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Abstract. It has been shown by Olshanetsky and Perelomov that the Toda
molecule equations associated with any Lie group G describe special geodesic
motions on the Riemannian non-compact symmetric space which is the quotient
of the normal real form of G, GN

9 by its maximal compact subgroup. This is
explained in more detail and it is shown that the "fundamental Poisson bracket
relation" involving the Lax operator A and leading to the Yang-Baxter equation
and integrability properties is a direct consequence of the fact that the Iwasawa
decomposition for GN endows the symmetric space with a hidden group
theoretic structure.

1. Introduction

Integrable systems are currently of great interest for a variety of reasons,
mathematical and physical [1,2]. One reason is that some four dimensional gauge
theories, perhaps spontaneously broken by a Higgs mechanism may belong to a
new class of integrable theory. The integrability may relate to the electromagnetic
duality conjectures [3] whose validity is most favoured in the N = 4 supersymmetric
gauge theories [4]. It is known that the radial dependence of certain spherically
symmetric monopole solutions occurring in such theories is governed by a Toda
molecule equation [5,6] (with t replaced by i times radius):

^ φ b l α = l , 2 , . . r . (1.1)

These equations are known to be completely integrable when the square,
non-singular, matrix K is the Cartan matrix for a simple Lie group G (of rank r).
The solutions to these equations are also known [7,8,9,6].
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Olshanetsky and Perelomov [8] constructed these solutions from an interesting
geometrical picture in which they viewed Eq. (1.1) as describing a projection of
certain geodesic motions on a symmetric space GN/K explained below. It is
our purpose to understand the details of how this is done more clearly and to see
how the integrability properties arise in this picture. The reason this is important
to do is that Olshanetsky and Perelomov have conjectured that a similar picture
of geodesic motions on symmetric spaces (suitably generalized) may underly all
integrable systems [8,10]. This is almost certainly true for a large class and Eqs. (1.1)
constitute a relatively simple prototype class of theory. Related but more
complicated theories would involve two rather than one dimension and Kac-
Moody or higher algebras rather than finite dimensional Lie algebras.

The results we shall find depend on some very special properties of the type
of symmetric space considered as we now explain. The complex Lie group whose
Cartan matrix appears in (1.1) has a non-compact real form GN ("the normal"
form) whose generators are the Cartan subalgebra generators Ht and the step
operators Ea. G

N has a maximal compact subgroup K, whose generators are
E0L — E_a (for all roots α). The relevant symmetric space is GN/K and is
automatically non-compact and Riemannian. It has a very special structure owing
to the fact that its points can be parametrised using the Iwasawa decomposition
[11] which states that any point of GN can be uniquely expressed as a product of
three factors

g = nak, (1.2)

where n is obtained by exponentiating a real linear combination of the Ea

for positive roots α, a by exponentiating a real linear combination of the Ht and
k is in K. It follows that the quantities na can be used to parametrise the cosets
of GN which constitute the points of the symmetric space GN/K. The possible
quantities na form a group B (the Borel subgroup of GN) whose Lie algebra b will
be relevant for the integrability. By scaling the real parameters in the exponents
to zero we see that the space GN/K can be continuously contracted to a point.
Thus the symmetric space GN/K has its own group theoretical structure, B, and is
topologically trivial. It thus differs in an essential way from the types of symmetric
space considered by some other authors [12]. Nevertheless it is interesting that
such spaces arise naturally in supergravity theories. Thus EΊ 7/SU(8) is an example
[13].

Given a symmetric space GN/K there exists an automorphism σ of GN such
that the generators of K are even under σ while the remaining (orthogonal)
generators are odd (soσ2 = 1). Here

σ(Hd=-Hi9 σ(Ea)=-E.a. (1.3)

Let us define

g - ^ = A + iB, (1.4)

where A and B are odd and even respectively under σ. Then in Sect. 2 we show
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that the Lagrangian for the geodesic motion is

/2, (1.5)

and that the corresponding equation of motion

d£ + ί[B,A-]=0 (1.6)

takes the form of a Lax pair equation.
The Lagrangian (1.5), and, more importantly, the corresponding Hamiltonian,

are automatically positive. This is a reflection of the Riemannian nature of the
symmetric space. If we chose k = 1 in (1.2) which means that we are parametring
the point of the symmetric space by an element of B, then (1.4) can be expanded
in terms of generators of B with coefficients which are functions of the coordinates
and momenta.

In Sect. 3 we explain how to evaluate the Poisson bracket algebra of these
coefficients by using a refined version of Noether's Theorem. Since these coefficients
turn out to be Noether charges for right transformations

g^g' = gb, gf,fteB, (1.7)

their Poisson bracket algebra is the Lie algebra of B (even though these quantities
are only partially conserved by virtue of (1.6)).

In particular we find in Sect. 4 what Faddeev calls the Fundamental Poisson
Relation (FPR) [1]

{A + iB® A + ίB}PB = - [P,{A + iB)® 1 + 1 ®(A + £B)], (1.8)

where P is the quantity previously constructed by Turok and one of us [14]. We
also explain that because of a similarity in structure between P and A + IB, Eq. (1.8)
can be written in the form of a classical Yang-Baxter equation [15,16].

