Comments

Symmetry Breaking in Landau Gauge A comment to a paper by T. Kennedy and C. King

Christian Borgs and Florian Nill
Max-Planck-Institut für Physik und Astrophysik, Werner Heisenberg Institut für Physik, Föhringer Ring 6, D-8000 München 40, Federal Republic of Germany

Abstract

For the non-compact abelian lattice Higgs model in Landau gauge Kennedy and King (Princeton preprint, 1985) showed that the two point function $\langle\phi(x) \bar{\phi}(y)\rangle$ does not decay in the Higgs phase. We generalize their methods to show that for the same range of parameters there are states parametrized by an angle $\theta \in[0,2 \pi)$ such that $\langle\phi(x)\rangle_{\text {Landau }}^{\theta}=e^{i \theta}\langle\phi(x)\rangle_{\text {Landau }}^{\theta=0}$ and $\langle\phi(x)\rangle_{\text {Landau }}^{\theta=0}>0$.

1. Introduction

In [1] Kennedy and King conjectured that the translation invariant pure phases of the lattice abelian Higgs model in three or more dimensions are parametrized by an angle $\theta \in[0,2 \pi)$ such that

$$
\langle\phi(x)\rangle_{\text {Landau }}=c e^{i \theta}
$$

with $c>0$ in the Higgs region. Since in their paper they use boundary conditions which do not break the global gauge symmetry, they only could show that the twopoint function doesn't decay. Using "Dirichlet" boundary conditions as explained below we generalize their methods to prove the following

Theorem 2. In $d \geqq 3$, for any $\lambda>0$ there are states parametrized by an angle $\theta \in[0,2 \pi)$, such that

$$
\langle\phi(x)\rangle_{\text {Landau }}^{\theta}=\langle\phi(x)\rangle_{\text {Landau }}^{\theta=0} e^{i \theta},
$$

where $\langle\phi(x)\rangle_{\text {Landau }}^{\theta=0}>0$ is is uniformly bounded away from zero provided $e<e_{0}$ and $-m^{2}>R(\lambda)$ in the notation of Theorem (2.3) of [1].
Remark 1. This provides a local (in Landau gauge) order parameter for the phase transition established in [1].

Remark 2. We believe that our construction in fact yields $\langle\phi(x)\rangle=\langle\phi\rangle$ to be translation invariant, but in this comment we only prove it for the fixed length model.

2. The Boundary Conditions

We define the model on a d-dimensional rectangular lattice $\Lambda=\bigcup_{r=0}^{d} \Lambda^{r}$, which we take to be an open subcomplex of \mathbb{Z}^{d}. Starting from the set of sites Λ^{0} this is defined recursively by the requirement [2] that an r-cell (i.e. bond for $r=1$, plaquette for $r=2$, etc.) belongs to Λ^{r} if and only if at least one $(r-1)$-cell in its boundary lies in Λ^{r-1} (in [3] this is called " $\partial *$-closed"). Visualizing Λ as a box with boundary $\partial \Lambda$ consisting of $(d-1)$-dimensional rectangles, this means that all the sites, links, plaquettes etc. contained in $\partial \Lambda$ do not belong to Λ, whereas they do, if Λ is closed as in [1].

With this difference in mind we write the electromagnetic part of the action as in [1]

$$
S_{\mathrm{em}}^{\Lambda}(A)=\frac{1}{2}(d A, d A)_{\Lambda^{2}}+\frac{1}{2 \alpha}\left(d^{*} A, d^{*} A\right)_{\Lambda^{0}}
$$

where A is the real valued gauge field defined on $\Lambda^{1} .(d A)(p)$ is computed on plaquettes in the vicinity of $\partial \Lambda$ as usual by putting $A(b)=0$ for $b \notin \Lambda^{1}$. Note that an according specification is not needed for $\left(d^{*} A\right)(x)$, because by definition all the bonds emerging from $x \in \Lambda^{0}$ already belong to Λ^{1}. In fact although $d^{*} A$ would also take on spurious values on sites one unit outside of Λ^{0}, these are not to be taken into account in order to have a proper gauge fixing function [4].

