A Classical Solution of the Non-Linear Complex Grassmann σ-Model with Higher Derivatives

Kazuyuki Fujii
Department of Mathematics, Kyushu University, Fukuoka 812, Japan

Abstract

We construct a soliton solution of the non-linear complex Grassmann σ-model with higher derivatives, and show that this solution, as a continuous map, represents a generator of the K-group of a sphere.

Introduction

Non-linear σ-models such as the $C P^{N} \sigma$-model or complex Grassmann σ-model in two dimensions are interesting objects to study not only for physicists but also mathematicians. They have non-instanton solutions with finite action other than instanton solutions. Moreover, a discrete symmetry transformation has been constructed in their solution spaces. See, in detail, [5] and its references.

In three or more dimensions, the situation is different. With usual action form, it is well known that a classical solution with finite action, which we call a soliton, does not exist, by the scaling argument of Derrick's type. Therefore we must alter the action to obtain a soliton.

In this note we construct a new Lagrangian on $R^{2 m}$ and show that it has at least one non-trivial soliton solution. Moreover we show that this one represents a generator of the K-group $\tilde{K}\left(S^{2 m}\right)(=Z)$ of the sphere $S^{2 m}$.

I. The Model

We define a configuration space H which we consider hereafter. For natural numbers m, N we set

$$
\begin{align*}
G_{2 N, N} & \equiv\left\{A \in M(2 N ; C) \mid A^{2}=A, A^{+}=A, \operatorname{Tr} A=N\right\}, \tag{1}\\
H_{2 m} & \equiv\left\{P: R^{2 m} \rightarrow G_{2 N, N^{\prime}} C^{\infty} \text {-class }\right\} . \tag{2}
\end{align*}
$$

It is known that $G_{2 N, N}$ is a Grassmann manifold and $G_{2 N, N} \cong \mathrm{U}(2 N) / \mathrm{U}(N) \times \mathrm{U}(N)$. We call an element P in (2) a projector.

For the space $H_{2 m}$ we define a new Lagrangian as follows

$$
\begin{align*}
L(P) & \equiv \frac{1}{2} \int d^{2 m} X \operatorname{Tr}\left(\partial_{\mu_{1}} \ldots \partial_{\mu_{m}}\right)^{2}, \tag{3}\\
\partial_{\mu_{j}} & \equiv \partial / \partial x_{\mu_{j}} \quad(j=1, \ldots, 2 m) .
\end{align*}
$$

Here and hereafter we adopt the Einstein rule on summation. The new Lagrangian coincides with original one for $m=1$ [5], and was introduced by Kafief [4] for $m=2$. Hereafter we consider only a classical configuration.

Lemma 1. The equation of motion of (3) is given by

$$
\begin{equation*}
\left[P, \Delta^{m} P\right]=0, \tag{4}
\end{equation*}
$$

where Δ^{m} stands for the m-times iteration of the Laplacian Δ on $R^{2 m}$ and $[$,$] stands for$ the Lie brackets.

The proof is easy. $P \in H_{2 m}$ satisfying (4) and $L(P)<\infty$ we call a soliton. On the other hand our Lagrangian has a topological number. We explain this. For P in (2), a global form of the curvature F is defined by

$$
\begin{equation*}
F \equiv P d P \Lambda d P \tag{5}
\end{equation*}
$$

see $[2,6]$. Then a topological index is given by

$$
\begin{equation*}
C_{m}(P) \equiv \frac{1}{2^{m} m!} \int \operatorname{Tr}\left(\frac{F}{2 \pi \sqrt{-1}}\right)^{\Lambda m} \tag{6}
\end{equation*}
$$

where Λm denotes the m-times exterior product. For example when $m=2$ we have

$$
C_{2}(P)=\frac{-1}{32 \pi^{2}} \int \operatorname{Tr} F \Lambda F
$$

This is the first Pontrjagin number. We shall construct a soliton solution with topological index $=1$ for any $2 m(m>0)$.