The next stage in Sect. 5 is to show how the geodesic motion can be constrained
in a consistent way to yield the Toda equation (1.1), with the Lax and FPR
equations (1.6) and (1.8) reducing to their known forms appropriate to (1.1). This
completes our demonstration of how the geometrical picture of Olshanetsky and
Perelomov leads to the structures common to integrable systems. Possibilities for
generalisation are discussed in the conclusion.

2. Geodesic Motion

Much of our work applies to the geodesic motion of a particle moving on any
Riemanian non-compact symmetric space, and we shall therefore postpone
specialization to the special type described in the introduction to Sect. 4. It is this
type which leads to the Toda equations (1.1) when appropriate constraints are
made. Let F denote any non-compact simple Lie group furnished with a Cartan
involution σ [11]. That σ is an involution means that it is an automorphism of
F satisfying

σ2 = l. (2.1)
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The generators of the Lie algebra f of F can be split into two subspaces even or
odd under σ (by 2.1):

f = k + p, σ(p)=-p, σ(k) = k. (2.2)

It follows that as σ is also an automorphism of f,

[k,k]c=k, [k,p]c=p, [p,p]c=k. (2.3)

If T and 5 are elements of f we have a σ invariant Killing form which we write
as Tr(ΓS) = Tr(σ(T)σ(S)). The Cartan property is that (in our notation)

Tr(Γσ(S)) is negative definite. (2.4)
So, by (2.2),

{is positive definite if T,Sep

is negative definite if T,Sek (2.5)

is zero if Tep and Sek.
k generates a subgroup Kc^F which is a maximal compact subgroup. We think
of the remaining generators p as "non-compact" generators. K is also the subgroup
of F invariant with respect to σ. For any element geF we define a "principal
variable" [8,17,18]:

x(g) = gσ(gΓ1 so σ(x) = x~K (2.6)

As x(gk) = x(g) if keK, we see that x is actually defined on the cosets F/K which
constitute the points of the symmetric space F/K. In fact, there is a unique
correspondence between the cosets and the point x, and we are going to regard
x as one way of labelling a point of the symmetric space. The geodesic equation
of motion for a particle on the symmetric space is

We shall show that the Lagrangian leading to this can be written

Jίf = Tr(x"1x)2/8. (2.8)

In order to do this it is useful to define

g-1g = A + iB, Λep, Bek, (2.9)

so that

Λ = (g-χg - o(g-χQ))β, iB = (g~ιg + o(g-'g))β. (2.10)

Then it is easy to check that

χ-1x = 2σ(g)Aσ(gΓ1. (2.11)

Hence by (2.8) we can write the Lagrangian in the alternative form

^ = Ίr(A2)/2. (2.12)

According to (2.5) and (2.9) the Lagrangian is therefore positive, a reflection of the
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Riemannian nature of the space. The Hamiltonian will likewise be positive, thus
assuring a desirable physical feature. Differentiating (2.11)

jt i\β9A\)σig)-\ (2.13)

This shows that the geodesic equation of motion (2.7) is equivalent to a "Lax pair"
equation [19]

A + ilB9A]=0. (2.14)

As Aep (Eq. 2.9) this equation has precisely as many components as the particle
has degrees of freedom, namely dimp = dim(F/X), and is therefore the natural way
of writing the equation of motion in preference to (2.7), the components of which
contain redundancies as they number dimf.

So far we have not assigned a unique element g to each coset and if we change
our choice: g-+g'= gk, we find that A and B change accordingly;

A->A = k~ιAk, B^B' = k-χBk + k~γL (2.15)

Thus B transforms as a K gauge potential and the Lax equation (2.14) states that
A is covariantly constant. Notice that the Lagrangian (2.8) and (2.12) is K gauge
invariant.

Let us vary g infinitesimally by a right translation

δg = gR, (2.16)

where for the time being Ref and is small. Then

δ(g-1g) = R-lR,g-1gl (2.17)

and the response of the Lagrangian (2.12) is

= Ίτ(Aδ(g- ιg)) = Ύτ(RA - iR[B, A~\) = ̂ Ύτ(RA) - Ίτ(R(A + i\B9 A])).
at

(2.18)

If we consider R as an Euler Lagrange variation we conclude that j£? is indeed the
correct Lagrangian as it yields the correct equation of motion (2.14).

Now vary g infinitesimally by a left variation

δg = Lg9 (2.19)

where for the time being Lef and is small. We find from (2.6) that

δx = Lx-xσ(L), (2.20)

δ(χ~ 1χ) = O(L),x~ 1 i ] + χ-χLx- σ(L). (2.21)

As

σ(χ-1x)=-xχ-1

9 (2.22)

we find that the response of the Lagrangian in the form (2.8) is

= Ίτ(xx ~ 1L)β = - Tφc" ιxσ(L))β (2.23)
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Thus if L is an Euler-Lagrange variation we find the Euler-Lagrange equation of
motion in the form (2.7).

We remark that many of the equations derived so far, for example the Lax
equation (2.14), hold for any coset space F/K without assuming the symmetric
space or other properties. We now come to the crucial point where the special
nature of the symmetric space described matters.

It is explained in Helgason [11] how, given a non-compact simple group F
equipped with a Cartan involution σ, it is possible to construct a maximal abelian
subalgebra a of p and a maximal nilpotent subalgebra n such that, according to a
result of Iwasawa, there exists a unique decomposition of any element of F into
three factors,

g = nak, (2.24)

where n and a are obtained by exponentiating n and a respectively with real
coefficients and keK. If σ is the involution (1.3) mentioned in the introduction
a and n are as specified in (4.3).

