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Abstract. We present a simple solution to the problem of proving positivity of
Klaiber's rc-point functions for the massless Thirring model. The corresponding
fields are obtained as strong limits of explicitly given approximate fields,
obviating reconstruction. By invoking recent results on the boson-fermion
correspondence it is shown how the model can be formulated on the charged
fermion Fock space. It is pointed out that the question of cyclicity of the vacuum
is open, and that an affirmative answer is necessary to confirm the superselection
sector picture of the model.

1. Introduction

The first question we have to answer is: why another paper on the massless Thirring
model? In order to do this, we should begin by pointing out that there are two
versions of the massless Thirring model.

First, there is the model introduced and partially solved by Thirring [1]. His
results were extended by Glaser [2], who found an explicit expression for the
quantum fields of the model. However, this version of the model (also studied by
Berezin [3]) fell into disrepute after certain inconsistencies were encountered. These
were ascribed to formal manipulations but, as we see it, the real cause of the
difficulty was only found recently by one of us: the fields of this "Thirring-Glaser
model" do not define operator-valued distributions [4], so that arguments based
on non-existent n-point functions are non-existent too. Nevertheless, this version
does describe a consistent positive energy relativistic quantum mechanics, with
asymptotically complete in- and out-fields in the sense of LSZ scattering theory
[5, 6].

In this paper it is the second version, initiated by Johnson [7] and culminating
in the well-known Boulder lectures of Klaiber [8], which is at issue. In contrast
to the "Thirring-Glaser" model, which is a particle theory, but not a field theory,
and which depends on the coupling constant only, the "Thirring-Klaiber model"
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is a field theory that does not describe particles and which depends on two
parameters.

The main point of this paper is to validate the expression "field theory" in the
preceding sentence. What this amounts to is a rigorous proof that Klaiber's rc-point
functions satisfy the positive-defmiteness conditions, a problem that has not been
resolved in a satisfactory way ever since Wightman pointed it out in '64 [9]. All other
axiomatic properties, suitably modified in the case of covariance and locality, can
easily be established from the explicit expressions in Klaiber's work [8].

We would like to emphasize, however, that our solution to this problem is based
on a discovery that should be of interest even to the less mathematically oriented
reader. To explain this, we recall that the building block of Klaiber's n-point
functions is the tempered distribution lim(x —zε)e, where eeU. What we

have found are cutoff fields ψε with n-point functions that only differ from Klaiber's
in that his building block is replaced by the function (x — ίε)e. These approximate
fields are bounded operators on a (positive definite metric) Hubert space, so that
positivity of the limiting tempered distributions results without performing any
estimates. More is true: this state of affairs entails by (more or less) standard
arguments that as εjO the cutoff fields converge to non-cutoff fields that act on
the same Hubert space for any value of the two parameters occurring in the model.
This could serve as a starting point for a rigorous study of issues like cyclicity of
the vacuum, equation of motion, Coleman correspondence, etc. We shall not pursue
this here, however, but restrict ourselves to emphasizing the importance of the
first-mentioned issue in validating the usual superselection sector picture of the
model, where the currents are regarded as the observables associated with the
Thirring fields.

The idea of using approximate field operators so as to get the massless Thirring
field under control is not new. It dates back to a paper by DelΓAntonio et al. [10].
In that work a large class of cutoff functions is allowed and it is claimed that for
this class the approximate fields converge in the sense of operator-valued
distributions to non-cutoff fields having Klaiber's n-point functions. However, the
proof of these claims is left to the reader; only convergence of one field acting on
the vacuum is considered. (This also holds for [11].) We consider this approach
a very laborious undertaking and in fact our results shed little light on its feasibility.

In contrast, our strategy is based on picking a very special cutoff function. This
choice was inspired by earlier work of two of us [12], where it turned out to play a
unique role, too. As indicated above, this choice leads to the desired results with a
minimum of labour, and in particular bypasses estimates altogether.

For an account of the early history of the massless Thirring model and the
mathematical difficulties associated with it we refer to Wightman's Cargese lectures
[9]. Further comments from an analyst's point of view may be found in [5]. In the
main text we shall return to the literature connected with this subject.

