substituting Eq. (3.5) for L, the right-hand side of Eq. (4.2)
becomes

4.3)

(ﬁ | dnidCi> C ™ lexp[4tI*]¥*,
MEF= 3 (e + D¢ +HI240"2 + 41D)
. [Zl({¢7 w}a t)e311i + ﬁieSAi({¢’ w}, t)
+ B, v} 00+ TS, v}, O — AV ({h, w}, 1) + O((40)*?),,
=[1+24)2D + 4D TH({, v}, £) + O((A1)*?),
M 3 a a
D= i;1 a§0 (Wa 6¢’ ) ) “.4)

To simplify our notation in what follows, we will henceforth suppress the
arguments {¢@, p}, t of the potentials and of ¥, and use a summation convention for
repeated indices i,j and a, b. Let us now make the change of integration variables,

n-nt=n' 3240+ ADJA}, o =7 +3[(240)' 1 + 4:DIA,
(oU=043Q40 2+ D1, T-T'=T +3[Q240)"* + AtDIF .
In terms of these new variables, AtL* and ¥* become

AL =i"eyn"+ U — AV +3(Aes A + P+ 0((40*?),

4.5)

P = [1+(2At)”2b’—At<A‘ '3 +/3 >+At(b’)2]‘P+O((At)3/2),

’ /ia
3D=naa¢

4.6)

;0
aaw
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while the integration measure becomes
H [dn'd(i= H [dnaty, (4.7)

with J the Jacobian of the transformation of Eq. (4.5). To order At accuracy, the
inverse transformation is

no=ni —3[Q40)"2 + 4D VA, + 0(41)*7%)

L . (4.3)
(e=0—31(240)" 2 + 4D 1B+ O((41)*?)
which implies that
an,ﬂ?a 5”5ab—"4t5&A'+0((At)3’2),
4.9)
acq (=00, —341 —ﬁa+ 0((41)*?).
Hence to requisite order the Jacobian is
J:det<azgn§>det‘1<agu C‘) =1- ZAtaZ —At ﬂa+0((At)3/2)
(4.10)

At this stage there is no confusion if we drop the primes on the new integration
variables. Taking into account the fact that when Eq. (4.6) for ¥* is substituted
back into Eq. (4.4), the term 'Y and the fermion-boson cross-term part of (D)*¥
both integrate to zero (since the exponent AtL* is even in the shifted integration
variables), we have altogether

(g p} t+ 4= W+At% ¥ +0((4t)%) = (ﬁ j dnidci> c-1
exp {ifesn| + ' — [V +3(A'esA'+ F )] +0((40)*))

0 0 0 . .0
. 1 i i 1 i pi
{[1 2‘”<a¢a"‘*A"aqsa)“‘”(aw:;ﬁ“ ”“aw:;ﬂW

.0 0 0
i) i 3/2
+Atnanb—~a¢z a¢b — At b(? 6 ] Y+ 0((4t) )} 4.11)

Note that if we had omitted the velocity potentials we would already have reached
this stage at Eq. (4.4).

We can now proceed by applying the Gaussian integration formula of
Eq. (2.16), with A= —e; and B= —1. To reproduce the ¥ term on the left-hand
side of Eq. (4.11) we must clearly take C = (4n?)™, and then the first line of the curly
bracket (which is independent of the integration variables #,{) contributes

exp { —At[V+5(A'es A'+ B}

0 0 0 . .0
. 1 i i 1 i_pi_ Y
[1 2‘”(6%’4 *A“aqﬁ)“‘"(awzﬁ“ ﬂ“aw:;ﬂq'
+ 048 =W — AtH P, 4.12)
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with
H,o=V({4,v},1) +%§1 [A'({4, v}, DesA'({g, v}, 1)
+ Fi({qﬁ w} DB ¢, v}, 0]
+3 Z Z [ A, wh )+ A ({4, v}, 0)

N
0de
The second line of the curly bracket in Eq. (4.11) can be evaluated by noting that

terms with i=j integrate to zero; for each i we can then use Eq.(2.16) with
M—M —1 to integrate out M — 1 degrees of freedom, yielding

odt
- a—%ﬁi({qﬁ, wh O+ Bi({4, v}, 1) %] : (4.13)

~ ~ 0 0 0 0
—AtH, in'IIa H in— If +If A QA i 4.14
n's - Bun= =l 51 1o ol v 4
with
15, = dnd{(4n®) " 'nyexp(esn+00),  I5,=[dnd({(4n*)~*{ L, exp(iesn +{0).
4.15)

To compute the integrals in Eq. (4.15), we first use Eq. (2.11) to evaluate the
fermionic integral in I%, and the bosonic integral in I%,. Restoring the infinitesimal
convergence factor to I,,,,, we get

IG=n"? 11_{135 dnexp(—emnan,L - (fesn),  Ii=4""[d{{LL, (D).
‘ (4.16)
The integral for I%, receives a contribution only from the term {¢/3 in the power
series expansion of L, [Egs. (2.14) and (2.44)], giving [cf. Eq. (2.25)]

15, =151 a0 {01 2e,(Col 1 — 5L3) +2 cyclic permutations], (4.17)
from which we find
Iy =—Io=—I5=15=—%e,, (4.18)

with the remaining I™’s given by cyclic permutation of the 1,2,3 indices. To
compute 15, we substitute Eq. (2.12) for L_, and make the change of integration
variables of Eq. (2.27), giving

1 . ® 2 .
Ifb=1;z—2(11J1ab+IzJ2ab), Il=£1_{% (f) R3dRe*R (cosR2+ %mnRz),
I,=lim TRSdRe"“‘2 _4 cosR? + —2—sinR2
2700 dR? R? ’
T 2r 2n (419)
Jlaszsin@ d@ j d01 f deZQaQb,
0 0 0
T 2xn 2n
Jzab=jsin@ d@ 5 d@l _f dGZQaQb
0 (4] 0

-[e, sin@sin(f; —0,)+e,sinO cos(0, —6,) +e; cos O],
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with Q, the angular part of 5,
Qy,=cosf, cos®/2, Q,=sinf;cosO/2,
Q,=cosf,sin@®/2, Q,=sinf,sinO/2.

We proceed first to evaluate the radial integrals. Substituting R*=u, we have

(4.20)

R 2.
I,=lim% [ w’due <cosu+ ~smu>
e~>0 u
L4 % d .
=limi | due ™ —(u?sinu)
0 du

w 2

0
=limie¢ [ due *u?sinu=0,
270

) ) 4.21)
I,=lim(=%) | uzdue‘“‘—<cosu + —sinu)
£=0 0 du u

=lim | due *™(ucosu+2sinu)
0
.® U .
=lim 5 due [— (u s1nu)+smu]
du

—hmjdue "‘smu—hml <L—L) =1,
2i\e—i e+i

Hence the quaternion-real part of I3, vanishes, and to complete the calculation we
must evaluate the quaternion-imaginary angular integral J,,, =J,,, for the 10
independent choices of a, b. These integrations are straightforward, and yield

100—133——111;12"1522?15‘93, 153=I?2=0, 422)

B B _ _ 1
101—123—6‘32’ 102— Ii3=—ge;.

Substituting Egs. (4.18) and (4.22) into Eq. (4.14), we get
- 0 0 0 0 0 0 0 0
Hin=—lz[2e (—————) +2e <~——.——.+ —>
) ©S1| 7 \ogh ogy  ogh ogh *\ g, og' * 045 04}
te <iﬁ_ 490 98 8 _i_'?_)]
*\og}, ogly ' o ogy 0 04 o4 4%
M J 0 0 0 0 0 J 0
) LA N PP
° ig [ (alpz avh  Oyp 0 owh oy Oyl dyh

0 0 0 0
+2e <——T——T“—*—T'T>], 4.23
S\owi ol awh vl 429
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which by comparison with Eq. (2.25) can be rewritten as

~ M - _ a a a
Hinz—l D,eiD, i+ D iD,, D,=—+e,— +e,— +ey3—,
k 6i=21( ¢i*3¢ v lIJ) [ a¢0 la¢1 26¢2 3a¢3
D,= 0 +e 0 +e g +e 0 (4.24)
YT oy, oy, 20y, 381#’3 .

Finally, combining Eqs. (4.11), (4.12), and (4.14), we get the Schrodinger equation
for ¥, o

ot
with H,,, and ﬁpm given by Eq. (4.24) and Eq. (4.13) respectively.

The fact that the general form of the quaternionic Schrodinger equation is
independent of the number of modes M is a direct consequence of the fact that,
when the numbers of fermionic and bosonic modes are equal, the source-
dependence in the Gaussian integral formula of Eq. (2.11) remains exponential.
What happens if we formulate a quaternionic quantum field theory with unequal
numbers N and M of bosonic and fermionic degrees of freedom? We can still define
a functional integral, as in the preceding section, and we can still derive a
Schrodinger equation, as above, but the coefficients in the Schrodinger equation
will now explicitly depend on N and M. The one case, when N £ M, where the form

of the Schrdodinger equation does not depend on the numbers of degrees of freedom
is when |[M — N|—oco. In this limit Eq. (2.12) implies that

Ly sl g (0] o)
S-n TEOET T ) (429
with the function on the right a fixed point (up to normalization) of the recursion
relations of Egs. (2.30) and (2.32). We then get a Schrodinger equation in which
f(j-e) of Eq.(4.26) replaces exp(j- ) in analogs of Egs. (4.12) and (4.15). A little
calculation shows that the effect of this is to multiply the first line in Eq. (4.13) by
1/3, while leaving the second line in Eq. (4.13), and Eq. (4.24), unchanged (apart

—HY, H=Hy,+H,,, (4.25)

1

from the appropriate changes in the limits of the boson and fermion sums Z) We

do not pursue this direction further in this paper, but in principle it gives an
alternative method of formulating a quaternionic field theory, and deserves
detailed study.