Thus given the Iwasawa decomposition (2.24) there exists a "natural" choice
of representative from each coset corresponding to each point of the symmetric
space, simply k = 1. There is no analogue of this for the compact symmetric spaces
more commonly studied in physics.

In this "gauge" k = 1, g = na. Since n + a forms a subalgebra of f this means
that the representative points g all belong to the group B c F obtained by
exponentiating b = n + a. Thus the symmetric space F/K is endowed with a hidden
group theoretical structure whose influence on the dynamics of our particles is
studied in the next sections.

Given this gauge our Euler Lagrange variations (2.16) should respect it. Thus in
(2.16) we should restrict Reb. As dimb = dimp this still yields the same Euler
Lagrange equation (2.14).

3. Exact and Broken Symmetries of the Lagrangian

We now show that the Lagrangian (2.8) or (2.12) exhibits at least three kinds of
symmetry, and evaluate the corresponding Noether charges. For certain of these
symmetries the Poisson bracket algebra of the associated Noether charges is
isomorphic to that of the original infinitesimal variations, despite the fact that in
one case the symmetries are not exact but broken. Later we show how these
resultant algebras lead to the integrability properties and in particular the
Yang-Baxter equations, both for the geodesic motion problem and the Toda
molecule equations (1.1).

The analysis depends on a refined version of Noether's Theorem stated in detail
and proven in Appendix I. We consider the response of a Lagrangian HP(q,q) to
infinitesimal variations of the coordinates qi9(i = 1... N).

δqt = ε(t)FJiq,q)9 and <5JS? = ~{εX) + έQ + εD (3.1)
at

(with X,Q and D depending on q and q only and notq).
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β, the Noether charge, is read off as the coefficient of έ in (3.1) and it satisfies
the partial conservation equation, Q = D.

We distinguish two interesting special cases which we denote cases α and β.
Case α is the circumstance that D vanishes in (3.1) so that Q is conserved. Q

can then be regarded as the canonical generator generating the original transform-
ation with constant ε (as this is now canonical).

The second circumstance, case β, is that the variations F are velocity
independent. Then it can be shown that X can be taken to vanish. When this is
done for three variations δ, δ' and δ" of this type which satisfy

δ"qi {ε" = εε'\ (3.2)

then

{Q,Q'}PB=-Q" (3.3)

Thus, the Poisson bracket algebra of the Noether charges coincides (up to a
sign) with the algebra of the original infinitesimal variations, even though the
charges may be only partially conserved.

A more complete statement of these results and their proofs appears in
Appendix I.

The three types of variation we shall consider in turn are respectively global
right translations of g (case β\ global left translations of g (case α and β) and time
translations (case α).

The most important symmetry in what follows is the most unexpected one,
that due to right translations of g. The reason any such symmetry is unexpected
is that in general right action on g does not have an unambiguous action on the
cosets which are the points of this symmetric space. That is if g^gr.reF, gr and
gkr do not usually lie in the same coset F/K. However for this special sort of
symmetric space we are considering we can use the Iwasawa decomposition (2.24)
as explained in the preceding section to choose a "gauge" fe = 1. This leaves g an
element of the group B whose points are thus in precise correspondence with the
points of the symmetric space. Right action on g by another element of B leaves
g in B as B is a group, thus transporting one point of this symmetric space, g, to
another, gb.

We shall now consider an infinitesimal global version of this,

δRog = ε(t)gRo, Roeb, Ro = 0. (3.4)

By Eq. (2.18) the response of the Lagrangian is, as R = εR0,δ£P = έΎτ(R0A)~
iεTr(R0[B,A]) as the variation (3.4) is velocity independent, the conditions of
case β are satisfied. Comparing with (3.1) we see that already X = 0 so that we
can read off the Noether charge as the coefficient of έ (see Eq. (3.1)):

Q(R0) = Ύr(R0A). (3.5)

A s lδRo9δRb'']g = glR0,R'0'] = δίRoM]β w h e n ε = l , w e h a v e f r o m (3.2), (3.3) a n d
(3.5)

{Tr(AR0),TT(AR'0)}PB=-Tr(AlR09RO]). (3.6)
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This specifies the Poisson brackets of the components of A, and is essentially the
so-called "fundamental Poisson relation" which will lead to the classical Yang-
Baxter equations as explained in the next section. We emphasize that Eq. (3.6)
holds even though these quantities are not conserved. The situation resembles
that in particle physics where current algebra relations can be derived even though
the currents are not conserved.