II. A Solution

For any natural number m, let $e_{j}(j=1, \ldots, 2 m-1)$ be generators of the Clifford algebra, $e_{i} e_{j}+e_{j} e_{i}=2 \delta_{i j}$. Now we realize $\left\{e_{j}\right\}$ in $M\left(2^{m-1} ; C\right)$ by the usual embedding. Then we may assume $e_{j}^{+}=e_{j}(j=1, \ldots, 2 m-1)$. We set $N=2^{m-1}$ and

$$
\begin{equation*}
Z=x_{2 m} 1_{N}+\sqrt{-1} x_{j} e_{j} . \tag{7}
\end{equation*}
$$

Now we state our main result.
Theorem 2.

$$
P \equiv \frac{1}{1+X^{2}}\left[\begin{array}{cc}
1_{N} & Z^{+} \tag{8}\\
Z & X^{2} 1_{N}
\end{array}\right] ; \quad X^{2}=\sum_{j=1}^{2 m} x_{j}^{2}
$$

is a non-trivial soliton solution.
Note that P in (8) is a $C P^{1}$-instanton projector for $m=1$ and a Yang-Mills instanton projector for $m=2$.

Before giving the proof of Theorem 2 we make some preparations. We resolve a Laplacian Δ as

$$
\Delta \equiv \frac{\partial^{2}}{\partial X^{2}}+\frac{2 m-1}{X} \frac{\partial}{\partial X}+(\text { angles-parts })
$$

using the polar coordinate. Remarking that

$$
\begin{equation*}
\Delta^{k} \frac{x_{j}}{1+X^{2}}=\Delta^{k \frac{1}{2} \partial_{j} \log \left(1+X^{2}\right)=\frac{1}{2} \partial_{j} \Delta^{k} \log \left(1+X^{2}\right), ., 1} \tag{9}
\end{equation*}
$$

we compute as follows:

$$
\begin{aligned}
\Delta^{k} \frac{1}{1+X^{2}} & =\left(\frac{\partial^{2}}{\partial X^{2}}+\frac{2 m-1}{X} \frac{\partial}{\partial X}\right)^{k} \frac{1}{1+X^{2}} \\
\Delta^{k} \log \left(1+X^{2}\right) & =\left(\frac{\partial^{2}}{\partial X^{2}}+\frac{2 m-1}{X} \frac{\partial}{\partial X}\right)^{k} \log \left(1+X^{2}\right)
\end{aligned}
$$

Proposition 3.

$$
\begin{align*}
\Delta^{k} \frac{1}{1+X^{2}}= & (-4)^{k}\left[\sum_{j=0}^{k-1}{ }_{k} C_{j}\{m-(j+2)\}\{m-(j+3)\} \cdots\{m-(k+1)\}(k+j)!\right. \\
& \left.\times \frac{1}{\left(1+X^{2}\right)^{k+j+1}}+(2 k)!\frac{1}{\left(1+X^{2}\right)^{2 k+1}}\right], \tag{10-1}\\
\Delta^{k} \log \left(1+X^{2}\right)= & -(-4)^{k}\left[\sum_{j=0}^{k-1}{ }_{k} C_{j}\{m-(j+1)\}\{m-(j+2)\} \cdots\{m-k\}(k+j-1)!\right. \\
& \left.\times \frac{1}{\left(1+X^{2}\right)^{k+j}}+(2 k-1)!\frac{1}{\left(1+X^{2}\right)^{2 k}}\right] \tag{10-2}
\end{align*}
$$

Proof. The proof is by the mathematical induction on k.
When $k=m$ (10-1) and (10-2) become very simple equalities.

Corollary 4.

$$
\begin{align*}
\Delta^{m} \frac{1}{1+X^{2}} & =(-4)^{m}(2 m)!\frac{1}{\left(1+X^{2}\right)^{2 m}} \frac{1-X^{2}}{2\left(1+X^{2}\right)} \tag{11-1}\\
\Delta^{m} \log \left(1+X^{2}\right) & =-(-4)^{m}(2 m-1)!\frac{1}{\left(1+X^{2}\right)^{2 m}} \tag{11-2}
\end{align*}
$$

From Corollary 4 and (9) we have

Corollary 5.

$$
\begin{align*}
\Delta^{m} \frac{X^{2}}{1+X^{2}} & =-\Delta^{m} \frac{1}{1+X^{2}} \tag{12-1}\\
\Delta^{m} \frac{x_{j}}{1+X^{2}} & =(-4)^{m}(2 m)!\frac{1}{\left(1+X^{2}\right)^{2 m}} \frac{x_{j}}{1+X^{2}} \tag{12-2}
\end{align*}
$$

Using the above corollaries we prove
Proof of Theorem 2. From Corollaries 4 and 5 we obtain

$$
\Delta^{m} P=(-4)^{m}(2 m)!\frac{1}{\left(1+X^{2}\right)^{2 m+1}} \frac{1}{2}\left[\begin{array}{cc}
\left(1-X^{2}\right) 1_{N} & 2 Z^{+} \tag{13}\\
2 Z & -\left(1-X^{2}\right) 1_{N}
\end{array}\right]
$$