5. Derivation of the Functional Integral from the Schrodinger Equation

In the preceding two sections we have very closely followed Feynman’s [9]
approach to quantum mechanics, in which the Lagrangian functional integral is
taken as fundamental and the Schrédinger equation is derived as a consequence.
In the modern literature the customary treatment is to proceed in reverse, starting
from the transformation theory based on the quantum Hamiltonian and showing
that this implies the functional integral formula for the transition amplitude for a
finite time interval. As a check that Sects. 3 and 4 define a consistent quantum
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mechanical scheme, let us show that this reverse procedure works in the
quaternionic case, by deriving Eq. (3.2) from Eq. (4.25). Since the details are quite
complicated, we will consider only the simplified problem in which the velocity
potentials A’ and f’ are neglected, and so we take as our starting point Eq. (4.25)

with o~ ~
H=H,+ V{4, y},0). (.1

We begin by noting that the reasoning used to derive the ¥ term in
Egs. (4.12)+(4.13) shows that for any smooth function f we have

(ili_[[l j dnidci> (47:2)—Mexp [; (ﬁiesni + Z‘zcz) ~At[~/]f({(2é| t)1/277’ (24 t)I/ZC})
=exp(—4tV) f({0,0}) + 4t x (7—independent terms) 4+ O((4t)*?)

= (11 araet) e (X et +T0)]

-exp(—4tP) f({(240)*n, (240)'1}), (5.22)
and so within a functional integral we have the equivalence (denoted by <)
exp(4tLy, — AtV )e—exp(4tL,,,) exp(— 4tV). (5.2b)

Hence it suffices to prove the following modified version of Eq. (3.2),
N-1 M
Abnwals tul{do, o} tod = [ l_I1 (Hl § d¢§dw}>]
j=1\i=
-(4n?) " Mexp[AtL, (N —1/2)]exp[ — At V(N —1/2)]
-(4n?) " Mexp[AtLy (N —3/2) exp[ — AtV(N —3/2)] ... (4n*) M
-exp[AtLy,(1/2)] exp[ — 4tV (1/2)] . (5.3)
According to the transformation theory based on the quantum Hamiltonian of
Eq. (5.1), we have

by wnks twl{Bos Wo}s to) = {{ B> wabs tolexp [ — H(ty — t6)11{Bo» wol» o) -
(54)
Applying the Trotter product formula [11] to the finite-time evolution operator
exp[ — H(ty—t,)], we have

exp[ —H(ty—to)]={exp[ — (Hyin + V) (ty—to)/ NI}
~ ~ 1 \\Y
= {CXP[— Hyi(ty —to)/N]exp[— V(ty—1to)/N1+ 0 <F)} ; (5.5)
and so taking (ty—t,)/N = A4t, and inserting N — 1 complete sets of intermediate
states between the N factors on the right-hand side of Eq. (5.5), we get

N-1/ M o
Adws wnts tal{do, Wo}> Loy = [jl;ll <zl=—I1 j d¢}dw§>}
{{pnwn}s tolexp(— Hygndt) exp(— VAN by — 1, W -1} to)
{Py-1,Wn— 1} tolexp(— Hygndr) exp(— VAD by - 5, W -2}, LoD -

{191} tolexp(— Hygudt) exp(— VAo, Yo} s LoD - (5.6)
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Hence to prove Eq. (5.3) it suffices to prove that
<{¢’ w}a tlexp( -4 tﬁkin) eXp( - Ati})l{¢/a IP/}, t>
=(4n%) " Mexp(AtL,,,) exp(—AtV). (5.7)

Without loss of generality [ 12] the coordinate eigenstates |{¢’, '}, t> can be taken
to be quaternion real,

el{d. v =K v}, e, (5.8)

they are then eigenstates of ¥ and exp(— 4t¥) can be moved outside the ket and
factored away. We can now use translation invariance to set {¢’, '} = {0,0}, and so
we have reduced the path integral derivation to the problem of proving

{4, v}, tlexp(— 4tH ) [{0, 0}, t) = (4n°) "M exp [é (Flesd’ +piyh)/24 t] .
(5.9)

Since the proof of Eq. (5.9) is quite complicated, it will be instructive to first
derive, by a method which generalizes to the quaternionic case, the analog of
Eq. (5.9) which appears in the conventional complex path integral for a single
degree of freedom,

1/2 2
—iAtp? L _mx
{x, tlexp(—idtp*/2m)|0,t)> <2niA t) exp< 2iAt) . (5.10)
Writing 4 =i4t/2m, and using the coordinate representation form p* = —(6/0x)?,
the left-hand side of Eq. (5.10) is
{x, tlexp(A0*/0x%)|0, t) =exp(A0%/0x?) {x, 1|0, ) exp(— A8?/0x?). (5.11)

[Derivatives acting to the right of all x’s vanish, so exp(— 482/0x?) is equivalent to
11in Eq. (5.11).] The matrix element <x, t|0, ¢ is just the Dirac delta function 8(x),
which has the Fourier representation

e tl0,ty=009= 5 | dpe, (5.12)

and so Eq. (5.11) becomes
exp(/léz/éxz)il; T dpe™exp(—10%/0x?). (5.13)

Let us first give an exact evaluation of Eq.(5.13), and then an approximate
computation [with an error of order O((4¢)*)] which is equivalent to the exact
treatment inside a functional integral. For the exact evaluation, we bring the
differential operator inside the exponent in Eq. (5.13) to give

% Ofo dp exp[ip exp(A0%/0x?)x exp(— 10%/0x?)]

=517; T dpexplip(x+240/6x)]

[«

1 .
= _jw dpexp(ipx —Ap?), (5.14)
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where we have again used the fact that 9/0x vanishes when acting to the right of all
x’s, and have employed the identities

PAe B=A+[B, A], e**B=eA3ABIE, (5.15)

the first valid when [B,[A,B]]=0 and the second valid when [A4,[A4, B]]
=[B,[A4, B]]=0. Finally, the standard Gaussian integral

© 1/2
jdye‘“y”by:(g) eb*lda (5.16)

- 0

allows us to do the final integral in Eq. (5.14), yielding

! — (5.17)
@2 P\ a5 ) ‘

which is the right-hand side of Eq. (5.10).

In the quaternionic case the presence of non-commuting quaternionic units
invalidates the identities of Eq. (5.15), and so an exact derivation in analogy with
Egs. (5.10)+5.17) is not possible. However, to complete the derivation of
Egs. (5.1)~(5.9), an evaluation of Eq. (5.9) is needed only through terms of order At.
There are two ways of seeing why this should be so. The first is to note that terms
of order (4t)? are of the same order as the error O(1/N?) in the Trotter product
formula, and so they formally do not contribute to the functional integral in the
At—0(N —o0) limit. The second way is to note that we need only evaluate the
matrix element of Eq. (5.9) up to an equivalence (<) inside the functional integral.
Two different forms of Eq. (5.9) are equivalent inside a functional integral if their
0, 1%, and 2"¢ moments with respect to the coordinates ¢', '’ agree, since these are
all that enter into the Schrédinger equation derivation of the preceding section.
Since H?2,, is fourth order in coordinate derivatives, terms of order (4t)2H?2,, and
higher do not contribute to coordinate moments of Eq. (5.9) of degree <2, and so
can be dropped from the derivation.

Applying these remarks to the complex analog, we must only prove the identity
of Eq. (5.10) up to an error of order (4t)?, or equivalently, since

© 2\2
] dx(l,x,x2)<z%> 5(x)=0, (5.18)
we must prove
1/2 2
g m —mx
{x, tlexp(—idtp?*/2m)|0, t )y« <~_——2niAt> exp (——«zmt ), (5.19a)
where F(x)«<0 iff
T dx(1,x, x)F(x)=0. (5.19b)

It is now convenient to use a Fourier cosine representation for d(x),

5(x) = % _]9 dpcosh®, d=ipx. (5.20)
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Developing Eq. (5.20) in a power series expansion, substituting into Eq. (5.11) and
keeping only terms through first order in Aoc 4t, we have

{(@2)'+A[0%/0x*,(22)"]} -

{x, tlexp(—idtp*/2m)|0, t>+—>— f dp Z

(2n)'
(5.21)
The commutator in Eq. (5.21) can be evaluated in terms of
AL0%/0x?, @*]= —2p*)+4, (5.22a)
with ¢ the differential operator
d=—4p?x0/ox, (5.22b)
which has the commutator with @2
[6, *]= —8p*id2. (5.22¢)

So the power series on the right-hand side of Eq. (5.21) becomes

o0

p3 oy L@ +n(9%)" "1 (=2p*A) +6(9)" !

(2 @n)!
+¢25(@2)n—2+ +(¢2)n—25¢2+(@2)n-—15]

Z m[(diz)un(dﬂ)" Y(=2pA) +4n(n—1) (@*)" (- 8p*A)], (5.23)

where we have obtained the final line by commuting all §’s through to the right,

where they vanish. Combining the two terms proportional to p%i, we get

oo}

X i (@) =2n(2n—1) (@7~ 1p?]

1
o (2m)!

}: ——(@*(1 - p*2)=(1—p*})cosh®. (5.24)

(2 !

