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Abstract. A rotating rigid body with ellipsoidal cavity filled with magnetic fluid
is considered as a pulsar model. Dynamical equations for the pulsar model are
derived and investigated, certain integrable cases are indicated. Three-
parameter sets of periodic solutions integrable in terms of elliptic functions of
the time variable are obtained. A formula is derived for the period of rotation
and magneto-rotational oscillations of the pulsar.

Introduction

It is now generally acknowledged [1] that pulsars (neutron stars) have a solid
envelope and a liquid core which has high conductivity (the liquid is plasma) and
strong frozen magnetic fields; the liquid core contains the dominating part of the
pulsar mass. "Starquakes" happen periodically in pulsars, and they can be
observed as glitches of the pulsar rotation period. Asynchronous rotations of the
pulsar core and envelope take place during the time intervals between two such
phenomena. The relaxation time for the Vela pulsar (PSR0833-45) is τ ^ 6 years,
while its rotation period is P = 0.089 5. Therefore the viscosity effects are negligible
and an appropriate model of the pulsar core is that of the ideal incompressible
magnetic fluid.

The model of the pulsar rotation which is proposed in the present work takes
into account magnetic properties of the core and asynchronous rotation of the
core and envelope (Sect. 1). The model is applicable for a finite time interval ί,
P<^ί<τ, between two subsequent starquakes, where the energy losses to the
viscous friction and electromagnetic radiation may be neglected.

The dynamical system describing the rotation of the pulsar model is derived in
Sect. 2. It is a system of nine ordinary differential equations which are represented
in a simple vector form, Eq. (2.12). This system has four first integrals Jk; Jγ is the
total energy of the pulsar, J2 is the total angular momentum squared, J 3 defines the
magnitude of the frozen magnetic field, and J 4 is the scalar product of the curl of
the fluid velocity by the magnetic intensity vector (Sect. 3).
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The most important mathematical problem in the considered model is the
existence of periodic solutions, as actually the pulsar rotation is periodic and the
period is maintained with a high accuracy for a long time. It is shown in Sect. 4 that
in every manifold of the first integral level Jt = k{ k4 = 0 (for the domain of values of
constants kt) there are 12 closed trajectories of the dynamical system (2.12). These
trajectories have been integrated explicitly in terms of elliptic functions of the time
variable. Magneto-rotational oscillations for which the sign of the pulsar angular
velocity periodically changes have been found for the present model. Such
oscillations are in principle connected with the presence of magnetic fields. A
formula is derived [Eq. (4.12)] expressing the minimal period of rotations and the
magneto-rotational oscillations of the pulsar via its physical parameters. For the
real values of the parameters the predicted period of rotation To « 1 s, which fully
agrees with astrophysical data.

The dynamics of the pulsar model has some important mathematical
properties: the dynamical system described by Eqs. (2.12) is a special case of Euler's
equations in the space L* which is dual to the Lie algebra associated with the group
E3 x SO (3), where E3 is the group of motions of the three-dimensional Euclidean
space. In the invariant manifolds corresponding to fixed values of the integrals
J2 = k2, J3 = k3, J 4 = /c4 the system considered is of the Hamilton type, and its
Hamiltonian is J x . Some integrable cases are indicated in Sect. 3.

1. The Model of the Pulsar Rotation

The model of the pulsar dynamics is based on the following assumptions.
A. The pulsar envelope is absolutely rigid. Its liquid core has a constant

density ρ, and the fluid fills an ellipsoidal cavity with semi-axes dud29d3. The
chosen reference frame S is fixed to the envelope, the origin of the frame is at the
center of mass of the pulsar, and the coordinate axes are parallel to the principal
axes of the ellipsoid. The center of the ellipsoid 0 has coordinates rι,r2, r3 in the
reference frame S.