Now consider infinitesimal global left translations of g, initially preserving the
gauge k = 1 so that

δLog = ε(t)Log, Loeb, Lo = 0. (3.7)

By Eq. (2.23) the response of the Lagrangian is

δ^ = (l/2)έΊτ(xχ-iL0) = - {l/2)έΊr{χ-1xσ(L0)). (3.8)

Thus if έ vanishes, the Lagrangian is invariant. Conditions (α) and (β) of our
Noether's theorem are both satisfied. Comparing with Eq. (3.1) we see that X and
D both vanish so that we can read off from (3.8) the coefficient of έ as the conserved
charge

X(L0) = Tr (xx- ιL0)β = - Tr (x~ HdL^β. (3.9)

Since when ε = 1,

I A o A o ] # = -LLo>L'o]g= -δ[Lo,Lo]g,

we derive from (3.2) and (3.3) that

{X(L0)9 X(L'o)}PB = X([Lo,L'on (3.10)

where in the first instance Lo and L'o are both elements of b. Obviously

ί^Lo^Roio = 0, when Lo and Ro are both elements of b. Hence by (3.2) and (3.3),

{X(L0)9 Ύv(ARo)}PB = 0. (3.11)

Now let us consider the effect of enlarging the class of left and right transformations
from B to F by including elements of K. As we commented before, x and the
Lagrangian are invariant under right translations g-+gk even if k depends on
time, as long as it is an element of K. Hence there is no Noether charge associated
with infinitesimal global variations of this kind, and indeed the expression (3.5)
vanishes by virtue of (2.5) and (2.9).

On the other hand if we consider global left transformations g^g' = lg = n'a'k!
and then "gauge" k! to unity we see from (3.8) that we have a Noether symmetry
whenever έ = 0, and Lo is any generator of f, not just b. Thus in Eq. (3.10) the
range of allowed Lo and L'o can be extended from b to f. Nevertheless left and
right transformations of g only commute when both are constrained to B. Hence
in Eq. (3.11) the range of L o cannot be extended from b to f.

Finally let us consider time translations of δg = εg,

Thus applying Eq. (2.23) with L = εgg'1, we find

-1
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Since

xx~1=2gAg~1 and gg'1 = g(g~1g)g~\

δ£> = έTτ(A(A + iB)) + εΊv{A{A + iB))

at

using (2.5) and (2.9). Comparing with Eq. (3.1) we see that D vanishes. Thus
condition α of Noether's Theorem is satisfied so that the generator of the time
translations, namely the Hamiltonian, H, is conserved and given by the coefficient
of έ as

H = ΎτA2/2, (3.12)

when canonical variables are used. This is indeed positive by Eqs. (2.5) and
(2.9) as mentioned earlier. Obviously it is conserved by Eqs. (2.7) and (2.11). So
are the quantities

Hn = Ύτ(A»)/n. (3.13)

4. The Fundamental Poisson Relation and the Yang-Baxter Equations

So far we have worked with any simple non-compact Lie group F equipped with
a Cartan involution. Now we shall specialise F to GN, the normal real form of the
complex simple Lie group whose Cartan matrix occurs in the Toda molecule
equation (1.1). gN is the real Lie algebra generated by the usual Cartan subalgebra
generators H{ and the step operators Ea.

lEa,Eβ] = NaβEa+β α,j8>0, (4.1)

together with other equations not needed explicitly. Notice that all structure
constants are real, confirming that this is indeed a real Lie algebra. The Cartan
involution is

: - £ _ « . (4.2)

Then the various subspaces and subalgebras of gN have the following bases:

a = {//,}, i = l . . . r [ (4.3)

n = {£α}, α > 0 .

If we normalise our Killing form by Ύτ{HiH}) = <5y, it follows that

1 = 0 and Tr(£ rE_ / !) = 2<5a,,/a2. (4.4)
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It is easy now to check the Cartan property (2.4). We suspect that the work of
this section can be generalized to any choice of σ, but we have not checked this
completely.

In the last section we saw that the components of x - 1 i / 2 and g~ιg (in the
k = 1 gauge) constituted Noether charges with definite algebraic properties. Our
first aim is to develop a new notation which expresses this clearly.

In the gauge fe= 1, g is obtained by exponentiating the Ht and £α's (α>0)
(Eqs. 2.24, 4.3), and therefore we can expand

g~ lg = A + iB = Σ DM + Σ W A
i α>0

for some coefficients to be determined. As A is the odd part of g~ιg under σ

(2.10) we have by (4.2),

By (4.4)

D^TriAH^ -Tt{Aσ{Hd),

Da = 2 Ίτ{AEx) = - 2 Ύτ{Aσ{E_a)).

Let us define

D(T)=-Ύτ(Aσ(T)), Teσ(b). (4.5)

Then by the Noether charge algebra (3.6) and the fact that σ is an automorphism
of the Lie algebra

{ ,TΊ), T,T'eσ(b). (4.6)

Thus we have found

Σ + 2 Σ (a2/2)EΰίD(E^). (4.7)
i α>0

This combination will be called D, for short. Notice the factor 2 in the second
term of (4.7).

Similarly we find that

x x - 7 2 = - σ ί x " 1 * ) ^

= ΣHiX(Hi)+ Σ {*2β){EaX{E_a) + E_aX{Ea)) (4.8)
i α>0

when the coefficients X(L) satisfy Eqs. (3.9) and (3.10).
We see that the Hamiltonian H (3.12) can be expressed in two alternative ways,

Σ oc2D(E.f]
α>0 J

H = ΪΣD(Hi)2 + Σ oc2D(E.f]/2 (4.9)

Σα >°
Following a notation introduced in statistical physics [16, 1], Eq. (4.6) can be
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written in another way,

{D®D}PB= - [ P , D ® 1 + 1®D]. (4.10)

Faddeev calls a relation like this a "fundamental Poisson relation" [1]. Apart from a
factor — 2 (a 2 to compensate for a different definition of Lagrangian and a minus for
convenience), P is the operator constructed by Olive and Turok [14].