To show that Eq. (5.24) is equivalent to the exact result of Eq. (5.14), we must show
that

F(x)= 5= f dper(e P —1+ pzl)— j dp eP*0(A2pH0.  (5.25)
The most direct way to see this is by integration by parts,

i dxx"F(x)= | d;{(-i) 5(p)] 002p"=0, m<3. (5.6)

An alternative way, which generalizes easily to the quaternionic case, is to use
dimensional analysis: Scaling p—p/A*? in Eq.(5.25), we see that F(x)
=A712f(x/A*?), and so

T dxx"F(x)yocami2 . (527)
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However, since the power series expansion of F begins with order A2, the moments
of Eq. (5.27) must vanish for m <3. We conclude, then, that

G, texp(— idip? 2m)0, 05> | dpexplipx—p*A), (5.28)

which on integration yields Eq. (5.19a). Although the approximate derivation just
described is more complicated than the exact analysis, it has the virtue of
generalizing directly to the quaternionic case.

Let us now return to the quaternionic analysis which we left at Eq. (5.9). Using
the coordinate space representation of H,,, given in Eq. (4.24), the left-hand side of
Eq. (5.9) can be rewritten as

exp(— AtH,){4, ¥}, t1{0, 0}, 1) exp(dtHy;,) (5.29)

The matrix element {{¢, w}, t|{0, 0}, t) is just the delta function (¢, p) defined in
Eqg. (2.35), and by the arguments given above, the coordinate moments of Eq. (5.29)
through second order are unchanged if we drop the quadratic and higher degree
terms in H,,,, giving

<{¢’ w}’ tlexp( - Atﬁkin)l{oa 0}5 t>(—)6(¢9 W) —4 t[Hkins 5(¢3 1/))] . (530)

Substituting the representation of §(¢, ) given in Eq. (2.42), and developing cosh @
in a power series expansion [with @ henceforth defined by Eq. (2.42)], the right-
hand side of Eq. (5.30) becomes

<H J du'dg ) (2m)~4M Z oy (@) — At Ay, (97T (5.31)

(2 )!

We now introduce some definitions which facilitate the algebra of simplifying
Eq. (5.31). To make the quaternion-dependence of @ and H,;, explicit, we write

¢= (I’lel + ¢2e2 + @363 5
M . . . . . . . . . . . . . .
@ = 3 ($ous —itto+ st — a3 +¥olt — Wi Lo+ 13 —vaCy),
M . . . . . . . . . . . . . . TR
P2= % (Pouz —h2tio+J1u5— P5us +1ols — 280+ 1 —3lh),
M . . . . . . . . . . . : . . . .
P3= 2. (fots — P30 + 9201 —Piuz +9ols — 3o + ¥l —¥idy);
i=
_—ﬁkin =hlel +h2e2 +h3e3 s

M<68 0o 0 0 0 66)

0¢y 0ds 040 09> Opr w5  Oyo 0wy
<6 0 0 0 J 0 0 6)

i=1

=
N

Il
[N
Mz

& \ogh 30, T ogL ags  owh ow  awl o)
et S 1 e s s )
& 2\ag 50, 39l o4, " o op.  odh o,

Jd 0 0 6]

oyl Oy, Owg 0y
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A computation of the commutator [h,, ®,] gives
[has ¢b] =%5abx + %gabcic H

K_g(aua+ : 6+€i+£0+€6+€,5>
i=1 6¢0 05¢3 26¢l 16¢2 051!’0 ' oy 251#’2 361.03
M 0 0 .0 .0 0
Ay = U3 i tu i u ul—i_+ ¢ él——é >
: Z( S3d TG T T e 5°aw1 1@% W o
Mol 9 o o 0 a0
tam & (v gy i i g by e+ 8 ).
M 0 0 0 il 6 6 6 .0
A= : +u u 7 u + +€ =& i>,
: =2< oad Ta T T e T m S T e
(5.33)

and a computation of the commutators of k¥ and A, with @, gives
M
[K, (pa] = ka > [}'m ¢b] = 8abckc s kl = .;1 2(ul1ul3 - u:)u12 + é:)ﬁll - 612 13) s

M . . . . . .
k= 2. 2uzu5 + oty + &o83 — 6580,

o (5.34)
k= ,;1 2 [G(uuly + ubul — uiul —ubub) + E6E5 — £ &5,
M . . — .
kEklel + k262 + kae3 = z (ﬂle:,‘ul + élﬁl) .
i=1
In terms of these quantities, we find
[—Hyp, @*1=3k+6, (5.35)
where J, given by
0= —3emPph.e,— 5Pk , (5.36)
has all differential operators ordered to the right, and has a commutator with @2
given by
[6,*] = —4$0kd. (537

Let us now apply these commutators to the evaluation of Eq. (5.31), taking
note of the fact that
@?= — (P2 + D%+ D3) (5.38)

is quaternion real. On substituting Eq. (5.35), the sum in Eq. (5.31) becomes
2 W L) +n(@*)"~ *Atkk + Atd(P*)" !
+ @AD" 2+ ... + (DY) 2At5D* + (D) 1 At6]

Z (2—),[(<152)"+n(<1>2)" LAtk +4n(n— 1) (@%)"~2(— 44t Pkd)]
2 1

= 2 ) [(@2)'1 > +1((D2)n_k+___(¢2)n 1( 3At¢k¢)], (5.39)
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where to get the second line we have commuted all of the factors 6 to the right, and
to get the third line we have set n—n+ 1 in the final two terms.

We now compare the power series in Eq. (5.39) with the corresponding power
series obtained from the right-hand side of Eq.(5.9), which by the Gaussian
integral formula of Eq. (2.16) has the integral representation

(4n*)~Mexp I:_%l (Fesd’ + 1[)i1pi)/2At] = <1i_4[1 fdu‘d{') (2m)~*M exp(—34tk + P)

= < ]M[ | duidéi> (2m) ~*Mi[exp(—34tk + ®)
i=1
+exp(—3dtk— )] . (5.40)

By a At-scaling argument analogous to that of Eq. (5.27), the moments of Eq. (5.40)
up to second order are unaffected if we replace exp(—34tk+ ®) by the first two
terms in its power series expansion in At, giving after some algebra,

(4n*)Mexp I:zi (Flesp' + 1[>"1p")/2At} T (ﬁl | duid€i> (2m)~*M

L, on+l [ —At
)[( Kl 2+1(<p)< 2 k)

+ 5057 (@ 2)”*(%451@)] (5.41)

Comparing Eq. (5.41) with Egs. (5.30), (5.31), and (5.39), we see that to prove the
desired result

{90}, toxp(— AtF {0, 0}, £y>(d4n?) ™ exp [§ (Fesp'+ wfwwzm]

(5.42)

we must show that the integral of the difference between the power series in
Eq. (5.41) and Eq. (5.39) vanishes, i.e.,

< 1] dudé ) (2m) M Z ' ————— 1 (Bn+4) (D?)"k +n(P?)" ' dkP].

o (2n+ 1) (5.43)
This will be true iff
= (ﬁ ] du‘d§i> [Bn+4) (D*)k +n(D*)" 1 OkP]=2(—1)"e,A,,
= (5.44)

A,= ( IMI | duid?) [(n+2) (97)k,+n(P7)"” k2. 2,],
i=1

where to get the final line we have substituted &k = —k® —2k P,.

We will prove that the quantities 4, vanish by showing that the integrand in
Eq. (5.44) is a total u, & derivative. To do this we note that @ is invariant under the
interchanges ¢'— —u', u'—¢', p'— &L E—1', which suggests considering differen-
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tial operators «’, A, obtained by these interchanges from «, A, above,

M
K,=Z< ¢33‘+¢08' ¢25u1 +¢16’

i=1

+ i.ﬂ_{. i_a_+ i__a_+ ‘_a_>

1P0 af:) WL 66; 1P2 afz lp3 aél ’
YA o 0
11—21(“‘ 3ot 15 i +¢06 ) 2540

. 0 ;0 ;0 ;0
+WO6—5&—W1@+1P38—61‘2“‘P26-6T3 )

’ x i a i a i a i a
)“2“2<_¢15170'_ 0A i —¢26ug ¢3au12

i=1 ou'y

(5.45)

T R S A ~w"3~i>,
0, 4 &3 ¢

M . 0

:2:1(_%5' 35, +¢1a, 6_u‘2

+w6~6—- —wé—af ‘HPizi - _a_)_

083 0&o 0y ok,
These have the following commutators with @, and k,,
(€, @)=k, [Ao Ppl=tmcke, [1,k1=2P,, [Akpl=—20,F + 260D,

(5.46)
where
M
Y= ; (Pouly+ Bty + Phub + Psus +h&h -+ i &+ pheh +pheh),
M . . . . . .
k= ; 2P 85— Pods + wow —whws),
M o (5.47)
ks = ; 2¢h85+ dodt +wowh —wivh).,

ky= »:ZI 205@5685 + Podo — 4191 — 8585) + wows —viwh].
Since (k})? +(k5)? + (k3)*+0, to prove the vanishing of 4, it suffices to show
that
M
(1) 0=ked,= <H [du'dg i) [(n+2) (D7) 'k ko + ()" 'k Dk, B,],  (5.48)

(il) 0=¢ggpadpks= <1—[ j du'd& > [(n+2)(P2)"e €apakpky + ”(¢2)" kP CavaPpkal -
(5.48b)



634 S. L. Adler

Now working with the commutators of Eq. (5.46), we find that

(K, (D2)"ky @] —Fapc[ A (97)"ky @] = (n+2) (D7) 'k ey +1(PR)" ™ 'k D K, P,
(5.49a)
which proves that the integrand of Eq. (5.48a) is a total u, £ derivative, and

[lia (qu)nkb@a] - [K,a (¢3)n8abekb@e] =- 6(@3’)"45“11/ + 2n(¢02)n - ked)egabd¢bk/d

—2(n+ 1) (P e pakrks s (5.49Db)
(4 (@)K, Dp] = —2P2)'D, Y (5:49¢)
[ (P2)'ky @y ] = — 2(D2)"D, W + 20(B2)" ™ koD o8 1 Piky + (P2 eapakisks »
(5.49d)
which, since
-6 2n =2(n+1)
det{—2 0 0 =4n(2n+3)=+*0, (5.50)

-2 2n 1

proves that the two terms in the integrand of Eq. (5.48b) are individually total u, &
derivatives. Thus our proof of Eq. (5.42) is complete.

