Commun. Math. Phys. 104, 349-352 (1986)

Comments

Symmetry Breaking in Landau Gauge A comment to a paper by T. Kennedy and C. King

Christian Borgs and Florian Nill

Max-Planck-Institut für Physik und Astrophysik, Werner Heisenberg Institut für Physik, Föhringer Ring 6, D-8000 München 40, Federal Republic of Germany

Abstract. For the non-compact abelian lattice Higgs model in Landau gauge Kennedy and King (Princeton preprint, 1985) showed that the two point function $\langle \phi(x)\overline{\phi}(y) \rangle$ does not decay in the Higgs phase. We generalize their methods to show that for the same range of parameters there are states parametrized by an angle $\theta \in [0, 2\pi)$ such that $\langle \phi(x) \rangle_{\text{Landau}}^{\theta} = e^{i\theta} \langle \phi(x) \rangle_{\text{Landau}}^{\theta=0} = 0$.

1. Introduction

In [1] Kennedy and King conjectured that the translation invariant pure phases of the lattice abelian Higgs model in three or more dimensions are parametrized by an angle $\theta \in [0, 2\pi)$ such that

$$\langle \phi(x) \rangle_{\text{Landau}} = c e^{i\theta}$$

with c > 0 in the Higgs region. Since in their paper they use boundary conditions which do not break the global gauge symmetry, they only could show that the two-point function doesn't decay. Using "Dirichlet" boundary conditions as explained below we generalize their methods to prove the following

Theorem 2. In $d \ge 3$, for any $\lambda > 0$ there are states parametrized by an angle $\theta \in [0, 2\pi)$, such that

$$\langle \phi(x) \rangle_{\text{Landau}}^{\theta} = \langle \phi(x) \rangle_{\text{Landau}}^{\theta=0} e^{i\theta},$$

where $\langle \phi(x) \rangle_{\text{Landau}}^{\theta=0} > 0$ is is uniformly bounded away from zero provided $e < e_0$ and $-m^2 > R(\lambda)$ in the notation of Theorem (2.3) of [1].

Remark 1. This provides a *local* (in Landau gauge) order parameter for the phase transition established in [1].

Remark 2. We believe that our construction in fact yields $\langle \phi(x) \rangle = \langle \phi \rangle$ to be translation invariant, but in this comment we only prove it for the fixed length model.

2. The Boundary Conditions

We define the model on a *d*-dimensional rectangular lattice $\Lambda = \bigcup_{r=0}^{d} \Lambda^{r}$, which we take to be an *open* subcomplex of \mathbb{Z}^{d} . Starting from the set of sites Λ^{0} this is defined recursively by the requirement [2] that an *r*-cell (i.e. bond for r=1, plaquette for r=2, etc.) belongs to Λ^{r} if and only if at least one (r-1)-cell in its boundary lies in Λ^{r-1} (in [3] this is called " ∂^{*} -closed"). Visualizing Λ as a box with boundary $\partial \Lambda$ consisting of (d-1)-dimensional rectangles, this means that all the sites, links, plaquettes etc. contained in $\partial \Lambda$ do not belong to Λ , whereas they do, if Λ is closed as in [1].

With this difference in mind we write the electromagnetic part of the action as in [1]

$$S_{\rm em}^{A}(A) = \frac{1}{2} (dA, dA)_{A^2} + \frac{1}{2\alpha} (d^*A, d^*A)_{A^0},$$

where A is the real valued gauge field defined on Λ^1 . (dA)(p) is computed on plaquettes in the vicinity of ∂A as usual by putting A(b) = 0 for $b \notin \Lambda^1$. Note that an according specification is not needed for $(d^*A)(x)$, because by definition all the bonds emerging from $x \in \Lambda^0$ already belong to Λ^1 . In fact although d^*A would also take on spurious values on sites one unit outside of Λ^0 , these are not to be taken into account in order to have a proper gauge fixing function [4].