B. The rotation of the pulsar envelope is represented with an orthogonal
matrix Qι(i). The motion of the fluid in the cavity is described by magnetohy-
drodynamical equations [2] which are

ρdv/dt = — gradp + (rot H x H)/4π — ρ grad Φ,

= τ o t ( v x H ) , d i H 0

where υ is the velocity vector, p is the pressure, and H is the magnetic field intensity
vector; Φ is the gravitational Newton potential inside the fluid. The motion of the
fluid is a motion with homogeneous deformation [3,4], and the transformation
from the Lagrange coordinates ak to the Euler coordinates x1' is

x^ΣiFiaX + iQάr*), F = QίDQ2. (1.2)
k=ί

Here Q2(t) is an orthogonal matrix, Dij = diδij; the Lagrange coordinates ak lie
within the unit sphere, (α1)2 + (α2)2 + ( α 3 ) 2 ^ 1.
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C. The magnetic field H{ at the point with coordinates (1.2), is

Hι= Σ Pkh)a>, (1.3)
k,j=l

where h) is a constant skew-symmetrical matrix.
D. The electromagnetic field has a discontinuity at the fluid-envelope inter-

face φv On both sides of the interface the magnetic field is tangent to the ellipsoid
surface and frozen in the medium. Magnetic lines of force from the envelope are
closed in the surrounding vacuum.

We will show that all the necessary boundary conditions are fulfilled at the
boundary of the ellipsoidal cavity, that is the discontinuity surface. Let Hn, Hτ, Em

£τ, vn, vτ be normal and tangent components of the magnetic field, electric field, and
the fluid velocity at the surface. The boundary conditions known in magnetic
hydrodynamics [2] are (thermal conductivity is neglected)

\ixn). (1.4)

{ρυn} = 0, {sn-(P.v)n + ρvn(ε + v2/2)}=0, (1.5)

{ρυny-P'U-T'ή}=09 (1.6)

s = c(ExH)/4π, Ptj = -pδij9 T^iHfl^H2 6^2)1 An.

Here {X}=X+— X_ stands for the discontinuity of the quantity X at the
interface, θ is the surface charge, i is the surface current, n is the normal vector to the
surface, s is the vector of the electromagnetic energy flux density, P and T are
matrices with components Pip Tψ ε is the internal energy density of the fluid.

From the Eqs. (1.2), (1.3) we have vn = 0,Hn = 0. In the approximation which is
adopted in magnetic hydrodynamics E=-(vxH)/c, so Eτ = 0. Consequently,
conditions (1.4) are fulfilled and determine the surface current and charge density,
in the envelope Hn = 0, Eτ = 0. Conditions (1.5) are fulfilled, as vn = 0, sn = 0. Since
υn = 0, Hn = 0, conditions (1.6) lead to {p + H2βπ} = 0. The latter condition
determines the pressure from the envelope, thus it is also fulfilled in the case of the
absolutely rigid envelope.

The electromagnetic field has a discontinuity at the outer vacuum-envelope
interface φ2. The electromagnetic field in the surrounding vacuum may be, for
example, the field of a magnetic dipole. It is supposed that this field rotates together
with the pulsar; radiation of electromagnetic waves is not taken into account. The
conditions (1.4), (1.6) determine the surface current and the pressure in the
envelope at the boundary (the surface charge is 0 = 0, because due to infinite
electric conductivity of the envelope one has £ = 0 and hence En = 4πθ = 0).
Boundary values of the magnetic field, determined on two surfaces φί and φ2, are
matched by some magnetic field Ho inside the envelope. The Maxwell equations
inside the envelope lead to the condition that the magnetic field Ho is frozen and to
the determination of the volume current in the envelope) = c(4π) ~1 rot Ho, and no
other additional constraints arise.