6. Projection onto Complex Quantum Mechanics®

Since the complex number field C(1, e;) is a subspace of the quaternion field, we
should be able to recover complex quantum mechanics (with a second order
fermion wave operator) as a special case of the quaternionic quantum mechanics
formulated in Sects. 3-5. We will explicitly verify this here, limiting ourselves for
simplicity to the case M =1 in which a single bosonic and fermionic degree of
freedom is present. We assume that the potential ¥ has the special form

I7—__631/(¢09 ¢39 U)o, 1P3) (61)
with ¥ quaternion real. Then if the wave function ¥ has, at any one time, the form
Y=Yc(do, b3 wo w3) € C(1, €3), (6.2)
this form will persist in time, and ¥ will obey the complex Schrodinger equation
0¥
¢ _pgy
€3 at H C»

(6.3)

N e @71 .0 o
H = —e3H|304, = /06, = /001 = /002 =0= —% W+W _36—%%—;+V'

In the complex Lagrangian path integral formalism, the Hamiltonian of Eq. (6.3)
corresponds to the transformation function for infinitesimal time interval At

o> #3: Vo, V3, tlexp(— ez ALtH)|do, §3, Wo, Y3, 1)

=)~ exp [ﬁea@wwwo%ﬂ exp(—esdt). 64

6 I wish to thank N. Seiberg for raising the question discussed in Sect. 6
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Consistency with the quaternionic path integral formalism of the preceding section
requires that Eq. (6.4) be equivalent to the quaternionic transformation function of
Eq. (5.9) when the unobserved components ¢, ,,, , are integrated out. Taking
into account Eq. (5.2), which allows us to factor away the potential dependence
exp(—e;A4tV), we thus require

§ dg,dg,dy,dy,(4n*) ™ ' exp[(Pesd + Py)/24t]

—(2m) ' exp [%t es (B +93+ 21#’01/’3)] > (6.5)
with < the equivalence discussed in detail in Sect. 5. We will verify Eq. (6.5) in this
section by explicitly computing the integral on the left-hand side, and then
comparing the relevant coordinate moments of the left- and right-hand sides.
For convenience in the calculations which follow, we rescale ¢—@(241)'/2,
p->(24t)*2, and so (including a convergence factor) Eq. (6.5) becomes

ligéf d¢,dg,dp dw,(2m) " " exp(Pesd + Py —edg)rexp[3es(w+2pow3)],
w=g3+43. ©6)
The first step in the evaluation of the left-hand side is to eliminate the quaternion

dependence, using the method of Egs. (2.21)-(2.24) above. Writing de;¢ + Py
=v-e, we have

lingf dg,dg,dy,dy,(2m) ™" exp[ — (g1 +43)] <COSU+ %Sinv> , v=ly,
o (6.7)
and this must have the general form a+ be, giving the projected formulas

a(v)=lim [ dg,d¢,dy,dy,(2n) " exp[ —e(¢} + ¢3)] cosv,
e=0 (6.8)

b(o) =i ] sy dips(2m) expl —olg? + 491 o5/ sino= — 27 a().

Hence it suffices to evaluate the integral a(v), keeping the component v,
distinguished until the end, or equivalently we evaluate

a(v, 6)=a(lv+(0,0,9))), (6.9a)
to first order in 4, in terms of which
aW)=a(,0),  b()= v alw, o= (69b)

The remainder of the calculation consists of straightforward differentiations (to do
the Grassmann integrals) and integrations, using the polar coordinates
¢, =Rcosf, ¢,=Rsinf. We skip the details, and proceed to the final answer,

llflgj dp,dp,dp dyp,(2m) " exp(fesd + Py — )
= f1rRW) = o3 for(W) + 5L f1:(W) —wow3 f21(W)] s
w=¢gd+¢3, fir(W)=cosw+2wsi(w),
forW)=—2sinw—4si(w),

Sfif(w)=sinw+2wcosw+2w?si(w),  fo(w)=—6cosw—8wsi(w),

(6.10)
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with si(w) the sine integral

si(w)=—Tdt§?—t. 6.11)

Clearly, Egs. (6.10) and (6.11) are not the same function as appears on the right-
hand side of Eq. (6.6),

exp[3es(w+2pqp3)] =cos3w — 6y, sin 3w + e5[sin 3w + 6y 5 cos3w] .
(6.12)

However, straightforward integrations show that the moments through second
order of Egs. (6.10) and (6.12) agree,

tim § dodgs ] dods expl—egd + 4201 (L 3+ 43 pops)
-[Eq. (6.10)-Eq. (6.12)]=0. (6.13)

[The needed integrals of si(w) can all be obtained by differentiation of the integral
f dwsi(w)e = —%tan“la, (6.14)
0

which serves as a moment-generating formula.] Hence Egs. (6.12) and (6.10) are
equivalent within a functional integral, thus proving Eq. (6.6). Beyond second
order the moments of Eqs. (6.10) and (6.12) do not agree; for instance the fourth
order moment difference

tim | dgodgs ] dpodys expL—elgh + 4301 (#5+ 43wows[Eq. (610)-Eq. (6.12)]
oclirré :f dw exp(—ew)wf; g(w) — lirré Ofo dwexp(—ew)wcos3w=%—(—3%) (6.15)
iad e-0 Q

is non-vanishing. We thus see in this section the same general feature excountered
previously: In quaternionic quantum theory, all identities hold at the infinitesimal
transformation level only! By contrast, in complex quantum theory, many of the
formulas for infinitesimal transformations [such as Eq. (5.10) of the preceding
section] extend to formulas valid for finite time steps as well.

7. Breakdown of the Correspondence Principle

In Sects.4 and 5 we have seen that there are quaternionic analogs of the
connection, in both directions, between complex quantum theory and the complex
path integral. These, however, form only part of the apparatus of complex field
theory; as shown in Fig. 1, a large part of the formalism of complex field theory
relates to the correspondence principle, which establishes connections, in both
directions, between the quantum theory and the corresponding system of classical
field equations.” Starting from the complex quantum theory, we have (i) the

-7 A brief discussion of the lack of a quaternionic analog of S-matrix theory is given in Sect. 10
below
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CANONICAIL INTEGRATING (ii) IDENTITY
QUANTIZATION INFINITESIMAL S Ny
/\ TIME DEVELOPMENT M
COMPLEX CLASSICAL ¢} OMI LIEX QUANIUM Illl SORY, COMPLEX COMPLEX CLASSICAL
IMIELD EQUATIONS (OI)INGI R 1 I'ION, AT FIELD
Dumc IRANSP ORMA' ION THEORY INTEGRAL EQUATIONS
(1) EHRENFEST TIME DRIV ATIVE (i) STATIONARY PHASE
THEORN OF PATH INTEGRAL APPROXIMATION

Fig. 1. The logical interrelations between complex classical field theory, complex quantum theory
and the complex path integral

Ehrenfest theorem, which states that expectation values of the quantum equations
of motion obey the corresponding classical field equations. The canonical
quantization procedure can be viewed as an algorithm for inverting the Ehrenfest
theorem, by reconstructing the complex quantum theory from its classical or
correspondence limit. Starting from the path integral approach, the identity (ii)

(OF[0x;ys = —iKFOS/0x,)s, (7.1)

with S the action, F an arbitrary functional and d/0x; the derivative with respect to
a canonical coordinate, yields [9] both the Ehrenfest theorem and the canonical
commutation relations with appropriate choices of F. An alternative route from
the path integral to the classical field equations is provided by (iii) the stationary
phase approximation. We will show in this section that the avenues (i), (ii), and (iii)
leading from complex quantum theory to the classical field equations all break
down in quaternionic quantum mechanics.

We begin with (i), the Ehrenfest theorem. We start from the Schrédinger
equation for Y({¢, v}, 1),

oY ~

—=—HY 7.2

o ) (7.2)
and for simplicity we omiit the velocity potentials A" and B’ so that

H~=H~kin + 17, (7-3)

with H,,, given by Egs. (4.23)-(4.24). As a start, we must define our Hilbert space
inner product, in terms of which we can construct operator expectations. A
reconsideration of the analysis of Sects. 3—5 shows that we have already implicitly
specified the inner product [see, for example, Eq. (3.4)] to be

(@, %)= (ﬁ ] d¢"dwf> S} DP(( D). 0). (7.4

As a check, we note that H is anti-self-adjoint with respect to this inner product,
and consequently the inner product is time-independent for states which evolve in
time according to Eq. (7.2),

((15 ¥)= <af W) + <q>,%—":> =—(H®,¥)— (9, HP)=0. (7.5)
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We will see in Sect. 9 below that the quaternionic Hilbert space splits into two
superselection sectors, in which ¥ is respectively even and odd in the Grassmann
variables. In the even sector the norm (¥, %) is real and we can define the
expectation value <@) of an observable ¢ by

O>=(Y,09)/(¥,YP). (7.6)

In the odd sector (¥, ) is quaternion-imaginary, and since the quaternion units
do not commute the expressions (¥, ¥) " 1(¥, O¥) and (¥, O¥) (¥, ¥) ! in general
differ, and so in this sector we cannot define an unambiguous expectation value.
Henceforth in this section we confine ourselves to the even sector, in which we
consider the expectation of a bosonic variable