Let us now sketch the organization of the paper. As indicated above, we take
Klaiber's n-point functions and their connection with Thirring's equation of motion
for granted. In keeping with this philosophy we present in Sect. 2 what we believe is
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the simplest way of defining approximate fields having the properties mentioned
above. In Sect. 3 we then prove our claims with a minimum of notation and other
paraphernalia that could obscure the arguments; for expository reasons the proofs
of two lemmas, involving long computations, are relegated to an appendix.

The drawback of our definition in Sect. 2 is that it may seem to come out of the
blue, even to someone familiar with the work by DelΓAntonio et al. [10,11] and by
Streater and Wilde [13, 14]. Therefore, with the above claims proved, we return to
the connection with the latter work in Sect. 4.

In Sect. 5 we show how the model can be formulated on the charged fermion
Fock space, which is also the arena that Klaiber chose (although it did not follow
from his results that the fields really live there, cf. [5]). In contrast to the preceding
sections, which are largely self-contained, this section involves some recent results
on what is often called "boson-fermion correspondence" [12, 15-20].

The last paragraphs of Sects. 4 and 5 concern the above-mentioned connection
between the cyclicity problem and the superselection sector picture of the model.

Let us finish this introduction by collecting some notational conventions.
Complex conjugation is denoted by a bar. Indexed operator products are in the
natural order of the indices. The symbol θ stands for the Heaviside function and
c.c./h.c. for complex/hermitean conjugate. The symbols ε, τ and r, u, υ, p, σ, e are
reserved for arbitrary positive and real numbers respectively. It is convenient to
denote space-time points by x = (x°, x1) in Sects. 2 and 3 and in the Appendix,
and by (ί, x) in Sects. 4 and 5. Finally, the index s occurs throughout the paper,
and takes on the values + and —.

2. Approximate Thirring Fields

The building block of the space on which our approximate Thirring fields are
defined is the usual Fock space J%(Jf) for one-dimensional neutral bosons. That
is, the one-particle space Jti? is the space of square-integrable functions L2(M, dk).
Denoting the usual annihilators and creators by A(k) and A*(k) we introduce the
smeared annihilation operator A(f) = \dkA{k)f(k\ /edf, its adjoint A*(f) and
the Weyl operator

(The inclusion of the customary factor 2~1 / 2 would lead to a plethora of similar
factors later on.) From the CCR one then obtains in a well-known fashion the Weyl
relations

W(f)W(g) = exp[ - ίlm(/, #)] W(f + g\ (2.2)

and the vacuum expectation value

)]. (2.3)

The following result is an easy consequence of this, and will enable us to reduce
the calculation of rc-point functions to the calculation of an inner product.
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Proposition 2.1. For any fί,..., fNeJ^ one has

Ω, Π W(ft)Ω) = Π exp[-(/;,/,)] Π e x p [ - i ( Λ , /*)]. (2.4)

Proof. If N = 1 this is just (2.3). Assume (2.4) holds for N —- M. Then one has, using
(2.2),

M+ 1

(Ω, Π mfi)Ω) = exp[-ilm(fM,fM + imΩ,W(f1)...W(fM + fM+1)Ω)
1

M - l

= Π exp [-(/„/})] Π exp[-i(Λ,Λ)-(/t,/M + /M+1)]

M + l

= Π expC-ί/,,^)] Π exp[-i(/ t,Λ)].
Λ = l

Thus, (2.4) follows by induction. Π
(This result is known in the following sense: in the physics literature one

employs normal-ordered Weyl operators and evaluates their rc-point functions by
using the formula eΛeB = eceBeA for [A, B~\ = cί to shift the annihilation parts to
the right till they act on the vacuum. Since the normal ordering amounts to
multiplying W(f) by exp[^(/,/)], this entails (2.4). The induction argument avoids
formal manipulations with unbounded operators and in particular the commutator
formula, which is known to be false in general, if A and B are unbounded.)