An important advantage of this choice of boundary conditions is, that now $d^{*} d$ evaluated on 0 -forms is nothing but the Laplacian $\Delta: \ell^{2}\left(\Lambda^{0}\right) \rightarrow \ell^{2}\left(\Lambda^{0}\right)$ with 0 -Dirichlet boundary conditions on $\partial \Lambda^{0}$, which is clearly invertible. More generally we note as a standard fact $[2,5]$, that on an open subcomplex Λ of \mathbb{Z}^{d} the Laplacian $\Delta=d^{*} d+d d^{*}$ is invertible on r-forms for all $0 \leqq r \leqq d-1$. In particular $D_{\Lambda} A e^{-S_{\text {em }}^{\hat{A}}(A)}$ with $D_{\Lambda} A=\prod_{b \in \Lambda^{1}} d A(b)$ is a well defined Gaussian without zero modes and hence integrable.

Finally we define the Higgs part of the action using the same notation as in [1]

$$
S_{H}^{\Lambda}(A, \phi)=\frac{1}{2} \sum_{b \in \Lambda^{1}}|D \phi(b)|^{2}+\sum_{x \in \Lambda^{0} \cup \partial \Lambda^{0}} V(|\phi(x)|)
$$

where the phase of the Higgs field $\phi(x)$ is constrained to be zero outside of Λ^{0}. This will correspond to $\theta=0$ in Theorem 2. The general case is obtained by applying a global gauge transformation $\phi^{\prime}(x)=e^{i \theta} \phi(x), A^{\prime}(b)=A(b)$.

3. The Order Parameter

Inspired by Eq. $(2.5 / 6)$ of [1] we now define

$$
G(x)=\phi(x) e^{-i e(A, h)}=r(x) e^{i(\theta, g)-i e(A, h)}
$$

where h is given by

$$
h=d \Delta^{-1} g
$$

and $g=\delta_{x}$. As a crucial property like in [1] we note that $\|h\|_{\infty}^{2} \leqq\|h\|_{2}^{2}=\left(g, \Delta^{-1} g\right)$ $=\left(\Delta^{-1}\right)_{x x}$ is uniformly bounded in x and $|\Lambda|$ for $d \geqq 3 . G(x)$ is gauge invariant since $d^{*} h=g$ and reduces to $\phi(x)$ in Landau gauge since $(A, h)=\left(d^{*} A, \Delta^{-1} g\right)$.

Let us first focus on the fixed length model, i.e. the limit $\lambda \rightarrow \infty$ in

$$
V(\phi)=\lambda\left(|\phi|^{2}-a^{2}\right)^{2}
$$

Theorem 1.

(i) For $d \geqq 3$ and for any $0<\gamma<1$, there are constants $e(\gamma)$, $a(\gamma)$ such that for $e<e(\gamma)$ and $a>a(\gamma)$

$$
\langle G(x)\rangle \geqq \gamma \cdot a
$$

uniform in the volume $|\Lambda|$.
(ii) There is a constant $\delta>0$ such that for $a<\delta$ and for all e

$$
\langle G(x)\rangle=0
$$

in the thermodynamic limit $\Lambda \nearrow \mathbb{Z}^{d}$.
Proof. First we note that in [1] the transformation of Balaban et al. [7] was implicitly used. This transformation is based on the identity

$$
\sum_{\substack{1 \text { forms } \\ n: \Lambda^{1} \rightarrow \mathbb{Z}}}=\sum_{\substack{v: \Lambda^{2} \rightarrow \mathbb{Z} \\ d v=0}} \sum_{s: \Lambda^{0} \rightarrow \mathbb{Z}}
$$

which also holds with our boundary conditions, with the minor simplification that now the 0 -forms s are not constrained to be zero at a fixed point $x_{0} \in \Lambda^{0}$, since $d s=0$ already implies $s=0$. Moreover Lemma (3.2) of [1] can be proven analogously, once we observe that in an open complex a maximal tree of Λ^{1} has to be constructed in such a way that it touches $\partial \Lambda^{0}$ at only one point (which then is the base for this tree). From then one we can literally use the proof of Theorem (2.1i) of [1], since only the uniform boundedness of $\|h\|_{2}$ respectively $\|h\|_{\infty}$ is used and all correlation inequalities also apply for $G(x)$. In particular $\langle G(x)\rangle$ $\geqq\langle\phi(x)\rangle_{X Y \text {-model }}$ which also proves ii).