G=(¥, 6P, ¥). (1.7

To study the quaternionic version of the Ehrenfest theorem, we consider the
time evolution of the expectation in Eq. (7.7),

d , . ~ i
71 > =, (Hea— ) )/(¥, ¥). (7.8)

To simplify the right-hand side of Eq. (7.8) we need the commutator [H, 1], which
receives a contribution only from the term with i=j in H,;, of Eq. (4.23), giving

d iN = ¢pl
EE<¢a>'—<pa> ’

; 0 0 0
=le - —le ———.—le T
p{) 3 16¢Jz 3 26¢]1 3 30%
: 0 0 0
=—'1_e '—-—le v +le e
pll 3 la¢{5 3 Za% 3 3a¢11

(19)

0 0 d
p12=%el_a;5}; —%eza—(g,; +%€3675£,

. d 0 0
=—te,——de, - —tes .
p{‘! 3 10¢Jl 3 26¢12 3 3a¢]3,

The quantities p) defined in Eq.(7.9) are self-adjoint, but since they are not
quaternion real they have non-vanishing commutators with H,;,, and so d<{p’)/dt
does not satisfy an analog of the Ehrenfest theorem. The pJ’s also do not satisfy the
standard canonical commutation relations, since

[P, P10 a=b, (7.10a)
and since o B
[fa P31 =0"Cp, (7.10b)
with C the non-diagonal matrix given by
33 62 ‘_el 0
c=i| @ ~& 0 el (7.10¢)
——81 O ——83 €2

0 e e e
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with rows and columns in 0123 order. Clearly, the analogs in quaternionic
quantum theory of the usual canonical momenta are the anti-Hermitian momenta
P, defined by

these satisfy, together with the ¢.’s, the commutation relations
[¢1iza {)] = [~4iv ﬁi] =0 s [¢;v ﬁ{;] = 5ij5ab . (712)

The pi’s have a vanishing commutator with H,,, and so satisfy an Ehrenfest
theorem analog

d .. N 0 ~
E<P2>—<[H,P£]>——<a¢£ V> . (7.13)
However, Egs. (7.9) and (7.13) cannot be combined to give an analog of the
Ehrenfest theorem for d?{#!>/dt>. The reason is that when we express the p/’s in
terms of the p?’s we find

<Py =<~ Cab}>, (7.14)

and since C,, does not commute with the quaternionic wave function ¥, we cannot
relate the right-hand side of Eq. (7.14) to the {})’s. [In the complex case the pi’s
and p¥’s are related by a factor of i, which commutes with everything, and so the
standard Ehrenfest theorem relating d?{¢i>/dt* to {—0V/04)> immediately
follows.]

We turn next to the path integral formalism, and examine the quaternionic
analog of Feynman’s identity of Eq. (7.1). Following Feynman, let F({¢(¢), w(t)},
to <t =<ty) be a quaternion-real functional of the coordinates along the entire time

path in Eq. (3.3), and define
(Frs= thd[tﬁ]d[w]F ({80, p(O)}HTexpS, (7.15)
S= | dueuL(u).

Let g; be any individual component ¢/ or v} at intermediate time t,; since the
integration measure is invariant under the change of integration variable
qr—q; +90q;, we get the identity

0={d[¢]d[v] {a%lFTexpg +F%(Texp§)} . (7.16)

The first line in Eq. (7.16) clearly gives (0F/0q, s, but despite the time-ordering the
second line is not equal to

[ dT¢1d[yIFT (aiq[ S CXP§> =(Fa5/0q;>s, (7.17)

because even for fixed time ¢, the quaternion units e (t;) do not commute. Going
back to the ordered product for which Eq. (7.15) is a shorthand, the q;-dependence
of the integrand resides entirely in the following factors (F can appear anywhere in
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the ordering since it is quaternion-real)

emt(1+ 1/2)FeAzt(1— 1/2) , (7.18)

and we cannot derive Feynman’s formula because
SeM U VD) 4 oMU 1D A5 T(1+1/2) (7.19)

and similarly for the right-hand factor. The best one can do is to get a formal result
by using the equation, valid for the parametric variation of exp@ with ¢ any

operator,
P 1 1
—e‘gze@jdse_swa—@—ew:fdses‘”(i(ge"s‘”e@. (7.20)
0 0

04 04 oA

Hence the quaternionic generalization of Eq. (7.1) states: (F )3 is replaced by 0
when the factor F in the ordered product of Eq. (7.18) is replaced by

ids{e_s"”:‘””Z)AtiI:(I—}- 1/2)esAtf,(I+ )
0 0qr
oF SAtE(I - 1/2) J - —sAtE(I—1/2)
o +Fe At%L(I—l/Z)e . (7.21)
I I

We have not explored the consequences of the resulting formula, but since it differs
in an essential way from Feynman’s, the derivation given by Feynman of the
Ehrenfest theorem and the canonical commutation relations breaks down in the
quaternionic case. This is of course completely consistent with what we found from
the Schrodinger equation analysis of Egs. (7.2)«(7.14).

We turn finally to the stationary phase approximation, which is an alternative
route by which classical equations are obtained as approximations to the path
integral in the complex field theory case. In the quaternionic case, the stationary
phase approximation breaks down for two reasons: (i) First, because of the time-
ordering in Eq. (3.3), the phase appearing in the functional integral is not the
“classical” quaternionic action,

~

334 ~ ~ 1334 -~
Texp |:§ dt ea(t)La(t):l :‘: exP [S“classical”] H S“classical” = j dt eaLa(t) . (722)
to to

(i) Second, even if (i) is ignored and the time-ordering in Eq. (7.22) is dropped, in
general the variational problem 6S..j4qsicar =0 has no solution. The reason for this
is that S. jaeicar 18 Stationary if

IN ~
[ dtL(t)=0, a=1,2,3, (7.23)
to

and the three real action components of Eq. (7.23) are not in general stationary on
the same trajectories.® Hence the quaternionic functional integral does not have a

81t is easily seen that [ has stationary action trajectories only in the special case when the
variation of the potential ¥ has the form

V=3 (ViR + 6"tk + ViEd ¢ +1Eoy').

Thus the quaternionic oscillator I.=1(fe; § — w>@e, ¢), with e, an arbitrary unit quaternion, has
stationary action trajectories, but L =%(de;d — w?ey¢d¢) does not, and neither does the quater-
nionic gauge field action L=F,e;F,,, F,,=0,4,—0,A,+[4,, A,] (with y,v Lorentz indices)

uv
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INTEGRATING INFINITESIMAL
TIME DEVELOPMENT

QUATERNIONIC QUANTUM THEORY; QUATERNIONIC
SCHRODINGER EQUATION, PATH INTEGRAL
DIRAC TRANSFORMATION THEORY

N~

TIME DERIVATIVE
OF PATH INTEGRAL

Y Y
Y
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- — — — ——— PREFERRED COMPLEX DIRECTION — — — — —3m=|
(SYMMETRY BREAKING)

COMPLEX QUANTUM COMPLEX PATH
THEORY INTEGRAL

Fig. 2. The part of Fig. 1 which survives in the quaternionic case, and the connection (by symmetry
breaking) to the complex case

semiclassical limit, again showing that the correspondence principle breaks down
in quaternionic field theory.

To summarize, then, the only part of the complex field theory formalism of
Fig. 1 which generalizes to the quaternionic case is that shown in Fig. 2.
Quaternionic field theory can have a classical limit only through a projection (in
which a preferred quaternionic unit is singled out) down to a complex field theory,
which then has a complex classical limit of the usual kind diagrammed in Fig. 1.

8. Boson State Structure

In the formulation of quaternionic field theory given in Sects. 3-5, the underlying
Hilbert space structure has remained implicit. The aim of this section and the next
is to explicitly exhibit the structure of the Hilbert space for bosonic and fermionic
quaternion degrees of freedom. For simplicity we restrict ourselves to M =1 (one
bosonic and one fermionic degree of freedom), and start in this section with the
bosonic sector. As discussed in Sect. 7, the scalar product implicit in Sects. 35 is,
for bosons,

(¥, ¥)=]dpodd,dd,dps P (bo. $1, 82, 63) ¥ (o b1s P25 63)- (8.1a)
This inner product satisfies the standard Hilbert space reality condition
P, V)=V, ¥); (8.1b)
and gives a norm
(¥, ¥)=] dpodd dp,dds| ¥ (o, b1, $2, 63)° 3.2)

which is positive definite, and vanishes only for ¥ =0.
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Let us now exhibit a complete set of bosonic states, which are simultaneously
eigenstates of the boson kinetic operator Hy;,= —(1/6)De;D,. To do this let us
start from the complex completeness relation

On )J dpe'* ™" =5(¢—§)=0(po— $6)0(h1 — $1)0(h> — $5)5(d3— ¢5).

A=Dobo+D1B1+ D202+ D303, A =poBo+D181+ D205 +pads, (8.3)
§dp={dpodp,dp,dps,
which can be rewritten in terms of real functions as
(n )4 [ dp(cosAcos A +sinAsind)=d6(p—¢"). (8.4)

Defining the basis functions

pe(¢) N2 COS} qe(p) po(¢) )2 SIHAqO(p) (85)

(2 ) @2n

with ¢, , unit quaternions which can depend in an arbitrary way on p, the
completeness relation takes the form

§ ALY (@) pe(§) + ¥ po($) P ()] = 0(4 — 4. (8.6)
The bases ¥, and ¥, are eigenstates of A,
Hkm pe = 'P Ae(p) Hkm 'Ilpo - 'Ppo’lo(p) s

8.7)
e, o(P) =€qe,o@) [2e,(p1p3—Dpop2) +2e5(popy +P2P3)
+e3(pd+p3—pi — 13 14...(p) -
Since
4(p1p3—DpoP2)” +4(popy + P2p3)* + (5 + 3 —pi —p3) = (0% +pi +p3 +13),
(8.8)

we can rewrite 4, ,(p) as

Ae,o(p)=%(p%+p%+p2+p3)ee o(p) (89)

with e, , unit imaginary quaternions which can be given any orientation by an
appropriate choice of g, ,(p).