X (4.11)
α>0

Equation (4.10) is proven in Appendix II following the methods of Olive and Turok
[14] and using properties of root systems of Lie algebras. In that work it is also
useful to define an operator

(4.12)

It is possible to rewrite (4.10) as

{D®D}PB= - [ P + C,D®1 + 1®D], (4.13)

as the C contribution vanishes identically. We now show that this equation has the
same structure as the Yang-Baxter equation. This is because

P + C = C0 + 2C+ = ΣHi®Hi + 2Σ (a2β)Ea®E_x, (4.14)
i α>0

and the structure of this expression is very similar to that of D in Eq. (4.7). We can
develop this resemblance by introducing a triple notation with three spaces. The first
and third spaces are occupied by the left and right Lie algebra generators in (4.10)
and (4.13). The middle entry is the space of dynamical variables in which the bracket
operation is the Poisson bracket. With the suffices referring to these three spaces we
define

α > 0

α>0 i

Then Eq. (4.13) can be written

{Di2,D32}PB =- [D139D12 + D32]

or

{D12,D32}PB + [D139D12-] + [ D 1 3 , β 3 2 ] = 0. (4.15)

The quantum version of this is the Yang-Baxter equation [15,16], which is the
infinitesimal version of the triangle equation. We have learnt how to obtain this from
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something rather geometrical, namely the geodesic motion of a particle on a non-
compact Reimannian symmetric space.

Finally we see how to extract from (4.10) the Poisson brackets of the individual
components of A and B by using the involution σ. Let us define σL and σR as σ acting
respectively on the left and right entries of {D®D}. By considering (1 —σL —
σR + σLσR) acting on Eq. (4.10) we find

ΓP + R Ί ΓP-R ΊΓ P + R Ί Γ P R Ί
{A®A}PB=-\ —^—,A®\ - -^—9\®A (4.16)

where

U = σLP=-σRP= X (α 2/2)(£α(x)£α-£_α(x)£_α). (4.17)
α>0

Similarly we find

μ ® β } P β = - ^^Λ®B + B®U

[ f p ΓQ ~~| P [ED _ι_ [D ~~|

— 2 ~ ,A®1 - — ^ — Λ®A . (4.18)
Using (4.16) and the methods of ref. [14] it is possible to prove that

{A,TrAN/N}PB=-ilBN,Al (4.19)

where

iBN = ΊTJA"- i (l±^-\ = TrΛμw- ̂ X (4.20)

with the last equality holding only if T r ^ * ) is non-zero. From (4.19) it follows that
the quantities Tr AN are in involution, i.e.:

}pβ = 0. (4.21)

These results mean that any of the quantities Tr AN/N can be used as a new
Hamiltonian and that A, BN will constitute the corresponding Lax pair. Of course
B2 = B.

5. Reduction to the Toda Molecule System

The final step is to find the precise constraints on the geodesic trajectories necessary
to produce the Toda molecule equation (1.1) with the correspondingly constrained
quantities A and B satisfying the usual Lax pair and fundamental Poisson relations
of that system. The constraints have to be self consistent and one possibility is to
constrain

X(Ea) = D(£_α) = 0, α any positive non-simple root. (5.1)
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These equations are self consistent since the quantities put to zero in (5.1) form a
closed subalgebra under the Poisson brackets by Eqs. (3.10), (3.11), (4.5) and (4.6).
The quantities X(Ea) are conserved and so by putting them equal to zero when α is a
positive but non-simple root we are choosing initial conditions on the trajectory. It
remains to see how these conditions imply the vanishing of the D(E_a) in (5.1)
and how this leads to the Toda equations (1.1). To do this we introduce explicit
(horospheric) coordinates (φa,pa) for the symmetric space,

g = na, a = exp ( ΣφaHJ2 ), n = exp ( £
\ ) \α>0 /

n~H= £ £ α K α , Va= X pβMβM (5.2)
α>0 β>0

It is understood that the greek indices refer to positive roots, whereas the Latin
indices refer to the r simple roots. Thus

Ha = 2a H/a2, where a is a simple root.

The variables φa will be the same as those appearing in (1.1). Up to now we have
managed to keep our notation relatively simple by not introducing specific
coordinates. More concrete proofs of our previous Poisson bracket relations can be
obtained using these coordinates (5.2), but we leave this as an exercise for the reader.

In terms of the new variables (5.2),

g-1g = A + iB = a-1ά + a-1n-1ήa = (l/2)ΣΦaHa+ Σ exp(-Kabφb/2)VaEa,
a α>0

(5.3)

using the commutators (4.1) and introducing

Kab = 2oc-b/b2.