Let furthermore $G_{\infty}:=\lim _{|x-y| \rightarrow \infty}\langle G(x, y)\rangle$ the order parameter of King, Kennedy [1], then we also have the following generalization of their theorem (2.5).

Corollary. In $d \geqq 3$ there are constants e_{0} and μ_{0} such that for $e<e_{0}$, ae> μ_{0} and all x

$$
G_{\infty}=|\langle G(x)\rangle|^{2},
$$

$$
\langle G(x) ; \bar{G}(y)\rangle=\frac{\sigma}{|x-y|^{d-2}}+O\left(\frac{1}{|x-y|^{d-1}}\right),
$$

where $\langle\cdot ; \cdot\rangle$ denotes truncated expectation.
Proof.
i) This follows from Lemma (4.2) and Proposition (4.3) of [1], since also with our boundary conditions for any g of compact support $d_{A} \Delta_{A}^{-1} g$ converges in ℓ^{2} to its infinite volume value in $d \geqq 3$. Hence

$$
G_{\infty}=\langle G(x)\rangle^{2}=a^{2} e^{2 F\left(h_{0}\right)}
$$

where $F(h)$ is given by the translation invariant polymer expansion (4.1) of [1] and $h_{0}=d \Delta^{-1} \delta_{0}$.
ii) Follows from the fact, that in the thermodynamic limit $\langle G(x, y)\rangle$ $=\langle G(x) \bar{G}(y)\rangle$.

Finally we note, that the correlation inequality of [1], Appendix A, which relates expectations in the fixed length and variable length models, verbatim applies for $\langle G(x)\rangle$. Hence

$$
\langle G(x)\rangle_{\text {var.length }} \geqq\langle G(x)\rangle_{\text {fixed length }}
$$

for any λ, provided $-m^{2}$ is sufficiently large. This proves Theorem 2 .
In conclusion we would like to mention that with the above boundary conditions the non-compact analogue of the factorization formula of [6] can be used to show ${ }^{1}$

$$
\langle\phi(x)\rangle_{\alpha}=\langle\phi(x)\rangle_{\text {Landau }} e^{-\alpha / 2\left(g, \Delta^{-2} g\right)}
$$

Since $\left(g, \Delta^{-2} g\right)=\left(\Delta^{-2}\right)_{x x}$ diverges as $\Lambda \nearrow \mathbb{Z}^{d}$ in $d \leqq 4$, this proves absence of spontaneous symmetry breaking in $d \leqq 4$ for all $\alpha>0$ in agreement with Theorem (2.4) of [1].

References

1. Kennedy, T., King, C.: Spontaneous symmetry breakdown in the abelian Higgs model. Commun. Math. Phys. (in press)
2. Guth, A.H.: Existence proof of a nonconfining phase in four-dimensional $U(1)$ lattice gauge theory. Phys. Rev. D 21, 2291 (1980)
3. Drühl, K., Wagner, H.: Algebraic formulation of duality transformations for abelian lattice models. Ann. Phys. 141, 225 (1982)
4. Nill, F.: Loop expansions in the presence of Gribov copies with applications to the $\mathrm{U}(1)$ lattice Higgs model. Max-Planck-Institut Preprint MPI-PAE/PTh 39/85
5. Hocking, J.G., Young, G.S.: Topology. Reading, MA.: Addison-Wesley 1961
6. Borgs, C., Nill, F.: Gribov copies and absnece of spontaneous symmetry breaking in compact U(1) lattice Higgs models. Max-Planck-Institut Preprint MPI-PAE/PTh 59/85. See also Theorem 1.i) in Borgs, C., Nill, F.: No Higgs mechanism in scalar lattice QED at large electromagnetic coupling. Preprint MPI-PAE/PTh 79/85
7. Balaban, T., Brydges, D., Imbrie, J., Jaffe, A.: The mass gap for Higgs models on a unit lattice. Ann. Phys. 158, 281 (1984)

Communicated by A. Jaffe

Received November 8, 1985; in revised form December 13, 1985

[^0]
[^0]: $\overline{1 \text { Here }\langle\cdot\rangle_{\alpha}}$ denotes expectation corresponding to the gauge fixing term $\frac{1}{2 \alpha}\left(d^{*} A, d^{*} A\right)$ and $\langle\cdot\rangle_{\text {Landau }} \equiv\langle\cdot\rangle_{\alpha=0}$