The Hubert space on which our fields act is defined by

^ 0 ^π_> n +, (2.5)

where each summand is a copy of #" s(jf). Henceforth, the symbol Ω denotes
the vacuum of ^OtO; in the sequel this vector plays the role of the vacuum in $F.
We shall denote the operators on $F that act like A{if){f) and W(f) on each sector
by A{*](f) and W(f\ too. The labels of the sectors may be regarded as eigenvalues
of charges β_ and β + . That is, the Qs are defined by

,n + . (2.6)

We shall also need charge shifts 5_ and S+ that map ^n_,n+ onto J^Γ

Π__1 n +

and #"„_,„ - i , respectively, via the obvious identification. Thus, the Ss commute
with the operators A(*\f) and W(f), and satisfy

SsQs = (Qs + 1)SS, SSQ_S = Q_SSS. (2.7)

We now turn to the definition of the approximate field operators. To this end we
introduce the phase factor

χe(r) = (l+ε-ίr)/c.c9 (2.8)

and the cutoff functions

Rε

r(k) = Θ(k)k' 1/2le~k - eikre~&% (2.9)
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Ur{k) ~θ(~ k)( - ky^2le-ikreεk - ekl (2.10)

Then the main definition of this paper reads as follows.

Definition 2.2 For x = ( x 0 , * 1 ) ^ 2 , set

u = xo + χ\υ = x°-x1. (2.11)

Then the approximate Thirring fields are defined by

(A_,ε(x) = CEK_,(x)W(pUu + σR°ΰ)S-9 (2.12)

ψ + ,(x) = (-f-CεK + ,ε(x)W(σLε

u + pRl)S+, (2.13)

where

1 / 2 / 2 2 σ 2 ), (2.14)

e(u)TiQ+ + ll\xt(u)xt(v)Y°Q-- (2.16)

To help the reader to swallow this definition, let us anticipate the role of the
various factors in leading to Klaiber's n-point functions. The shifts incorporate the
charge-changing character of the Thirring field. The free field case corresponds to
p = 1, σ = 0; the positive (negative) chirality component then only depends on the
light cone coordinate v(u) and the argument of W has support to the right (left)
of the origin, corresponding to the fact that positive (negative) chirality massless
Dirac fermions only have positive (negative) momenta. The choice of the cutoff
functions R and L rests on the key observation that

— ; — - — • — - — , t =R,L,

ι(r-r -ι(ε + ε')) J
; , t R,L, (2.17)

2ι(rr ι(ε + ε')) J

which can be verified by using the integral

00 dk h
ί -j-(e-ak-e-bk) = ln-9 Reα,b>0. (2.18)
o k a

The crux is that the function in the denominator is just Klaiber's building block. The
non-translationally invariant terms in the numerator are inevitable. (This is because
the function ln(ε + ir)~1 is not positive definite.) The phase factors Ksε are chosen
precisely so that they will cancel these terms. As concerns the "asymmetric" factor
( — ) Q - in ψ + tε: the symmetric factor (si)Q++Q- in φStε would lead to the desired
result as well. The former choice is more convenient, however. Finally, it is worth
noting that ψSfε(x) is equal to a unitary operator times the constant Cε. Its diverging
part (as ε—•()) may by regarded as a wave function renormalization constant.

3. The Convergence to Klaiber's Fields

The main results of this paper are contained in the following theorem and its
corollary.
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Theorem 3.1 As ε->0 the fields φ{*]ε{x) and φ(+]ε{x) converge in the sense of
operator-valued tempered distributions. Their limits φ(*](x) and φ{+](x) have the
same vacuum expectation values as the fields φψ^x) and φψ\x) of Klaiber [8],
provided one takes μ = 1 in the latter fields and sets

p = (2π1/2-oc-β)/2π1/2, (3.1)

σ = (β-0i)/2π^2=-g/2π9 (3.2)

where α, β, g are Klaiber s parameters.

Corollary 3.2 Klaiber's vacuum expectation values (VEV) satisfy the positivity
condition.