An important advantage of this choice of boundary conditions is, that now d^*d evaluated on 0-forms is nothing but the Laplacian $\Delta : \ell^2(\Lambda^0) \to \ell^2(\Lambda^0)$ with 0-Dirichlet boundary conditions on $\partial \Lambda^0$, which is clearly invertible. More generally we note as a standard fact [2, 5], that on an open subcomplex Λ of \mathbb{Z}^d the Laplacian $\Delta = d^*d + dd^*$ is invertible on *r*-forms for all $0 \le r \le d-1$. In particular $D_{\Lambda}Ae^{-S_{\text{eff}}(A)}$ with $D_{\Lambda}A = \prod_{b \in \Lambda^1} dA(b)$ is a well defined Gaussian without zero modes and hence integrable.

Finally we define the Higgs part of the action using the same notation as in [1]

$$S_{H}^{A}(A,\phi) = \frac{1}{2} \sum_{b \in A^{1}} |D\phi(b)|^{2} + \sum_{x \in A^{0} \cup \partial A^{0}} V(|\phi(x)|),$$

where the phase of the Higgs field $\phi(x)$ is constrained to be zero outside of Λ^0 . This will correspond to $\theta = 0$ in Theorem 2. The general case is obtained by applying a global gauge transformation $\phi'(x) = e^{i\theta}\phi(x)$, A'(b) = A(b).

3. The Order Parameter

Inspired by Eq. (2.5/6) of [1] we now define

$$G(x) = \phi(x) e^{-ie(A,h)} = r(x) e^{i(\theta,g) - ie(A,h)},$$

where h is given by

$$h = d\Delta^{-1}g$$

and $g = \delta_x$. As a crucial property like in [1] we note that $||h||_{\infty}^2 \leq ||h||_2^2 = (g, \Delta^{-1}g)$ = $(\Delta^{-1})_{xx}$ is uniformly bounded in x and |A| for $d \geq 3$. G(x) is gauge invariant since $d^*h = g$ and reduces to $\phi(x)$ in Landau gauge since $(A, h) = (d^*A, \Delta^{-1}g)$. Symmetry Breaking in Landau Gauge

Let us first focus on the fixed length model, i.e. the limit $\lambda \rightarrow \infty$ in

$$V(\phi) = \lambda (|\phi|^2 - a^2)^2$$

Theorem 1.

(i) For $d \ge 3$ and for any $0 < \gamma < 1$, there are constants $e(\gamma)$, $a(\gamma)$ such that for $e < e(\gamma)$ and $a > a(\gamma)$

$$\langle G(x) \rangle \geq \gamma \cdot a$$

uniform in the volume |A|.

(ii) There is a constant $\delta > 0$ such that for $a < \delta$ and for all e

$$\langle G(x) \rangle = 0$$

in the thermodynamic limit $\Lambda \nearrow \mathbb{Z}^d$.

Proof. First we note that in [1] the transformation of Balaban et al. [7] was implicitly used. This transformation is based on the identity

$$\sum_{\substack{1-\text{forms}\\n:\Lambda^1\to\mathbb{Z}}}=\sum_{\substack{v:\Lambda^2\to\mathbb{Z}\\dv=0}}\sum_{s:\Lambda^0\to\mathbb{Z}}$$

which also holds with our boundary conditions, with the minor simplification that now the 0-forms s are not constrained to be zero at a fixed point $x_0 \in \Lambda^0$, since ds=0 already implies s=0. Moreover Lemma (3.2) of [1] can be proven analogously, once we observe that in an open complex a maximal tree of Λ^1 has to be constructed in such a way that it touches $\partial \Lambda^0$ at only one point (which then is the base for this tree). From then one we can literally use the proof of Theorem (2.1i) of [1], since only the uniform boundedness of $||h||_2$ respectively $||h||_{\infty}$ is used and all correlation inequalities also apply for G(x). In particular $\langle G(x) \rangle$ $\geq \langle \phi(x) \rangle_{XY-model}$ which also proves ii). \Box

Let furthermore $G_{\infty} := \lim_{|x-y| \to \infty} \langle G(x, y) \rangle$ the order parameter of King, Kennedy [1], then we also have the following generalization of their theorem (2.5).