When α as well as b is a simple root, this forms the Cartan matrix occurring in (1.1).
Also we see

χ-1x = (n+y1ta-2n-1ήa2 + 2a-1ά + ή+(n+)-1]n+, (5.4)

where for any element g of GN we define g+ = σ(g)~ι.
It is difficult to evaluate this further, but it is easy to see that if γ is one of the

highest positive roots whose step operator Ey occurs in n~1 ή in the sense that Ey+a

does not occur for any positive root α, then the coefficient of Eγ in x~1 x is simply
Vγ exp ( - Kybφb) (as it is the same as the coefficient of Ey in a ~ 2 n"1 n α2, since the n+'s
do not affect this term). As x~λx is conserved, so is this coefficient. Hence, if Vy

vanishes initially, it does so for all time. So therefore do the coefficients of Ey in n~ * ή
and g~ιg since they are, respectively by (4.7), (5.2) and (5.3), Vy and Vy exp x
( - Kybφb/2). In particular D(E_y) vanishes. This argument can now be repeated for
any of the remaining highest roots until only step operators for simple roots a
remain in n~ xn and g~ιg. The coefficient of Ea in x~ ιx is then Kαexp(— Kabφb) and
constant. By Eq. (4.8) we have

a2X(Ea) = Kflexp( - Kabφb), a simple,

y



378 L. A. Ferreira and D. I. Olive

B u t b y E q s . ( 5 . 3 ) a n d ( 4 . 7 ) t h e c o e f f i c i e n t o f E a i n g~ιg i s

a2D(E_a) = Vaexp(-Kabφb/2) = a2X{Ea)txp{Kabφbβ) (5.5)

by the preceding result. In this way we have integrated the p equations of motion by
choosing special initial conditions leaving as the only degrees of freedom the φ
variables. By (5.5) we now have

A + iB = (1/2) Σ ΦaHa + Σ Eaa
2X(Ea) exp (Kabφb/2\ (5.6)

a a

where now both sums extend over simple roots only. The resultant A and 5 form the
Lax pair for the Toda molecule equation,

~φa=-a*X(Ea)
2exp(Kabφb).

Thus the constants a2X(Ea) constitute coupling constants. To obtain precisely (1.1)
we assign these constants the value unity. Then (5.6) yields the usual Lax pair for
Eqs. (1.1) (apart from a minus sign in B when compared to ref. [14] owing to a
different sign in (2.14)). These substitutions for the integrals of motion X{Ea) can be
made directly into the equations of motion or the Hamiltonians (but not the
Lagrangian). All the Poisson bracket relations remain valid with these substitutions.

We now show how the fundamental Poisson relations (4.10), (4.16), and (4.18)
reduce to the ones obtained by Olive and Turok [14].

In Appendix II it is shown that for any positive root β

+ (1/2) X (u2y2/β2)Nay(l

When A is reduced by (5.5) only step operators for simple roots occur. When β is
simple it cannot be expressed as a sum of two positive roots α and y, and hence the
last term in the equation vanishes. The remaining term is odd under either σL or σR

by (4.2). Hence so is the left-hand side. Thus by (4.17),

This leads to the fact that after the reduction the two terms on the right-hand side of
(4.16) become equal, yielding

{A <g> A] = - [P, A (x) 1 + 1 <g> A\

which is a result of Olive and Turok. Similarly {B (x) B} = 0.
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6. Conclusions

We have succeeded in finding some sort of geometric principle underlying the
Poisson bracket relations so essential to integrable theories, at least in the class of
prototypes theory given by the Toda molecule equations (1.1).

The point has been that the non-compact Riemannian symmetric spaces
considered have a hidden group theoretical structure owing to the Iwasawa
decomposition g = nak, which enables us to parametrise the points of the symmetric
space by na, which are elements of the group B = NA. The Lie algebra of B is
realized by the Poisson brackets of the components of A, where A and B satisfy the
Lax pair equation describing geodesic motion on the symmetric space. This algebra
leads to the "fundamental Poisson bracket" or "Yang-Baxter" equations which are
of importance in a large class of integrable systems and statistical physical models
[1, 16]. We showed in detail how a reduction procedure involving a subclass of
geodesic trajectories lead to the Toda molecule equations and their integrability
properties. There is a Toda molecule equation associated with each simple Lie
algebra and our analysis applied uniformly to all these equations.

There are many other integrable dynamical systems not covered here and we
wonder if our analysis can be generalized to them. Indeed Olshanetsky and
Perelomov have conjectured that all integrable equations correspond to geodesic
motions on a suitable space, presumably a symmetric space or a generalization
[8,10].

For example there are other non-compact Riemannian symmetric spaces besides
those leading to the Toda molecule equations and much of our analysis (if not all)
applies to them, too. We do not know what equations the analogous reduction
procedure could lead to.

There are other algebras beside Lie algebras, for example Kac-Moody algebras.
There are Toda lattice equations associated with these with very similar integrability
properties. The P operator entering the fundamental Poisson bracket relations has a
very similar structure to the one considered here in terms of the root system of the
algebra [14]. The infinite nature of this root system accounts for the appearance of a
"spectral parameter," which also occurs in many other systems. It is possible that
this could likewise be understood in terms of the Iwasawa decomposition for the
Kac-Moody group. Since these groups are infinite dimensional, the necessary
mathematical theory does not exist yet as far as we know.

It is highly desirable to apply the ideas of this paper to such systems, to the two
dimensional field theory versions of these equations which are also believed to be
integrable, and also the quantum versions of these theories.

It is quite possible that this ideas will link up with the work of the Kyoto group
[20] who has developed an algebraic theory of soliton equations starting from a
somewhat different point of view.

Appendix I: Noether's Theorem

This is a standard theorem, yet we have not succeeded in finding in the literature a
statement and proof sufficiently explicit for the use made in the text. Here we present
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the version we use, followed by an outline proof. We consider a nonsingular
dynamical system with a finite number of coordinates qχ...qN.

