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Abstract. Let z-»/μ(z) be a complex holomorphic function depending holo-
morphically on the complex parameter μ. If, for μ = 0, a critical point of/0 falls
after a finite number of steps onto an unstable fixed point of f0, then, in the
parameter space, near 0, an infinity of more and more accurate copies of the
Mandelbrot set appears. We compute their scaling properties.

In several numerical experiments, the dynamics of rational maps has been studied
as the coefficients of the map vary. It has been observed [M, DH, S, CGS, C] that
remarkably precise copies of the standard Mandelbrot set Jί appear in the
corresponding plots. In their recent work [DH], Douady and Hubbard explain
this phenomenon by the local occurrence of "polynomial-like maps of degree 2." In
this paper, we elaborate on this explanation by showing that the mechanism of
"quadratification by large order iteration" [G, EEW] produces infinite sequences
of copies of Jί, obeying simple scaling properties.

We describe now the setting of a pre-periodic critical point, but immediately
restrict our discussion to the case of period one. We consider a complex
holomorphic function (z, μ)->fμ(z) over H x D M cC 2 , where H is a domain in (C
and DM = {ζ e <C | \ζ\ < M}, M > 0. We denote by fμ the function z-+fμ(z), and D"βfμ

= da

zd
β

μfμ *, fμ = dzfμ, etc. We make the following assumptions:
Al: /0 has a non-degenerate critical point c.
A 2: f0 has an unstable fixed point u, /o'(w) ~γ,\y\>\. (The restriction of /0 to a

sufficiently small neighbourhood of u has a unique inverse which we denote fo~
x.)

A3: (critical point preperiodicity) f£(c) = u,

for some Q ^ l .

A4: There is a sequence {xn} of points in H accumulating at u such that

5 for n = l , 2 , . . . ,

* On leave from the University of Geneva
1 By abuse of notation, we write Daβf0 instead of Daβfμ\μ = 0
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and x0 = c. Furthermore, for sufficiently large n one has xn=f0~
 1(xn-1), with / 0" 1

as in A 2.
If M above is chosen sufficiently small, then fμ will possess a critical point cμ

and an unstable fixed point uμ for μ e DM, depending analytically on μ and such
that co = c, uo = u. We further assume

A5: d£f?(c,)-uX=o*0.

By the implicit function theorem, reducing M and H somewhat, we may change
coordinates in such a way that cμ = c, uμ = u for all μeDM and that A1-A5 still
hold.

Our result is a scaling relation for p-fold iterated functions.

Theorem 1. There are non-zero constants Kl9 K2, K3, and K such that for all
sufficiently large p one has:

1. There is a number μp for which // (c) = c and which satisfies

2. The quantity λp = 2/(f»p)" (c) satisfies

\λp-K2y-^K\y\-^

3. The quantity δp = λ~x dμfμ

p(c)\μ=μp satisfies

\δp

4. The function

Fa(z; p) = λ~ \fϊp+alδp{λpz + c)-c) (1)

satisfies

for all |C|<|yΓ/16/2K2 and \a\<\γ\Pl*.

For numerical calculations, it may be useful to give the constants Kl9 K2, K3.
One has

K1=yo lim [y"(xn-UWJKC) , (2)
n-*oo

(3)

j (4)

As a result of the theorem, the sequence of functions ((, a)->Fa(ζ;p) tends, as /?-• oo,
uniformly on every compact set to (ζ, a)-+Pa(ζ) = ζ2 + a. For any A ^ 4, |α| ̂  4̂, we
have Pa1(DA2)CD2A- Hence, for r>2A and sufficiently large p, we have
Fa\DA2;p)CDr and the triple ( ^ 2 , i 7

f l "
1 ( ^ ; p ) , Fa( ;p)) is a "polynomial-like

map of degree 2" in the sense of Douady and Hubbard [DH]. Recall that the
Mandelbrot set Jt of the family {Pa} is given by

•*= Π ftΓ1^), where gH(a) = P»a(0).
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Clearly, the local Mandelbrot set Mv of the family {Ffl( ;p)}5 similarly defined,
converges to Jί as p-->oo. In particular,

^cc u ί l i ; . (5)

On the other hand, Jί contains the open set Jίf = {a \ Pa has an attractive cycle}2. If
aeJί\ then, for sufficiently large p, Fa(-;p) has an attractive cycle of the same
period as Pa which, by the results of [DH], attracts the critical point 0. Thus, if we
define J('p in analogy with Jί\ we find

M'Q U Π M'v. (6)

Theorem 1, combined with (5), (6) shows the asserted accumulation of Mandelbrot
sets near μ = 0, and their scale and position.