Proof of Corollary. Since the φ{*^(x) act on a positive definite metric Hubert space,
their VEV satisfy the positivity condition. As positivity is preserved under limits,
positivity of Klaiber's VEV follows from Theorem 3.1. •

To prove the theorem we need two lemmas. Lemma 3.3 details the 2n-point
functions of the φ{*ε{x) if the fields occur in a canonical order. Lemma 3.4 enables us
to handle the general case by specifying the multiplicative factor that arises on
commuting two fields.

Lemma 3.3 Let xj9yjeU2J =l,...9n,and set

uj = x° + x], vj^xj-xj, Uj^yJ + yj, Vj^yJ-yj. (3.3)

Then one has

:\n{p2 + σ2) T~f r1. .. :(o _ι_ o \Ίp2ΓTj Tj U~ _ι_ ~ \ Ί p 2

— Π I I I l i ; — U]r — l\b: -\~ Ofcl I I U : — U u — ΪIT; ~Γ Tiff I

• Π K - ^ - ϊ(βj + τkΏ ~p2 Γl C^ ~ vk - foj + ^ ) ] σ 2

'ίVj-yk~ i(*j + τ k)] σ 2Π ίvj~V k- i(εj + τk)Yσ\ (3.4)

T/ze corresponding 2n-point functions ofφ{*]ε(x) are given by the right-hand side o/(3.4)
with u<r+v and U<^V. Finally,

I n I n

Ω, w Φ _ ε (Xj) Y\Φ+,εj(
χj) Π Φ - .tjίj'j) Π *A* .tjί̂ j)*

l ' J / + 1 ' J l ' J z + i

Λ A

M k =U! [MJ - I/,- - i(εt + τj)] [vk -Vj- i(εk + τy)])"")

, Π Ά + ,ε/^) Π ΨUlyjW)- (3-5)Π
/+1

Lemma 3.4. Let x.yeU1 and define u,v,U and Ff?y(3.3). The commutation relations of
φSjE(x) and φ*,τ(y) are given by
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, r w* ^ f[i(U-u) + ε + τJi(V-v) + ε + τΎ\»° lή!

ψ-jχ)Φ*+iτ(y)=-(\ — — I Φ%Λy)Ψ
(3.6)

. (3.7)

τ)<• [ ι W - ; >
The commutation relations ofφSt£(x) and φs>,τ(y) are given by

c +

The proofs of these lemmas consist of long algebraic calculations, a sketch of which
can be found in the appendix. We shall conclude this section by proving the theorem,
taking the lemmas and some concepts and arguments from axiomatic relativistic
quantum field theory for granted. (The latter can be found in [21] for example.)

Proof of Theorem 3.1 Let us first elucidate the structure of the generic non-
vanishing approximate VEV: any pair ^*e(x), φ{$(x') occurring in it, with the
first field to the left of the second one, gives rise to a term

ί(x° - x'°) + (x1 - x'1) - i(ε + ε')] e + ί(x° ~ x'°) - (x1 ~ x'1) ~ i(ε + sf)Y~, (3.12)

where e + , e_ can be equal to ± p2, ± σ2 or ±pσ, depending on 5 and s' and on
whether the fields have a * or not; up to the constant ± (2π)""(- i)n^2 + σ2) the VEV is
precisely the product of such terms for all pairs involved. Indeed, this assertion is
evident for the VEV detailed in Lemma 3.3; also, any non-vanishing VEV can be
obtained through transpositions of the fields occurring at the left-hand side of (3.5),
and an inspection of the commutation relations (3.6)—(3.11) reveals that they are
exactly such as to guarantee that the assertion holds true in general. Put differently,
not only in the "canonical" VEV of Lemma 3.3, but also in the generic VEV the
constants Cε, Ct and phase factors Kst(x\ Ks,ε,(x') ensure that on applying
Proposition 2.1 only the translation invariant denominator in (2.17) does not cancel
out for the given pair; its contribution is then precisely (3.12).