Corollary. In $d \ge 3$ there are constants e_0 and μ_0 such that for $e < e_0$, $ae > \mu_0$ and all x

i)
$$G_{\infty} = |\langle G(x) \rangle|^2$$

ii)
$$\langle G(x); \overline{G}(y) \rangle = \frac{\sigma}{|x-y|^{d-2}} + O\left(\frac{1}{|x-y|^{d-1}}\right),$$

where $\langle \cdot ; \cdot \rangle$ denotes truncated expectation.

Proof.

i) This follows from Lemma (4.2) and Proposition (4.3) of [1], since also with our boundary conditions for any g of compact support $d_A \Delta_A^{-1}g$ converges in ℓ^2 to its infinite volume value in $d \ge 3$. Hence

$$G_{\infty} = \langle G(x) \rangle^2 = a^2 e^{2F(h_0)},$$

where F(h) is given by the translation invariant polymer expansion (4.1) of [1] and $h_0 = d\Delta^{-1}\delta_0$.

ii) Follows from the fact, that in the thermodynamic limit $\langle G(x, y) \rangle = \langle G(x)\overline{G}(y) \rangle$. \Box

Finally we note, that the correlation inequality of [1], Appendix A, which relates expectations in the fixed length and variable length models, verbatim applies for $\langle G(x) \rangle$. Hence

$$\langle G(x) \rangle_{\text{var. length}} \geq \langle G(x) \rangle_{\text{fixed length}}$$

for any λ , provided $-m^2$ is sufficiently large. This proves Theorem 2.

In conclusion we would like to mention that with the above boundary conditions the non-compact analogue of the factorization formula of [6] can be used to show¹

$$\langle \phi(x) \rangle_{\alpha} = \langle \phi(x) \rangle_{\text{Landau}} e^{-\alpha/2(g, \Delta^{-2}g)}.$$

Since $(g, \Delta^{-2}g) = (\Delta^{-2})_{xx}$ diverges as $\Lambda \nearrow \mathbb{Z}^d$ in $d \le 4$, this proves absence of spontaneous symmetry breaking in $d \le 4$ for all $\alpha > 0$ in agreement with Theorem (2.4) of [1].

References

- 1. Kennedy, T., King, C.: Spontaneous symmetry breakdown in the abelian Higgs model. Commun. Math. Phys. (in press)
- 2. Guth, A.H.: Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge theory. Phys. Rev. D 21, 2291 (1980)
- 3. Drühl, K., Wagner, H.: Algebraic formulation of duality transformations for abelian lattice models. Ann. Phys. **141**, 225 (1982)
- 4. Nill, F.: Loop expansions in the presence of Gribov copies with applications to the U(1) lattice Higgs model. Max-Planck-Institut Preprint MPI-PAE/PTh 39/85
- 5. Hocking, J.G., Young, G.S.: Topology. Reading, MA.: Addison-Wesley 1961
- 6. Borgs, C., Nill, F.: Gribov copies and absnece of spontaneous symmetry breaking in compact U(1) lattice Higgs models. Max-Planck-Institut Preprint MPI-PAE/PTh 59/85. See also Theorem 1.i) in Borgs, C., Nill, F.: No Higgs mechanism in scalar lattice QED at large electromagnetic coupling. Preprint MPI-PAE/PTh 79/85
- 7. Balaban, T., Brydges, D., Imbrie, J., Jaffe, A.: The mass gap for Higgs models on a unit lattice. Ann. Phys. **158**, 281 (1984)

Communicated by A. Jaffe

Received November 8, 1985; in revised form December 13, 1985

¹ Here $\langle \cdot \rangle_{\alpha}$ denotes expectation corresponding to the gauge fixing term $\frac{1}{2\alpha}(d^*A, d^*A)$ and $\langle \cdot \rangle_{\text{Landau}} \equiv \langle \cdot \rangle_{\alpha=0}$