Before we start with the proof of the theorem proper, we restate A1-A5 and
some of their consequences as H1-H4 below.

There are positive constants L,M, ί/<l, R( = $ + 16L|y|/(l-|y|~3/5)), such
that:

H1: For μ e DM, fμ has a non-degenerate critical point at c.
H2: For all μeDM, the restriction of fμ to u + Dv has a unique inverse f~γ,

which satisfies for all zeu + Dυ\
1. f-Kzϊeu + DvM-1)'®^-*!*.
2. \f-\Z)-u-y-\z-u)\SL\z-u\{\z-u\ + \μ\).
3. \(j;(z)-γ\SL(\z-u\ + \μ\). In particular, |/;(z)|^|y|5/4.
4. \dμfμ(z)\^L\z-u\.
H3: There is a P^ 1 and a holomorphic function μ->zμ from DM to u + DulR,

such that for all μeDM one has
l //(^) = c
2. e p e p

3
4.
5. xF = z0, x P + π =/o "(xP) for n^O, xP_n=/0"(xP) for O^n^
H4: There is a C>0 such that for every μeDM, one has

2. fKc) = u,\dJ^
3 \(fμ

Q)"(c)\>L-\

Proof of Theorem 1.1 (Well-known: see e.g. [G], [DH]). By H4.2, we see that for
sufficiently small M, {fμ

Q(c)\\μ\ = M/2} is a contour around u. By H2.2 and H3,
f~s(zμ) lies inside this contour for sufficiently large s. Thus, by Rouche's theorem,
there is a unique μ in DMj2 for which f®{c) = f~s{zμ), i.e. / / i

s + p + β(c) = c. Thus we
have found μs+P+Q. For a quantitative treatment, we define, for all (z,μ)e(u + Dv)

hμ{z)=\imfμ(f-\z)-u), (7)

2 We have no result concerning Λ\M\ the so-called "composantes farfelues" [DH, MSS, ST]
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where yμ = fμ(u). By H2.2, the above limit exists uniformly in z, μ and satisfies

hμ(u) = 0, h'μ(u) = 1, hJJ- \z)) = y; %{z). (8)

We can now rewrite fμ+p+Q(c) = c as

Since z0 Φ M by H3.4, we see from H3.2 and (6) that v is defined and ί/(0) φ 0. Using
again H2.2, we see that

μ = γ-'(ί+μsk,(μ))/v'(O),

with ks(μ) uniformly bounded for large s and μ e DM/2. Theorem 1.1 follows by the
contraction mapping theorem. A little algebra shows (2) in the form

Ki = yQh(xo)/dJoQ(c), ho(xo) = y%(xP). (20

As a preparation for the proof of Theorem 1.2-1.4, we study the deviation of a
function φ from a quadratic polynomial by considering ([G, EEW]) the magni-
tude of φ'Ίφ' — 1/z. We therefore set, for large p,

Lemma 2. There is a constant K such that for sufficiently large p and all

z e c + D|y|-3p/4, μ e μ p + /)M-3p/2, (9)

the inequality

\Δμ(z;p)\<K\(ff)'(z)\\γ\' (10)

holds.

Proof We set s = p-P-Q. Let | C - M | < 2 C / / R < C 7 < 1 , |μ |<2K 1 | yΓ p . By H2,
\f-n(Q-u\S\y\~4n/5\ζ-u\. By induction, using H2.2, for all n = 0,1, ...,s,

For sufficiently large p, this gives, by the definition of R,

We now fix z and μ satisfying (9) and denote, for 0 g n ̂  5,

w=ffiz),* = f°(c), wn=fμ"p(w)=fμ";s(zμ

By the above estimate and Theorem 1.1,

(11)

By (9), |vv —w|^2L|y|~3p/2 and |vv — u\<U/2. An induction on n, l^n^s, shows
that wn=fμ(w) is defined, and
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This implies \wn — u\<U/2, \ws — u\<2U/R, for sufficiently large p, since \ws — u\
< U/R. The first estimate, with ζ = ws, now gives:

(12)

(.3)

We can now turn to

Aμ(z',p)

By H3, we have

1

while H2 implies

|(/Λ»| =

Uμ

7 - 1

Π I J

-u\<

'V M <

Γ(w )|

")'(0l

sl//4,

•(ws)

Π(

(/s)'(w)J •

(14)

Since

,py,, = Σ r,, \ (fjy w ' c 1 5 )

we find

and Lemma 2 follows by combining (13)—(16).
For later use, we note that (12) describes accurately the position of wn.