Theorem A. Consider the variation,

j), i = ί...N,

(with δqt = d/dt(δqι) as is usual in Lagrangian theory) and suppose that without using
any equations of motion the corresponding response of the Lagrangian is found to be

δ<£ = — (εX) + έβ + εD, (I.I)
dt

where X, Q and D may depend on q, q and t (but not accelerations). Then

(i) dQ/dt = D by virtue of the equation of motion,

(ϋ) Q=ΣPtFi-χ>
i=l

(iii) Q can be expressed in terms of canonical variables q{ and p{ (with velocities
eliminated) and

{θίh εQ}pB = δ<lh {Pi> £<2}pB = δPi ~ Zjτ>

where δpt is calculated directly from the variations of the coordinates and velocities
using the equations of motion if necessary, and ε is taken be constant.

Corollary. There is an arbitrariness in the definition of Q, X and D. If we replace

X^X-G, Q^Q + G, D - * D + G, (1.2)

where G = G(q, ί), the original definition and all the subsequent properties still hold
good. If we can choose G so that D becomes velocity independent, then the variation
(with έ = 0) is seen to be canonical with Q the infinitesimal generator. It still has an
ambiguity which is an additive function of time. If D can be chosen to be zero, Q is
conserved and certainly generates the infinitesimal transformation. Its ambiguity is
just an additive constant.

Theorem B for Velocity Independent Variations. // the variations are velocity
independent, then so is X, which can therefore be put to zero by a suitable choice of
G. Then

Q = ΣPiFι (I 3)
i

If there are three variations of this type, <S, δ' and δ" satisfying, [δ, &^qt = δ"qh then

{Q,Q'}PB=-Q".

Outline Proof of Theorem A. (1) follows immediately from Hamilton's action
principle. Alternatively if we evaluate <5«£f directly by calculation we get
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Comparing with (LI), result (ii) follows by equating coefficients of ε, and (i) by
equating coefficients of ε.

We now obtain an important relation by comparing the occurrence of the
acceleration qt in the two expressions for δ££. It occurs only once, linearly, in the
terms εpjdFJdq^ and zdXjdq^ respectively. Since no equations of motion are
used, these terms are equal for all accelerations. Hence

Now we examine the structure of Q. By (ii),

dQ = ΣdPiFi + Σ Pj^r1 -^r)dqi + Σ

and by (1.4) we see that the coefficient of dq vanishes, thereby confirming the first
assertion in (iii). Further dQ/dpt = Fi9 yielding the second part of (iii), while

Finally we calculate δpi9 where pi = d5£{q,q,t)jdqi. Using (I.I) and taking ε
constant, we get

p: = ε—(X + D)- ε —^ - ε
Pι H ) H H

ε ( X + D) ε ε .
Hi ) Hi Hi Hi Hi

Using (1.4), (1.5) and the fact that for any function f(q9q,t)

we obtain

3D

This yields the last part of (iii) on using Lagrange's equations of motion. If the
variation of the / h coordinate is velocity independent, it is unnecessary to use the
corresponding equation of motion.

Proof of Corollary and Theorem B. The corollary is self evident once it is recognized
G must be velocity independent in order to keep D acceleration independent.

If the variations are velocity independent as in Theorem B, it follows from (1.4)
that X is too. Then we can choose the G of the corollary equal to X in order to make



382 L. A. Ferreira and D. I. Olive

the subsequent X vanish so that by (ii) Q is as stated. Of course D may not then be
velocity independent, but this is not relevant to the final statement. If δ, δ\ δ" are
three velocity independent variations related as stated, we find

Then the stated Poisson bracket follows by direct calculation using this relation.

Appendix II

In this appendix we prove relation (4.10) following the methods of ref. [14].
Using the commutation relations (4.1) it is easy to check that the operator P

defined by (4.11) satisfies:

[P, 1 ® ifβ + if β ® l ] = 0 . 01.1)

In order to evaluate the commutator of P with step operators we make use of the
Casimir like operator C defined by (4.12). It has the property of commuting with any
generator T of the algebra, [14],

= 0. 01.2)

Using (4.1) we have, for any positive root β, that (r = rank of GN):

Where C o = £ Ht ® Hf and Hβ = 2β • H/β2.

Since C = C o 4- C + + <C_, we get from (II.2) and (II.3) that:

[C+ + C_, 1 ®Eβ + Eβ® 1] = -{β2β){Hβ®Eβ + Eβ®Hβ.)

But we also have

(II.5)
and

/ / Σ β β
α>0

01.6)
Since 01.4) contains terms proportional to the product of Cartan subalgebra

generators with positive step operators only, we conclude that the sum of terms
proportional to Ey ®E_y{y,y' > 0) in 01.5) must vanish since we do not have such a
contribution in 01.6). Similarly the sum of terms proportional to £ _ y ® Ey{y,yf > 0)
in 01.6) must also vanish since we do not have such a contribution in 01.5). In
addition we conclude that the sum of terms proportional to the product of positive
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step operators in (II.5) and (II.6) must vanish, i.e.,

Σ p β
0<a<β

Therefore we get that

[C + - C_, 1 ®Eβ + Eβ® 1] = (β2β)(Hβ®Eβ - Eβ®Hβ)

+ 2 X (α2/2)£,® [£-«,£,]. (Π.8)
O<α<0

Now, suppose α, /? and 7 are positive roots and β = 7 + α, then: [ £ _ α , £/J = α £ y , and

and so α = (y2/β2)Naγ (II.9)

where we have used (4.4), and the commutator [ £ _ y , £ _ J was evaluated by
applying the automorphism (4.2) to the last equation in (4.1).