As a consequence an approximate 2n-point function can be regarded as a
function of In — 1 difference vectors. Choosing these in the usual Way, all factors
(3.12) are Fourier transforms of tempered distributions with support in V2+~1, where
V+ denotes the closed forward light cone. (To see this, note that the distributional
Fourier transform of the function (x — iε)e has support in [0, oo).) Such distributions
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form a convolution algebra on which the convolution is jointly continuous,
associative and commutative. Now by using Laplace transform lore or by direct
calculation one sees that lim (x — iε)e exists in £f'(M). Combining these facts with

ε-+0

the continuity of Fourier transformation, it readily follows that the limit of an
approximate 2n-point function exists in ^'(U4n) as one or more of the cutoffs
converge to zero, and that the resulting distribution does not depend on the order of
the latter limits.

These observations enable us to infer the existence of limiting operator-valued
tempered distributions ι/4*}(x) defined on Ω and the ensuing polynomial domain:
let us set

Φτ(G) = μx1...dxNG(x1,...,xN)f\ψ{*ϊi(xi)Ω, Ge£f{U2\ (3.13)
i

where ~ε = (ε1,..., εN) and (*)t- indicates that either the field or its adjoint occurs,
depending on i. Also, the integral is a strong improper Riemann integral, which
is well defined, since the approximate fields are strongly continuous in x and have
x-independent norms. Then this vector has a strong limit ΦQ(G) as Ίf-»(ϊ in
IR*. (Indeed, the norm squared of a difference vector ΦΊ(G)— Φr(G) can be
written

(3.14)

and by the above the four approximate Wightman functions converge to the same
element W^{y9x) of ^'(U4N) as ~ε,T-+0. Thus, ΦΊ(G) is Cauchy and
hence has a strong limit ΦQ(G).) Fixing F in £f(M2) we now define

= sλim{dxF(x)ψ{*ε\x)Ω (3.15)

and, inductively,

G)= s.lim ldxF(xψ£(x)ΦΎ(G) (3.16)
ε,τι,...,τN->0

and extend by linearity. We have already seen that the limits at the right-hand
side exist, so that it remains to verify that one obtains a well-defined linear operator
in this way. That is, one should check that if a linear combination of the Φ^ifi)
vanishes, its image does, too. But this follows from the fact that the limits can be
taken in any order; in particular, one can send the τf's to zero first, after which
this is obvious. This concludes the proof of the asserted convergence.

Let us now turn to the connection with Klaiber's work. First, we note that the
charge structure of his fields is the same as that of ours, so that we need only show
that under the specified identifications the limits of our VEV listed in Lemma 3.3 and
those arising under permutations of the fields occurring there coincide with his
VEV. For the canonical order this follows upon comparing (3.4) and (3.5) with
Klaiber's equations (VII.3) and (VII.5) (and after tracking down his various
constants). To treat the general case we note first that by virtue of analyticity in
the tube and the edge-of-the-wedge theorem we need only prove equality in the
totally spacelike region. But this follows from the fact that in the spacelike region
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the commutation relations in Lemma 3.4 reduce to those of Klaiber's fields if one
lets ε, τ->0. Indeed, this can be seen by comparing the result with Eqs. (VI.2) and
(VI.4) in [8] and by noting that

p2-σ2-l=λ/π (3.17)

under the identifications (3.1) and (3.2). This concludes the proof of the theorem.
D

4. Currents and Superselection Sectors

Let us now link up the above with the work of Streater and Wilde [13,14] and
DelΓAntonio et al. [10, 11], and discuss the superselection sector picture sketched
there. To this end we introduce the annihilators

•D(k)(pQ-+σQ+), k<0,

where the displacement function is given by

e-\k\

the neutral pseudo-scalar boson field

and its derivatives, the currents

(4.2)

dk
φ(t,x) = J (A , , h l / 2 [α(fc)exp(- ί\k\t + ίkx) + h.c] (4.3)

= - ^ J dkθ(sk)\k\1/2 [α(/c)exp (ik(x -sή)- h.c], (4.4)

with the corresponding charges

qs = $dxjs(0,χ) = pQs + σβ_ s . (4.5)

Now let y(x) be a (real-valued) gauge function. Putting

j,(y) = idxja(θ,xyy(x)9 (4.6)

it follows that

exp [i/,(y)] = W (gs) exp [iζ(y)^s]. (4.7)

Here, the corresponding functions of k are given by

gs{k) = isθ{sk){\k\l2πγi2y{k), (4-8)

the phase function by
w (4.9)
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and the Fourier transform by

.(2πΓ1/2μXe'ίkxy(x). (4.10)

(In order that the above and what follows make sense it suffices that

(1 + \k\)y(k)eJf = l}(M9dk), (4.11)

which is assumed henceforth.)