Proof of Theorem 1.2. By definition, we have 2λ~1=(fjj-)"(c), which we
decompose as

(/;/ (c)=(/£' (w.) (/;,)' (w) (/,Q

P)" (c),

with the notations of the proof of Lemma 2. Using now (11) and H2 to control
(fμY and H4 to control (f*)' and {fμ

Q)'\ one derives immediately Theorem 1.2, and
a simple calculation leads to (3), in the form

X2 = 2 7 ^( X o )/(/2)"( c ), Wo(xo) = fh'o{xP)l<Jξ)'{xP). (3')

Note that (T) and (3') may be more convenient for numerical work than (2) and (3),
since h0 can be computed from its Taylor series.

We define

(17)

Lemma 3. For large p and for

^ (18)

(where K2 is defined by Theorem 1.2), one has

y\-3^)^ (19)
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Proof. Denote

Gμ(ζ;p) = H"μ(ζ;p)/H'μ(ζ;p)-l/ζ,

g(z,μ) = (fμ

QY(z)/(ffy(z)-l/(z-c).

Then

+ c9μ). (20)

Our choice of domain, Eq. (18), assures that by Lemma 2, (20) is defined. Note that
by H4, \g(λpζ + c,μ)\ <2L2, and hence by Lemma 2 and (17),

\Gμ(ζ;pMΘ(\yΓ3pl4) for ζ,μ as in (18).

Since Gμ(ζ;p) = dζ\og(H'μ(ζ;p)/0 and H^;p)/C\c=o = H;(0;p)9we can integrate,
and we get

μ μ

Hence,

|fΓ;(C; P) - TOO; p)| ^ <P( |C 2 H;(

and the assertion follows by an additional integration.

Proof of Theorem 1.3. We want to relate the parametrization of Hμ to that given
by the quantity Hμ(0;p). For this purpose, we study dμfμ

p(z), with z = λpζ + c, and
ζ,μ as in (18). We rewrite

ws)+(//)' (vo (a,/;) (wo)+(//)' (wj (/;)' (w0) dμff(z),
(21)

with w s=/μ

s + Q(z). We shall see that the last term in (21) dominates, and we
therefore start by majorizing the first two terms.

By H3, and our earlier bounds (12) on ws, we have

with Cj independent of p,s,μ,z. By H2, we may write

(<u?) (wo) = ' Σ σ y (ws-π) (djμ) (ws_n
n = 0

Using (12) and H2.4, we see that

S

Thus the second term in (21) is bounded by a constant multiple of p. Using H4.1,2,
H2.3, and H3.2, we see that

(fμ

pr (ws) σ y (w0) 3 μ/ μ

Qω
(22)
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with R bounded independently of p, 5, μ, z. This asymptotic behavior applies now
to dμfμ

p as well and Theorem 1.3 follows at once. Again, we leave (4) as an exercise.

Proof of Theorem 1.4. We have just seen that

Using the definition of Hμ, we get from Theorem 1.3, that

\dμHμ(ζ;p)\^C5\y\lp, for ζ,μ as in (18).

By the Cauchy inequalities, this implies

and hence

\H;(0;p)-2\^2C5\y\3p/2\μ-μP\ (23)

If we require now \μ-μp\<\y\~15p/8, then

|/ίM(0 p) - ^ ( , u - ^ ) | ^ C6 |y|2^ | ,u-^| 2/(l7i ~ 3 W 2 - iyI ~ 1 5 p / β ) ^ ^( lyΓ W 4 ) <24)

Combining (23), (24) with Lemma 3, we get Theorem 1.4.
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Note added in proof. We have learned from A. Douady that he and J. Hubbard have obtained the
same results, which will appear in their paper in preparation.