In conclusion, we remark that ordering 4, ,(p) to the right in Eq. (8.7) was
deliberate; the completeness relation for a general anti-self-adjoint operator ¢ in a
quaternionic Hilbert space takes the form

O= 3  |oDo¥Kol, (8.10a)

eigenvalueso’
which implies

Oo"y= % oo olo"y=[0"b0". (8.10b)

eigenvalueso’

We cannot rewrite |0”)0” as 0”|0” ), since both |0”) and o” are quaternion-valued,
and hence non-commuting. In terms of eigenstates |o”) the completeness relation
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reads

1= 3 |oH<o]. (8.11)

eigenvalueso’

To get Eq. (8.6) we let |0") =|pe, po) and take the {¢'|... |¢)> matrix element of
Eq. (8.11), giving

(PNIg>=6(¢"— @)= X {¢'Ipe, 0> {pe,ol$)

pe,o

=1 dpLY ,e($) P 1)+ ¥ pu($) ¥ (D)1,
¥ pe,o(9) =< dlpe, 0) .

Thus apart from care in factor ordering, the bosonic Hilbert space structure is
entirely conventional.

(8.12)

9. Fermion State Structure

We turn our attention next to the state structure in the fermionic sector. Here we
will find a number of unconventional features, arising both from the quaternionic
structure and the use of a second order wave operator. As already noted in Sect. 7,
the derivations of Sects. 3-5 implicitly assume the fermionic scalar product

(P, V) =] dpodp,dp,dp; P (Wo, Y1, W2, W3) Y W0, W1, o, 3) . (9.1)

We cannot deduce from Eq. (9.1) that (¥, V) =(¥, ¥"), because ¥ and ¥’ are sums
of monomials formed from anti-commuting Grassmann variables. To study the
reality properties of Eq. (9.1), we employ the fact that the fermionic state space is
finite dimensional, and so the general form of the wave function ¥ is

VY=Y +¥,

Yo=f+wo¥191 +Po¥292 + YoWsds +Wapshy +y3pihy

+P1Y2hs + o Yok, 9.2)
¥o=yob+y1¢1 + 92 + W33 +Woap3dy +Poyayid,

+ Yoy Wads + ¥ payae,

with b, f, ¢y, g4, ... general quaternion coefficients. To determine the quaternion
conjugation properties of Grassmann monomials, we use the following simple
lemma: For any real or Grassmann quaternion Q, Q=0 iff Qe,=e,Q, f=1,2,3.
[The proof follows immediately from Eq.(1.2).] Since we have defined the-
Grassmann components 1, to be quaternion-real, we have y,=1p,, and the lemma
thenimplies y,e,=e p,, f=1,2,3. Thisin turn implies that any monomial formed
from the y,’s commutes with e, f=1,2, 3, and hence by the lemma is quaternion
real. (Although the argument is elementary, we have formalized it in this way to
stress the distinction from the complex case, where iz =zi does not imply z=72.)
Since we have just shown that the Grassmann monomials obey

Va=Var VaWVs=Va¥s> PaPsWPc=VaPp¥Pc> VoW 1V2P3=PoYP1¥2Y3, ©03)
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the adjoint wave function appearing in Eq. (9.1) has the form

V=Y +¥
lP; Zf/‘i‘g—/ﬂl’oll’l +35Wov2 +J3Wows + WﬂPzUh + E/zlPalPl
+ E&‘Pﬂﬁz + E/WD‘PN)zlPs 5 94
P, =b"wo+ ¢+, + Cap3 + Ao a3+ dapos,
+d5pop 1y +EW 1 Y,Yps,

and the Grassmann monomials can be freely commuted through the quaternion
coefficients in Egs. (9.2) and (9.4). Substituting Egs. (9.2) and (9.4) into Eq. (9.1), a
short calculation shows that

(P, V)=(Y, V) +(¥, ¥,),
(P, V)= k+Kf+gihy+ Mg+ Goh, +Rogs +Gahs+ Rsgs, 9.5)
(P,,¥P,)=be—e&b—c\d, +dic,—ydy+dsc, —Cody+dycs .

We see that the fermion state space splits into two orthogonal sectors; in the sector
spanned by even Grassmann monomials, the inner product of Eq. (9.1) satisfies the
reality condition

(Yo W)=Y, Vo) (9.6a)

while in the sector spanned by the odd Grassmann monomials, the inner product
satisfies an anti-reality condition

W, ¥)=—(¥,¥). | (9.6b)
Equations (9.6) imply that the norms of even and odd monomials satisfy®

(Vo V) =(¥o o), (9.7a)

W, V)=—(V,¥V,), (9.7b)

and are quaternion-real and quaternion-imaginary, respectively! Furthermore,
there is no way of redefining the inner product, by multiplication by an imaginary
unit, so as to make (¥,, ¥,) manifest real. We conclude that in quaternionic
quantum theory, the physical Hilbert space must be constructed from the states ¥,
only. This restriction is consistent if the Lagrangian L is even in the Grassmann
variables, since then only even states can be prepared from the vacuum by any
physical processes.

Before continuing our discussion, let us pause to examine the complex analog
of Egs. (9.1)~(9.7). In the complex case we have

(P, ) ={ dp,dpo ' (W, w )P (Wo, W1) s

(9.8)
V=V +Y,, Y.=f+ywig, ¥Y,=pob+y,c.
° These statements generalize readily to the case when the number of quaternionic fermion
degrees of freedom is any M > 1. The product of two monomials of degrees d,, d, contributes to
the inner product only if d; +d,=4M; hence d, and d, are either both odd or both even. The
interchange of the two monomials results in a factor (— 1)**¥2= —1(41) in the odd (even) cases
respectively, resulting in an inner product which is quaternion-imaginary (real)
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If we conjugate 1,1, as in Eq. (9.3), so that oy, =yyy,, then we find
V=9 4P, V.= +gvew:, P,=by,+cyp,. 9.9
This gives for the inner product
(V" P)=(Y,¥)+(¥,¥,),
(Vo ¥o=Tg+3f = P P)=(¥.. ¥, (9.10)
(¥, ¥o)=—Cb+bc = (P, ¥)=—(¥, ¥,

and so again we encounter an imaginary norm. However, in the complex case the
lemma used to derive Eq. (9.3) does not hold, and so it is perfectly consistent to
define the conjugation of o, by Yo =9 W= —Yoy;. The second line in
Eqg. (9.9) is then changed to

Po=1"—gwop:, (9.11a)
and the second line of Eq. (9.10) becomes
(P, Y)=F9~3f = (V. V)=—(¥.,¥). (9.11b)

The norms in the even and odd sectors are now both imaginary, but we can make
them both real by multiplying by i, effectively making the inner product

(v, ¥)= ij d‘P1dll)olI7/(1P0a Y)¥Wo, v1),
(Y, P)=i(f'g—gdf)=(P,, V) with Pop;=1yp,, (9.11¢)
v, ¥,)=i(b’c—cb)= ('I/ v,

The conventions of Eq. (9.11c) are the standard ones used in complex field theory.
The same physics is in fact obtained irrespective of whether the standard
conventions of Eq. (9.11c), or the quaternionic conventions of Egs. (9.1)(9.7), are
used. To see this, we note that (i) in theories of physical interest, fermion number is
governed by a superselection rule, and so the fermionic Grassmann variables
always appear in the action in the combination ¥ I'yp, with I some matrix and y a
column vector with components of the form v, + iy, ; (ii) For such combinations,
the two conventions are related by

(@FW)standard convention i i(u_)rl/))quatemionic convention » (912)

since Eq. (9.12) is the condition for them to have the same Hermiticity properties.
However, the factor +i can be absorbed in the Grassmann integration measure in
the functional integral formulation [13] of the S-matrix, giving the same S-matrix
up to an unobservable overall phase. With these remarks in mind, in the remainder
of this section we will consistently use the quaternionic conventions, even when
discussing the complex case as an illustration of our formalism.