The dynamics of the pulsar model is considered during time intervals for which
the fluid viscosity and the energy loses due to electromagnetic radiation may be
neglected.
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2. Dynamics of a Rigid Body with an Ellipsoidal Cavity Filled
with Magnetic Fluid

The equation of motion (relative to the center of mass) for a rigid body having a
cavity filled with magnetic fluid are equations of magnetic hydrodynamics (1.1)
combined with the conservation law for the total angular momentum. Let us
introduce the notations

Ui = QiA, Q2=-BQ2, (2.1)

and use the isomorphism between three-dimensional vectors and skew-
symmetrical 3x3 matrices in space R3,

v^Vjk=~ Σv%jk, (2.2)
i= 1

where vι are the vector components and Vjk are the matrix elements. Under this
isomorphism the vector product x x y is corresponding to the commutator of the
matrices, [X, Y~] = XY—Y X. Skew-symmetrical matrices A, B are mapped to
vectors with components A\ B\ ί= 1,2,3.

The angular momentum of the fluid in the cavity (relative to the center of mass)
is (the integral is over the cavity volume)

j , k = l

D2A + AD2-2DBD)Q1

i

I% = m(δjk Σ (/)2-rJrk

Here m is the total mass of the fluid, the superscript t stands for the matrix
transposition, Mjk are elements of the matrix M.

The total angular momentum of the system (rigid body and fluid) has the
following components in the reference frame S:

\lfk + 4 ) , gt = d) + d], yt =

where l\k is the inertia tensor of the rigid envelope in the reference frame S, U h ί
= 1,2,3. The conservation law for the total angular momentum looks like

M - M x A . (2.4)

The last three equations of magnetic hydrodynamics in (1.1) are fulfilled
identically because of the definitions (1.2) and (1.3). Turning to transformation of
the first equation in (1.1), note that in the case of the ideal incompressible fluid,
gravitational forces are equivalent to a redefinition of the pressure, px = p + ρΦ, so
they do not influence the dynamics of the model in view. For the motion with
homogeneous deformation the effective pressure px is a quadratic function of the
coordinates,

Pi=Po(0+ Σ (Pijit
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where p^t) are components of a symmetrical matrix P0(t). Using this form of the
pressure and substituting Eqs. (1.2), (1.3) in the first equation in (1.1) we conclude
that this equation is equivalent to the following equations, a matrix one and a
vector one,

Pι(t)=- Σ FKQjy.

Introduce the notation K0 = FtF-FtF; evidently, KQ^FΨ-F'F is the anti-
symmetrical part of the matrix F'F. The symmetrical part of this matrix determines
the matrix P0(t),

2P0 = - ρ(FF + FΨ) + (2π)" ̂ FΨh + (4π)" '(FΨh2 + h2FΨ). (2.6)

Because of Eq. (2.5) we have

ρK0 = (4π) ~ \h2FΨ - FΨh2). (2.7)

Using the definition (2.1) we get

Ko = Qt

2KQ2, K = D2B + BD2 - WAD, FΨ = Q!2D
2Q2 . (2.8)

By means of these formulae, Eq. (2.7) is transformed to an equivalent form,

\ (2.9)

where the square brackets stand for the matrix commutator. With the notation
u = Q2hQt

2, we get, because of (2.1)

ύ = [u,B], lu2,D2~] = [_u,uD2 + D2u]. (2.10)

The isomorphism (2.2) maps the skew-symmetrical matrix u to the vector with the
components M1, U2, U3, and the matrices K and w are mapped to vectors with the
components

K^gβt-γiA*, w^KgtU*, ij,fc=l,2,3 (2.11)

(no sum over i\). Equations (2.4), (2.9), and (2.10), rewritten in the vector notations
(2.3), (2.11), are the complete set of equations describing the dynamics of a rigid
body with an ellipsoidal cavity filled with the magnetic fluid,

M = MxA, K - K x B + uxw, ύ = u x B . (2.12)

The above equations determine completely the time evolution of the matrix F, so
Eq. (2.6) and the second equation in (2.5) enable one to get the matrix P0(t) and the
coefficients Pi(t), that is to say, to calculate the pressure inside the fluid (up to an
inessential additive constant).