Therefore

$$
P \Delta^{m} P=\frac{1}{2}(-4)^{m}(2 m)!\frac{1}{\left(1+X^{2}\right)^{2 m}} P=\Delta^{m} P \cdot P
$$

that is, $\left[P, \Delta^{m} P\right]=0$. Next we show $L(P)<\infty$. Substituting (8) into (3), we obtain a rational function on X inside integration (in polar coordinates). The highest exponent of X in the numerator of the rational function is $2(m+1)$. Therefore if

$$
\begin{equation*}
\int_{0}^{\infty} X^{2 m-1} d X \frac{X^{2(m+1)}}{\left(1+X^{2}\right)^{2(m+1)}}<\infty \tag{14}
\end{equation*}
$$

then $L(P)<\infty$. We show (14). Putting $X=\tan \theta$,

$$
\text { left hand side of (14) } \begin{aligned}
& =\int_{0}^{\infty} \frac{d X}{1+X^{2}} \frac{X^{4 m+1}}{\left(1+X^{2}\right)^{2 m+1}} \\
& =\int_{0}^{\pi / 2} d \theta \cos \theta \sin ^{4 m+1} \theta<\infty
\end{aligned}
$$

Finally we show our solution is non-trivial. Substituting (8) into (6) we have

$$
\begin{equation*}
C_{m}(P)=1 \tag{15}
\end{equation*}
$$

in a similar way as in $[3 ; \S I]$. Since (6) is a topological invariant, our P is non-trivial.

III. A Relation with K Theory

We sketch in this section the relation of our solution with K-theory. For $j=1, \ldots, 2 m$, we set

$$
\begin{equation*}
\phi_{j}=\frac{2 x_{j}}{1+X^{2}} ; \quad \phi_{2 m+1}=\frac{1-X^{2}}{1+X^{2}} . \tag{16}
\end{equation*}
$$

Clearly $\Sigma \phi_{j}^{2}=1$. Using (16), we rewrite (8) as follows:

$$
\widetilde{P} \equiv \frac{1}{2}\left[\begin{array}{cc}
\left(1+\phi_{2 m+1}\right) 1_{N} & \phi_{2 m} 1_{N}-\sqrt{-1} \phi_{j} e_{j} \tag{17}\\
\phi_{2 m} 1_{N}+\sqrt{-1} \phi_{j} e_{j} & \left(1-\phi_{2 m+1}\right) 1_{N}
\end{array}\right]
$$

This \widetilde{P} represents a generator of the K-group $\tilde{K}\left(S^{2 m}\right)$ of $S^{2 m}$, namely, in the diagram

the homotopy class of the composite of the bottom horizontal arrows is a generator
of

$$
\begin{equation*}
\lim _{\rightarrow}\left[S^{2 m}, G_{2 N, N}\right] \cong\left[S^{2 m}, B U\right] \cong \widetilde{K}\left(S^{2 m}\right) \tag{18}
\end{equation*}
$$

where we remark that $\tilde{K}\left(\mathrm{~S}^{2 m}\right)=Z, \tilde{K}\left(S^{2 m+1}\right)=0$.

Acknowledgements I wish to thank the late Professor Shichiro Oka, who died suddenly by a heart attack on October 30, 1984 while this paper was under refereeing, for his useful suggestions I dedicate this paper to him with deep grief and sincere gratitude for his kind advice and encouragement

References

1. Atiyah, M. F.: K-theory New York: Benjamin 1967
2. Fedosov, B. V.: Index of an elliptic system on a manifold, Funct Anal Appl 4, 312-320 (1970)

3 Gilkey, P B , Smith, L: The twisted index problem for manifolds with boundary J Differ Geom 18, 393-444 (1983)
4. Kafiev, Yu N.: Four-dimensional σ-model on quaternionic projective space Phys Lett $\mathbf{8 7 B}, 219-221$ (1979);
, The four-dimensional σ-model as Yang-Mills theory Phys Lett 96B, 337-339 (1980)
5. Sasaki R.: General classical solutions of the complex Grassmannian and $C P^{N-1}$ sigma models Phys Lett. 130B, 69-72 (1983);
-_, Local theory of solutions for the complex Grassmannian and $C P^{N-1}$ sigma models, preprint
6 Dubois-Violette, M , Georgelin, Y.: Gauge theory in terms of projector valued fields Phys Lett 82B, 251-254 (1979)

Communicated by A. Jaffe
Received September 25, 1984, in revised form February 22, 1985