Since the quaternionic Grassmann vector space is an indefinite metric Hilbert
space, let us next discuss some general properties of the indefinite metric
formalism. Let fi(p)=<{yli> be a complete set of polynomials formed from the
Grassmann variable 1, orthogonal (but not orthonormal!) with respect to the
inner product [ dyf’f. We thus have

i) fiw)=cidy (9.13a)
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with ¢;# 0 a state normalization which in general can be quaternion valued. In the
transformation theory notation, Eq. (9.13a) can be rewritten as

iy =] dpdilp) pliy =cdy, (9.13b)
which implies the representation of unity
L={dylw) <yl (9.14a)
Equation (9.14a), or rather its generalization to include bosons
1={ dgdylp, v) <, vl, (9.14b)

is what we used in constructing path integrals in Sects. 3 and 4, and we see that
these representations of unity are independent of the normalization of the basis.
The ¢;’s do enter explicitly when we construct §(yp’— ) from the polynomials f(y),
since we have the identity

30— 0) =2 A Tw). 0.1
To prove Eq. (9.15), we let

PO/ = 605 F). (.16)
and for any index j we consider the integral

Fdy F, ) 0= 5 S0+ S dpTio) ) =5 ) 3= 1)
' ! ' ! (9.16b)

Since the fi(y) form a complete basis set, Eq. (9.16b) implies that

F@y',p)=06(y —p) =<y 1|lw)> =@ =)oy — ) (W' —p)(v'—v);
(9.17a)

in the quaternionic case, and

Fy',p)=0" —w)=<{@lly)> =" —p)o(v' —v); (9.17b)

if we specialize to the complex case. A second place where the ¢;’s enter explicitly is
if we try to find linear combinations of the polynomials f;(i) which are eigenstates
of the anti-Hermitian Hamiltonian operator H. Let us consider the matrix
representation of H,

Gl = dpfuw)Af(w), (9.18)

which defines a finite-dimensional quaternion-anti-self-adjoint matrix {i’|H|i).
The general spectral theorem quoted in Sect. 2 guarantees the existence of a
unitary matrix which diagonalizes {i'|H|i),

”Z. ljl'm<l,lﬁll> Uin = 5mne3dn . (919)

The left-hand side of Eq. (9.19) can be rewritten as
[ap3 frW Uil 3 f($)Us, (9.20)
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but this does not mean that
H~ Z f:(w)Um = Z fi(w)UineSdn ’ (921)

since Eq. (9.21) would imply

5mne3dn = j‘ le Z fi’(lp)Ui’m Z f,(l])) Uine3dn = Z (7i‘mjl leﬁ’(W)f;(W)Um%dn
= Z UimciUineSdn B (9223)

that is
Omn 22 U;nciU;p. (9.22b)

Equation (9.22b) is true for ¢;=1 (the usual case of orthonormalized states), but
fails for general ¢, and so the diagonal transformation of {i'|H|i> does not in
general lead to polynomial functions of y which diagonalize H.

Let us now apply this general formalism, first to the complex, and then to the
quaternionic, case. In the complex case we take as the orthogonal basis functions

1
fosp)= 5 (Evan): oatr)= ‘Jﬁwo;iwl), 9.23a)

which have the respective norms

deIdwoﬁi(W)f;i(W): +1, Idlpldtpof)i(W)ﬂ)i(lp): Fi. (9:23b)
Hence from Egs. (9.15) and (9.17b) we expect

8 =)= =)o =) =for W) or (W) — fo- (W) - ()
+ for W)ifo 1 (W) — fo- (W)if, ~ (), (9.24)

and substitution of Eq. (9.23a) shows that this is indeed the case. To illustrate the
remarks of Egs. (9.18)—(9.22), let us consider the effect of the second order wave
operator [cf. Eq. (6.3)]

H= icaiw0 6—5)—1 , (9.25)
looking first at the even sector. The matrix (e+|Hle+ ) is
_ %(_i - i) 9.26)
and is anti-Hermitian, with eigenstates G) and _ i) However, the linear
combinations f,, +f,_ are not both eigenstates of H; we instead have
H(for +£o-)=0,  H(for —fo)=—ic(for +1o2), (0.27)

and clearly there is no multiple of f, ; +f, - which, when added to f,, —f, -, makes
the latter an H eigenstate. The reason for this is that the norms of f, .. are opposite
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in sign, and so the even sector by itself is an indefinite metric space containing zero
norm states f,, +f,_. In the odd sector H vanishes identically, but the odd sector
is also an indefinite metric Hilbert space, with zero norm states f, , + f, _. Since the
action of the time evolution operator exp(—Ht) on f,. +f,_, f,+ £f,_ is

exp(—HO) (for +fo)=(for +12).
exp(—HO) (foy —fo)=fos —foo +ict(fos +1oo), (9.28)
exp(—Ht) (fos tfo)=lox 10,

all states are propagated forward in time and the + and — states in the even sector
are mixed. Hence the use of a second order fermionic wave operator is necessarily
associated with an indefinite metric state structure.

To achieve a definite metric fermionic Hilbert space with no zero norm states,
we must eliminate one of the two states in each of the even and the odd sectors.
Eliminating f,  and f,_ and keeping f,, and f,, (this choice is arbitrary, and is
equivalent to fixing a phase convention), the completeness sum of Eq. (9.24) is
altered into the + state projection operator

P .(y,vp) Efe+(w/)fe+ ) +j;)+(w/)if_;>+ (y)
=31+ pow +Wow’ +Woviwew s +iWowo +Wiwy) —Wow s + ¥ivol -

Now writing (9.29)

Y=pot+ip,, Y=yo+ip), P=yo—iv;, P'=yo—iypy,  (9.30)

a short calculation shows that

G/ i =/ (a7 ~7 -

A== W' =)+ (G —Py]

= Yot +WoPs HIWoPo + Vi) —Wovs +iwe, 03D

HAS) = powiwews
and so Eq. (9.29) can be written as
Po(y,w) =3 (9.32)

Hence the + state projection operator is equal to the exponential of the discrete
action constructed from the symmetrized first order Lagrangian

oy _0y
L= o w—wﬁ. (9.33)

We have thus recovered the standard result that fermion path integrals construc-
ted using a first order fermion wave equation have a definite, rather than an
indefinite, Hilbert space structure, with no zero norm states.'° In writing Eq. (9.31)

10 Usually this result is obtained by using coherent states [ 147, but since complex coherent states
do not appear to have a quaternionic analog, we have followed an alternative route which extends
in a natural way to quaternions
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we have actually abused the tilde notation, since although L of Eq. (9.33) is self-
adjoint, L =L, the discrete version of AS=iAtL given in Eq. (9.31) is not anti-self-
adjoint. We can get an anti-self-adjoint discrete action AS by adding a term which
is higher order in At, and hence vanishes in the continuum limit,

5 i =r( ) = - G i = - ’
AS=S [V =)+ = PwT=45"+ S (' =P (W' —w)
= A8 — (' =)oy’ =), - 9.34)
Exponentiating 45 and using Egs. (9.32) and (9.24), we find

eAS=2P (', ) [1 =3 —p)]1=2P , (¥, ) — 2P, (, )y’ —)
=2P (v, p)—[P.(w,p)+P_(v,p)]=P.(,p)—P_(y,p). (935

Although Eq. (9.35) does not annihilate the —states, it also does not mix the + and
— states, and so an alternative to using 4e**" in the path integral is to use e4’,
together with the subsidiary condition of requiring the — components of the wave
function to vanish on any one time slice.!!

Having completed this somewhat lengthy analysis of the complex case, we turn
next to the fermionic sector in quaternionic field theory. We choose a 16 state

orthogonal basis as follows,

1 _
Jeor(w)= ﬁ(l TP 1vaws)s  foor(W)=—=Wo Feswv2v3),
1

Jer+(p)= VE(WO‘PliWﬂ’z,): forsW) = —=W T espop,p3),

(9.36)

- Sl S

1
Jer (@)= ﬁ(Wo‘Pin’31P1) s Jors(W)= =k ezpopsp),

N

1
Seaz(w)= ﬁ(‘Po‘Ps T, foarw)= —2(1/)3 Tespop y,)-

N

With respect to the inner product of Eq. (9.1), these have the norms
(feaia feai)z +1, a=0,1,2,3, (ﬁai» faai): +es, a=0,1,2,3 (937)

The completeness relation of Eq. (9.15) thus becomes
0w =)= =)o =) (W =), (p = )5
= 3 Uaas @ eas @)~ fea ) ee @)
F foa+ (W3 foar (W) = foa-(W)es foa- ()], (9.38)

11 If one uses 4e%5, the Hamiltonian is written in the standard form Hoo+iHow+%'Hyq
+ip'(Hy ~Hogo)w, while to use 4%, one must write the Hamiltonian as Hgo+iH o3y + )
+ 9’ H, o+ i (Hyy — HooYi(y' +v), which differs from the standard form by terms of order At
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which is readily verified by substituting Eq. (9.36). Next, we compute the action on
the basis states of the anti-self-adjoint Hamiltonian [cf. Eq. (4.23)]

Ao ﬁ(i 0 _ Li)
0w, 0wy 0w, Oy

e, 8 0 66>e3<06 aa)
pe( 200 ) Bl 29 %) (939
3<0w30w1 Gwodpy) T 3\Opr 0w, wodys)
In the even sector we find

Hfpos=TF3efor-+erfur-+esfus),
Af,,.=0, a=1,2,3, (9.40)

era—z%ea(fe0+ +feO—), a=1’2’3~

Hence there is no way of choosing a subset of four non-zero norm states in the even
sector which propagate without mixing with states with the opposite sign norm.
(The best we can do with a subsidiary condition in the even sector is to restrict to a
basis of three positive norm states f,, ., and one zero norm state f,, , + f, -, which
are all annihilated by H, and hence propagate without mixing.) In the odd sector
we find

Hfyos = Felea(for+ +for ) —ei(fors + o)+ oz +fo5-1
H~f01 i%[e1(ﬂ3++f;3 Y+ex(foor Hfoo )+ ozt +hoam ] 9.41)
Hfyps= t4ex(foss + Sz ) —esfoos +foo )= 1 )1,

1

Hfye=Féles(foar +on) +ers(fyr+ o1 -) = (frow +fo0-)1-

We conclude from Egs. (9.40)9.41) that in the quaternionic case, just as in the
complex case, the use of a second order fermionic wave operator is necessarily
associated with an indefinite metric state structure.

We finally address the question of whether a quaternionic field theory can be
formulated using a first order wave operator for the fermions. We consider only the
free field case with no potentials, take the bosonic kinetic term to have the form of
Eq. (3.5), and examine the term of order (4t)° in Eq. (4.2) for the time development
of the wave function V. A first order formalism will work for an arbitrary number
of degrees of freedom only if, when one bosonic and one fermionic degree of
freedom are integrated out, the sum & of quaternion-imaginary kinetic Lagran-
gians for the remaining degrees of freedom re-exponentiates. That is, we must have

| ~
Wi (¢ p)=[dy e’V WS LASW )+ )P e (459), (9-42)

where ¥, lies in a 4-state definite-norm subspace of the even part of the fermionic
state space, and where we have allowed for the possible presence of a quaternion-
real action term of higher order in A4t [cf. Eq. (9.34)]

AS(y', p)=B@W' — ) (v —v) (9.43a)
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in addition to the quaternion-imaginary first-order action.