Equations (2.12) are a generalization of the classical equations describing
motion of a body with a cavity filled with the ideal incompressible fluid [5] in the
present work they are derived for the first time. The classical case corresponds to
the absence of the magnetic field, it is obtained from (2.12) if u = 0.
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3. First Integrals of the Dynamical System.
The Integrable Cases

I. The most important first integral of the dynamical system (2.12) is that
corresponding to the total energy E (with the constant gravitational energy
excluded). It is the sum of the fluid kinetic energy Eu the internal energy of the
magnetic field E2, and the kinetic energy of the rotation of the rigid body £ 3 ,

Σ ?k
ί,k=l

jj 2d3, (3.1)

£ 3 = i Σ IhAιAJ, E = Et + E2 + E3.

Writing these formulae in the notations of Sect. 2, we have

IE = 2E/mi = (M, A) + (K, B) + (u, w)

= Σ (IikA
ίAk-2yiA

iBi +
i,k=l

gi = d] + d2

k, yi = 2djdk, U , f c = 1 , 2 , 3 . (3.2)

Evidently, Mf - dH/3A\ Kι = dH/δB\ wf = dH/du\ It is easy to verify directly that
the function Jί=H is the first integral of the system (2.12). Other three first
integrals of the system are

J 2 = (M,M), J 3 = (u,u), J 4 = (K,u). (3.3)

The integral J2 is, up to a factor, the total angular momentum squared, J 3 is the
magnetic field intensity in the Lagrange coordinates, squared, and J 4 is the scalar
product of the fluid velocity curl vector by the magnetic field vector h. All three
integrals (3.3) in combination determine the six-dimensional manifold Jί6 — T(S6)
x S2, which is the product of the bundle tangent to the two-dimensional sphere by

the two-dimensional sphere S2.
The system (2.12) is a special case of Euler's equations [6] in the space L* dual

to the Lie algebra L which is the sum of the Lie algebra associated with the group of
motions of the three-dimensional Euclidean space, E3, and the Lie algebra of
SO(3). The manifolds Jί6 are orbits of the co-adjoint representation of the Lie
group G = E3 x SO(3) in the space L*, so the symplectic structure is determined in
these manifolds in the standard manner [6]; in Jί6 the system (2.12) is of the
Hamilton type, and its Hamiltonian is H.

In the case of a spherical cavity (dί = d2 = d3) the magnetic field produces no
effect on the system dynamics, and equations (2.12) are reduced to the usual Euler
equations describing the rotations of an effective rigid body. In the case where the
rigid body and the cavity have an axial symmetry,

dt=d29 r^(0,0,r 3 ), /Λ = / $ , It=I
29

Eqs. (2.12) have an additional first integral J5 = M3 + K3; they are invariant under
simultaneous rotations in the planes (Mι,M2), (Kι,K2), and (uSu2). Therefore
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the system (2.12) at the common level of the first integrals, given in Eqs. (3.3), and of
the additional integral J 5 , is reduced after the factorization by this one-parameter
group to a Hamiltonian system in a four-dimensional manifold, and the latter
system is not integrable in general.

II. Let us consider the important case where the total angular momentum of the
system is zero, J2 = 0. We suppose that the center of mass is at the center of the
ellipsoid (rι' = 0), and the tensor of inertia of the rigid body is diagonal, 1^ = 1$.
Then because of Eq. (2.3) we have A1 = γiB

ι(gi + m^ *I{)~ *, and the system (2.12) is
reduced to

2H= Σ (fί~ιKf + κgiUf), (3.4)
i=ί

Equations (3.4) are analogous to the classical Kirchhoff equations describing the
motion of a rigid body having three symmetry planes in the ideal incompressible
fluid. It is known from the theory of the Kirchhoff equations that under the
Clebsch conditions [7],

the system (3.4) has the additional first integral

g3)u2

29 (3.6)

and is therefore completely integrable.
We shall show that for any magnitude of semi-axes of the ellipsoidal cavity, du

d2, d3, there exists a two-parameter family of values of the rigid body inertia tensor
11 for which relation (3.5) holds; that is to say the system dynamics is integrable at
the level J 2 = 0. Put d3>dί>d2, and introduce the following notations:

Ίigr^l, x^d^ς1, x2 = d2d3

1, x 2 < x 1 < l ,

a1 = 2x2(l +χϊ)~1 •> α2 = 2x1(l + XI)"1, a2) = 2x1x2{x\ + x^)~ι.

We get from Eq. (3.4) that ft = g.(l— ocfβf1). After substitution of (3.7) and a simple

transformation, Eq. (3.5) is reduced to the form

χl(l-χl) χl(χl-\) χϊχ2

2(χϊ-χj)

)8(l+x?) βixϊ + l) j8(x? + x|) K }

In view of this equation, we have βx > 0 for two arbitrary parameters β2, β3>0 and
at 0 < x2 < x-i < 1. The solutions of this equation admit the transformation β^Lβb

so we get the two-parameter solution with βt = Lβt > 1 if L is large enough. Then
the corresponding components of the inertia tensor of the rigid body, Ib are found
from Eq.(3.7). In particular, Eq.(3.8) has solutions for which x1&x2&l and
/?! ~β2~β3, and the necessary conditions Ii<Ij + Ik are also fulfilled in this case
for large L.

The familiar integrable case found by S.A. Chaplygin [8] for the Kirchhoff
equations does also belong to the system considered. Under the conditions

^4 = 0, (3.9)
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Eqs. (3.4) have an additional first integral,

j5={{κ\ - κi)fi1+κ(dl - dl)uf)2+4/3-
 2κ2κ2,

and the system is therefore completely integrable. After substitution of Eqs. (3.4),
(3.7) it is not difficult to see that Eqs. (3.9) have a three-parameter family of
solutions di9 Ik satisfying all the necessary conditions.

4. Periodic Solutions

I. For periodic rotations in the pulsar model the matrices Q±(i), 62(0 a r e periodic
functions of the time variable which have identical periods. Closed trajectories of
the system (2.12) are corresponding to such solutions; inversely, if the closed
trajectories of the system (2.12) form a three-dimensional set, it has an everywhere
dense subset corresponding to periodic rotations <2i(0 which leads to periodic
variations of the external electromagnetic field of the pulsar.

It will be seen that under the conditions Iik = (gt + Ii)δik and J 4 = 0 there are 12
closed trajectories of the system (2.12) in the open set of the level surfaces for the
first integrals Jt = kt.

For Iik = (gi-\-Ii)δik the integral J1 = H is

2 J i = Σ (aiMf + lcMKi + btKf + Kgfii}),
i=1 _ (4.1)

At the level J 4 = 0 the system (2.12) has three invariant submanifolds
Vf: uk = Mi = Mj = Ki = Kj = 0 (i,j, k = 1,2,3). In the manifold Fx

4 Eqs. (2.12) and
the integrals in Eqs. (3.2) and (3.3) are written as

U1-=U2B3, U2=-U1B3, M 3 - O ,

2Jι = a3Ml + 2c 3 M 3 X 3 + b3Kj + KQXU\ + κg2u
2

2, (4.2)

The level surface for the integral J 2 — k2 contains two components M3

ε= ± 1. In each component the manifold given by the integrals Jί=kί, J3=k3 is
the intersection of an ellipsoid (Jx = kx) and a cylinder (J 3 = k3) having a common
axis K3; it either consists of two closed trajectories of the system (4.2), or is empty
(the number of these closed trajectories is equal for both components of the
manifold, M3 = sk\12). The total number of closed trajectories in three invariant
submanifolds Vk depends on the relation between the quantities J 1 ? J2, J3; this
number is 12, 8, 4 or zero, and there are exactly 12 closed trajectories for
2JX>J2' max(αf — cf/bi) + κJ3 max(g ).