Since P = C + - C_, we have:

[P, 1 ® Eβ + Eβ <g> 1] = (iS2/2)(^ ®Eβ-Eβ® Hβ)

+ Σ (*2y2/β2)NβyEβt®Ey. (11.10)
α,γ>0

From (4.7), (II. 1) and (11.10) we get

Σ β β β β β β
β>0

- Σ Σ ^272D{lE^,E_y-\)Ea®Er (11.11)
0>O α,y>0

Using (4.6) and (4.7) we conclude (4.10) is true.
The commutator between P and step operators corresponding to negative roots

can be easily obtained from (11.10) by making use of the involutive automorphism σ.
From (4.2) and the fact that σRσLP = - P we get from (11.10) that

+ Σ (*2y2/β2)NaγE_a®E_r (11.12)
α,y>0

β +

Acknowledgements. We wish to thank John Gipson for showing us his thesis. We are both grateful for
hospitality during the early part of this work to the Mathematics and Physics Department of the
University of Virginia. D. I. Olive is also grateful to the Institute for Advanced Study there.

References

1. Faddeev, L.: Integrable models in 1 + 1 dimensional quantum field theory In: The Proceedings of the

Ecole dΈte de Physique Theorique, Les Houches 1982 Amsterdam: North Holland



384 L. A. Ferreira and D. I. Olive

2. Kulish, P. P., Sklyanin, E. K.: Quantum spectral transform method, recent developments, p. 61. (In:
Integrable quantum field theories, eds. Hietarinta, J., Montonen C. (eds) Lecture Notes in Physics,
Vol. 151, Berlin, Heidelberg, New York: Springer 1982

3. Goddard, P., Nuyts, J., Olive, D.: Gauge theories and magnetic charges, Nucl. Phys. B125, 1-28
(1977). Montonen, C, Olive, D.: Magnetic monopoles as gauge particles? Phys. Lett. 72B, 117-120
(1977)

4. Olive, D.: Magnetic monopoles and electromagnetic duality conjectures. In: Monopoles in quantum
field theory, eds. Craigie, N. S., Goddard, P., Nahm W. (eds) (Singapore, World Scientific 1982)

5. Leznov, A. M., Saveliev, M. V.: Spherical symmetric equations in gauge theories for an arbitrary
semisimple compact Lie group Phys. Lett. 79B, 294-296 (1978); Representation theory and
integration of non-linear spherically symmetric equations to gauge theories, Commun. Math. Phys.
74, 111-118(1980)

6. Ganoulis, N., Goddard, P., Olive D.: Self-dual monopoles and the Toda molecules, Nucl. Phys. B205,
[FS5], 601-636 (1982)

7. Leznov, A. M., Saveliev, M. V.: Representation of zero curvature for the system of non-linear partial
differential equations xazf =exp(/cx)α and its integrability, Lett. Math. Phys. 3, 489-494 (1979)

8. Olshanetsky, M. A., Perelomov, A. M.: Explicit solutions of classical generalized Toda models.
Inventiones Math. 54, 261-269 (1979); The Toda chain as a reduced system, Theor. Math. Phys. 45,
843-854 (1980)

9. Kostant, B.: The solution to a generalized Toda lattice and representation theory, Adv. Math. 34,
195-338 (1979)

10. Olshanetsky, M. A., Perelomov, A. M.: Classical integrable finite dimensional systems related to Lie
algebras, Phys. Rep. 71, 313-400 (1981)

11. Helgason, S.: Differential geometry, Lie groups and symmetric spaces. New York: Academic Press
1978

12. DΆuria, R., Regge, T., Sciuto, S.: Group theoretical construction of two-dimensional models with
inifinite sets of conservation laws, Nucl. Phys. B171, 167-188 (1980); A general scheme for
bidimensional models with associated linear set. Phys. Lett. 89B, 363-366 (1980)

13. Cremmer, E., Julia, B.: The SO(8) supergravity. Nucl. Phys. B159, 141-212 (1979)

14. Olive, D , Turok N.: Algebraic structure of Toda systems. Nucl. Phys. B220 [FS8], 491-507 (1983)
15. Yang, C. N.: Some exact results for the many-body problem in one dimension with repulsive delta-

function interaction. Phys. Rev. Lett. 19, 1312-1315 (1967)

16. Baxter, R. J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193-228 (1972);
Exactly solved models in statistical mechanics. (New York: Academic Press 1982)

17. Eichenherr, H., Forger, M.: More about non-linear sigma models on symmetric spaces. Nucl. Phys.
B164, 528-535 (1980)

18. Gipson, J. M.: The quantum projection method and completely integrable systems, Thesis, Yale
University (1982)

19. Lax, P.: Integrals of non-linear equations of evolution and solitary waves, Comm. Pure Appl. Math.
21, 467-490 (1968)

20. Jimbo, M., Miwa, T.: Solitons and infinite dimensional algebras, Publ. RIMS, Kyoto
University, 19, 943-1001 (1983)

Communicated by A. Jaίfe

Received August 2, 1984; in revised form November 26, 1984