ASW', )= —3ALW — Plesy’ —Pes (v’ —w)]. (9:43b)

It is highly implausible that Eq. (9.42) can be satisfied with any choice of the real
constants A, B, C for general quaternion-imaginary K. A necessary (but not
sufficient) condition is that Eq. (9.42) be satisfied for & =0, which requires

P= oW L L, (43, ) 0.44)

to act as a unit projection operator in some 4-state definite-norm subspace of the
even part of the fermionic state space. By a tedious calculation (see appendix), we
have proved that this is not possible in the case B=0. When B is non-zero, there is
one additional parameter, but symmetries present when B=0 are broken, and so
further independent conditions on the parameters A, B, C must be satisfied in
order for P to have the required projection property. It is likely that the
impossibility proof extends to this case also, but because of the algebraic
complexity involved we have not attempted to carry it through.

10. Open Issues and Future Directions

We conclude by discussing in this section a number of specific open issues
connected with the calculations described above, and then sketch directions which
we intend to pursue for the future development of quaternionic field theory.
Among the open issues raised by our analysis are:

1. What is the deeper reason for the simplification of quaternionic Gaussian
integrals when the numbers of bosonic and fermionic degrees of freedom are
equal? One would like to understand why the bosonic recursion relation of
Eq. (2.30) and the fermionic recursion relation of Eq. (2.32) are effectively inverse to
one another.

2. Is there a natural way of rewriting the representation of d(¢'— ¢, v — )
obtained from Eq. (2.42) in spectral form,

o6 v =)= [ e ) ry e~ =)L 160076,
B (10.1)
P'=P(p—¢,y—y).

One cannot just write exp(®’ — ®)=exp P’ exp P because the quaternion units do
not commute.

3. Can the derivation of the quaternionic functional integral given in Sect. 5 be
simplified? We note here the following curious fact. Suppose we try to follow the
exact complex derivation of Egs. (5.10)~5.17), and make the (unjustified) appro-
ximation, denoted below by ~, of neglecting the non-commutativity of the
quaternion units by replacing quaternion unit products e,e, and e,e, by —0,,. We
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then get instead of Eq. (5.31),

(ﬁ ) du‘d@) (27) ™ 4M @~ AtlHicin, @1 (10.2)

i=1
with
— At[H i @] = At[hye,, Pyey] ~ — 8 AtLh,, D] = — Atic. (10.3)

Substituting Eq. (10.3) back into Eq. (10.2) and commuting derivatives through to
the right (where they vanish) we get

oD 4K o0~ 40, — Atx] __ o~ J4ik, (10.4)

which is the correct answer! Is this “derivation” an accident, or can a way be found
to justify it?

4. The proof of the absence of a first order formalism in quaternionic field
theory, started at the end of Sect. 9, needs to be completed.

5. We have shown in Sect. 7 that certain features of complex field theory break
down in the quaternionic case. There are many other aspects of the complex
formalism, such as the canonical formalism, coherent states, and the Euclidean
continuation, for which no apparent quaternionic analog exists. Obviously, not
being able to find a construction is not the same as proving none exists; some
definitive results are needed here.

6. As discussed briefly at the end of Sect. 4, can one obtain satisfactory
quaternionic field theories in the limit [M — N|—o0?

Some major directions which we intend to pursue in the future, and related
questions are:

1. A spatial manifold structure must be included, by reinterpreting the index i
labelling degrees of freedom as a spatial coordinate label. One can then gauge the
quaternionic unit e; in the bosonic kinetic action, thus realizing the “General Q
Covariance” of Finkelstein et al. [15]. The functional integral formalism of
Sects. 3-6 will have to be extended to constrained systems and Feynman rules
developed in a way which bypasses the canonical formalism; very likely, this can be
done by the heuristic method of dividing the functional measure by the infinite
gauge orbit volume. The quaternionic field theory analogs of the BRS transforma-
tions, Poincaré invariance, graded Poincaré invariance (Poincaré supersymme-
try), the TCP theorem, and the spin-statistics connection will all have to be worked
out, as well as the renormalization group structure of quaternionic field theory.

I1. The fermionic structure must be studied in greater detail. The fermions in
the quaternionic field theories we have constructed obey a second-order wave
equation. This has two possible advantages: (i) The normalization constant in the
functional integral is just a phase space factor which is independent of 4¢,
suggesting that perhaps functional integrals with complete boson-fermion symme-
try may be mathematically better-behaved objects than functional integrals
without such symmetry. (ii) Theories with second order fermions may be
manifestly gauge-anomaly free, since they may behave in this regard as do purely
bosonic theories [16]. In the supersymmetric case, they may be free of conformal
anomalies as well. This is clearly an important question for investigation.
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However, second order fermions have obvious problems: they involve an
indefinite metric state space, and they do not correspond to observed fermionic
matter. Methods must be developed to get first order fermions from second order,
either by gauging away the indefinite metric states [17], or by symmetry breaking
which turns the indefinite metric states into heavy, unstable degrees of freedom
which do not appear in the asymptotic spectrum [18]. An interesting possibility
[19] is that the appearance of chiral fermions in the electroweak interaction, and
the fact that these fermions obey a first-order rather than a second-order dynamics,
are related.

III. Symmetry breaking mechanisms must be studied, particularly ones which
break quaternionic field theory down to complex field theory. Since a commuta-
tive quaternionic tensor product does not exist [4,20], asymptotic states and an
S-matrix can probably only be constructed for a complex substructure of the
quaternionic state space, and so symmetry breaking is essential to make contact
with observed physics.

IV. When L, 11, and III are understood, particle physics model-building may be
possible. Some interesting questions here are the following: (i) Can the richer
structure of quaternionic field theory lead to the dynamical generation of some of
the Lie group structures of the standard model, such as the SU(3) color!? or flavor
symmetries? Can the breaking of quaternionic field theory down to complex field
theory help resolve the hierarchy problem? Do quaternionic field theories offer
new mechanisms for solving the cosmological constant problem? (ii) In quater-
nionic field theory, e; and —e; are related by a unitary transformation which is
continuously connected to the identity, whereas in complex field theory, i and —i
are related by the anti-unitary operation of T inversion. Can the observed small T
violation in particle physics be interpreted as an artifact of the breaking of an
underlying quaternionic field theory down to a complex one?

Appendix: Nonexistence of First Order Formalism (B =0 Case)
We consider here the 8=0 case of Eq. (9.42), specialized to B=0. Changing
variables according to v'=¢, w=¢+(, and suppressing the boson variable ¢,
Eq. (9.42) becomes
1 ~
Y. (O=] d( & La(48[¢, (D (E+0),
ASTE, (1=3A4(Tesé — Ees0) = Al ey (3¢, + {183 — 80— (o8a) (A1)
+e5(0o8 + {180+ 08+ (58) +Hes((oo+ {383 —(1¢ — (8]

Substituting powers of AS into the expansion

Li(Q)=—1+33+33° +163° +263°, (A2)
12 For an earlier version of these speculations see [21]; the equations of this reference involve

complexified quaternions (i.e., use 1, e;, e,, e3, and i), and hence do not in fact constitute a
quaternionic field theory. I wish to thank C. N. Yang for pointing this out to me
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we find after considerable algebra

~ 1 A
P& 0= G L4316 ()= - g+ 26 6t + s —Gao—Lot)

+e5(Lol1 + {180+ {83 +(58) +e3((obo+ 383 — {181 — (285}
2
- %{2C0C1€0£1 + 200028082+ 20,038,853 + 2050, E5¢,

_2C0C3él€2 —261C2€063 +COC162€3 +COC263€1
+ 0038081 + (38082 — (oladols — (1028165}

3
+ el Llalabods b Lolaladodsa

— 00183818283+ 00l1028082¢5]
el —{18505808285 — Lol2038182¢5
—L0l183808 182 —L0l18260¢1¢5]
+e3[010203¢18283— (0020380823

344

—Lol1l3C08183+Lol1laC081 82T} + = LolilalsColi&ads - (AD)

It is convenient to work with a monomial basis in the even sector, labeled as
follows
go=1, hy=vwop w03,

91=vo¥1, hi=p,ps,

(A4)
gd2=WoW2, hy=p3p,,
g3=Yo¥s, h3=pp,.
Computation of the Grassmann integrals in Eq. (A.1) then gives
34* 1
Pgo=[dL P, Dgo(¢+D)="oho, Pho=—_go. (A53)

and
2

A? A
PGy +h)=— 5@ +h),  POi—h)= 3@ —h),

2

A A?
P(g,+hy)=— "C‘“(gz‘i'hz)a P(g,—hy)= gE(gz*hz), (A.5b)

A? A?
P(93+h3)=+“6(93+h3), P(gs“ha):gf(gs—ha)-

Equations (A.5b) imply that we can only get three definite-norm P eigenstates with
P=1from g, , 3,h; , 3 by taking
A2

3_C'=1 = P(g,—h)=(9.—h), a=12,3. (A.6)
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However, Eq. (A.5a) then becomes

Pgo=27ch0 N (A 7)

Phy=—C"lg, = P[hy%(es/)/27C)g0]= +)/2Tes[ho % (e5/})/27C)g0],

yielding two zero-norm eigenstates with eigenvalues +]/27e;. Hence we cannot
find four definite-norm linear combinations of the monomials of Eq. (A.4) on
which P is a unit projection, for any values of the real constants 4 and C.
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