The closed trajectories describe the pulsar rotation around a fixed axis. The
maximal number of such trajectories (4 for every one of three axes) is associated
with two possible directions of the pulsar total angular momentum and two
possible directions of the rotation of the liquid core with respect to the envelope.

After the substitution K3 — (B3 — c3M3)/b3, Eqs. (4.2) acquire the form of the
classical Euler's equations,

B3=— ωuxu2, ύι=u2B3, ύ2= —uίB3, (4.3)
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where ω = κb3(g1 — g2). Let us calculate the period of the closed trajectories for the
system (4.2) and (4.3). The integrals of the system (4.3) are

<f = J3f + ωu?, J3 = ul + ul. (4.4)

Let d2>du then ω = κb3{d\ — df) > 0. Expressing B3 and u2 via uγ by means of (4.4)
and substituting them into (4.3) we obtain

«i=(( /3-«ΐ)(^-ω«?))1 / 2 (4-5)

Solutions of the equations of this type as known [9] are

W l = (^/ω)1/2sn(τ), τ = (ωJ 3 ) 1 / 2 ( ί- ί 0 ) , (4.6)

where snτ is Jacobi's elliptic function corresponding to the parameter
k2 = //(ωJ3). Putting the result (4.6) into Eq. (4.4), we get

τ. (4.7)

The period of the elliptic functions presented in Eqs. (4.6) and (4.7) is given by the
expression π / 2

T = 4(ωJ 3 Γ 1 / 2 1 (l-fc 2sin 2αΓ 1 / 2dα. (4.8)
o

This is the period of the closed trajectories for the system (4.2) and (4.3).

II. Let us find the magnitude of the period, T, which appears in the models of the
real pulsars, that is for d1« d2 « d3 « R and at constant J 3 , /3, ρ. The function T in
Eq. (4.8) attains the minimal value, Tm, at k = if = 0; in other words, for small
oscillations taking place in a vicinity of the axis u2(B3 = u1 = 0), thereby
Tm = 2π(ωJ3)~1 / 2. Asymptotically, such oscillations are

n ( ω 1 / 2 ^ ( ί - ί 0 ) ) , B3 = (ίω)ί/2 cos{ω1/2u°2(t-ί0)), u2 = u°2. (4.9)

After the substitution of Eqs. (4.1) and (2.3) into Eq. (4.7) we get for k^ 1,

Tm = 2π(4πρ/J3)
ll2K(dud2J3),

X = (d? + di + /3)-1/2(di-d? + /3(d? + di)(di-d?)-1)1/2, /3 = mΓ1(/§ + /J).

The function K attains its maximum Km at

Hence we obtain the minimal value of the period

+d2

2 + I3r
ί'2. (4.11)

For the real pulsars we have [1]: dx ttd2ttd3&R~ 106 cm, the matter density
in the liquid core is ρ~1014g/cm3, the matter density in the envelope is
Qi ~ 108 g/cm3, the envelope thickness is r ~ 104 cm, the magnetic field intensity at
the pulsar surface is \H\ ~ 1012 Gs (all the numerical values are presented with an
accuracy up to an order of magnitude). According to the definition in (1.3), the
maximal magnitude of the magnetic field intensity at the surface of the ellipsoidal
cavity is given by the formula \H\ = R\h\. The definition u = Q2hQ2 leads to
J 3 = \u\2 — \h\2, so J 3

/ 2 = |ii|/-R. If r <̂  R the interia tensor of the envelope is
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It is natural to assume that the center of mass of the pulsar is near the center of the
ellipsoidal cavity, and |r ί|<il(2rρ1/Kρ)1/2, then |/^| = y|/^|, where γ<ί [cf.
Eq. (2.3)]. Putting into Eq. (4.11) the corresponding expression for the relevant
component of the interia tensor,

we obtain finally

Γ0 = 8π3 / 2(5(l+y)/4)1 / 4ρ1 / 2liH"1(rρ1/Rρ)1 / 4. (4.12)

Besides, we have d2 = d1\Λ +(5(l + y)rρ1/Rρ)1/2] because of Eq. (4.10). Using the
numerical estimates presented above, we get d2 = d1(l + (5(l+γ))ί/210~4),
To = 5 s. The obtained value of Γo is a reasonable approximation of the period
T=3.75 s that is known for the pulsar PSR 0527. Having in mind the inaccuracy in
numerical magnitudes of all the quantities presented in Eq. (4.12), this estimate for
the minimal period of the pulsar rotation may be considered as being in a
satisfactory agreement with the available astrophysical data. Putting, for instance,
H = 5 1012 Gs (this estimate is quite likely) we get To ~ 1 s; this value of the period
is fairly close to the data for a number of pulsars, e.g. PSR 0628 (Γ= 1.24 s),
PSR 1133 (Γ= 1.19 s) and others [1].

III. Trajectories of the system (4.3) satisfying the condition

are encircling the u2 axis (B3 = u1 =0), as well as the trajectories of Eq. (4.8). For
such trajectories the matrix Q is invariable for the period of a single oscillation, as
Q2=—J5OQ2, and §B3dt = 0, while the matrix β i ^ + Ό δ Γ H O determines the
rotation around the x3 axis by the angle Aφ = ΓM3//3. The condition Δφ = 2πp/q
(where p and q are integer) determines the magnitude of the angular momentum,
\M\ = mί\M3\=2πpmίI3/qT, providing the exactly periodic pulsar rotation (with
the period of qT).

If J3κmin(gi)<Jί<J3κma,x(gi) and J2<ζl, there are 8 closed trajectories at
the surface Jt = ki9 and the quantities K3, B3, A3 = α3M3 + c3K3 have alternating
signs along the trajectories. Trajectories of this type describe nonmonotonous
pulsar rotations around the x3 axis, in the process of which the angular velocities of
the envelope and of the internal rotation of the fluid change their signs periodically
[a particular case of this type are the oscillations described by Eq. (4.9) for
\M3\<(ω^)i/2c3(α3b3 — c3)~1']. Motions of this kind are possible only in the
presence of an internal magnetic field and for dί + d2.

Magneto-rotational oscillations of the incompressible fluid in the case of the
cylindrical symmetry (the object is infinite in the x3 direction) have been
investigated in [10]. The existence of some periodical trajectories for the system
(2.12) can be established using the results obtained by Novikov [11]. For J2 = 0 the
system (2.12) is reduced to the Kirchhoff equations, so there are at least 2 closed
trajectories for every level of the integrals J 3, J 4 , J1>E(J3,J4\ J 2 = 0> a s it i s

shown in [11].

IV. Important solutions are also those having the minimal total energy Jt in the
manifold Jί6 corresponding to fixed values of the integrals J2 = k2, J3 = k3,
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J 4 = /c4. As the energy Jx is positive definite, such solutions do exist for any
manifold of levels of the integrals J2> 3̂? A? they correspond to stationary points
of the system (2.12). At the stationary points one has

(4.13)

After substitution of Eqs. (2.11) these conditions are reduced to

Σ
k=ί

Thus to find the stationary points one has to calculate the eigenvalues and
eigenvectors of the matrix with elements Jik. The rigid-body rotation (α = 0) and
the purely internal rotation of the fluid (λ = 0) take place only for a degenerate set of
the singular points lying in a two-parameter set of the manifolds Jί^. In the general
case of Eqs. (4.13) and (4.14) the matrices Qx(f) and Q2(t) describe periodic
rotations with the periods 7\ and T2. If the periods Tx and T2 are commensurate,
the solution is exactly periodic.
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