In view of (4.4) we can also write

/ i \
exp[}Js(yΏ = exp 7rτj2]dx[φ(0,xyy'{x)+sφ(0,xyy(xΏ I ( 4 1 2 )

which is of the form considered in [13, 14]; the corresponding Cauchy data
(£(x,0),ξ(x,0)) are proportional to (y'(x), — sγ(x)). Moreover, the role of the
displacement functions Θ and η of [13] and [14] is here played by

H(t9x) = - π ~ 1 / 2 [Arctan (x + t)q._ + Arctan (x - t)q + ~] (4.13)

in the sense that

) + H(t9x)9 (4.14)

where φf denotes φ with a{k)^>A(k). (To verify this, use (4.1), (4.3) and the integral
(2.18).)

However, to avoid confusion it may be in order to point out that the operators U
and V and charge sectors Jf mn of [14] do not correspond to our charge shifts and
sectors. This is because the shifts S± commute neither with q+ + q_ nor with q+ — q_
(for | p | # | σ | ) , whereas U and V by construction commute with q+—q_ and
q+ + g_, respectively, cf. [14,p. 384]. Correspondingly the Cauchy data r\ι and η2

of [14 I.e.] are different from the ones determined by [4.13]. It appears to us that
the former choice cannot lead to fields with Klaiber's rc-point functions.

We have not yet explained the reason for our terminology "current" and "gauge
function," and we proceed to do this; the point is that

(t>χ) = e x P [~ Wε(* - stΏΨs,e(t, x) exp[ys(y)], (4.15)

(ί,x) = e x p [ - iσyε(x - st)]ψ_Syε{t, x)exp[i/s(y)], (4.16)

where

γε(x) = (2πyll2jdke-φιi(k)eikx. (4.17)

(To see this, use (4.7), Def. 2.2. and the Weyl relations (2.2).) Now it is clear that yε(x)
converges to y(x) as ε->0, so that (formally at least, cf. below) the operators
exp[ί/s(y)] generate the gauge transformations of the Thirring fields ψs(t,x).

Let us now make the connection with [10,11]; this will also illuminate the
structure of the approximate fields. Consider the function

/x-r\
δ%x) = 2 Arctan x - 2 Arctan , (4.18)

V £ J
whose Fourier transform is given by
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(2π)1/2

^e-^-e-ikre-^-]. (4.19)l e e e ] .
ικ

Using the notation (4.8) we then have

d*+tM = R-M (4.20)

dE^r(k)=-Ur(k), (4.21)

(cf. (2.9)—(2.10)) and, using (4.9) and (2.18),

expK(^)] = χ ε (- r ) . (4.22)

Combining all this, Definition 2.2 can be written

ι A U ^ ) H - ) Q Q ^ ι ; ) 1 / 2 ^ (4.23)

If one now writes this in normal-ordered form, putting the shifts between creation
and annihilation parts, one obtains the form in which the approximate fields appear
in [10,11], up to conventions; the role of their functions J+(k) is played here by e~]kι

and that of χΛ±(k) by e~ε|/c|, and their coupling constants are related to ours through

p = ±(a + a), σ = %a- a). (4.24)

We conclude this section with some comments on the superselection sector
viewpoint of the Thirring model. A forthcoming paper by one of us (J.D.W.) will
contain further discussion of the model from this point of view. It is clear from (4.7)
that

= exp[ipC(7)]exp[(/a(y)]Ss, (4.25)

= exp[iσC(y)]exp[i/_s(y)]S5. (4.26)

This suggests that one could set up a unitary equivalence between the CCR
representations provided by the exponentiated smeared currents on adjacent
sectors: one would merely have to multiply the shifts by Weyl operators
corresponding to the displacement function D(k). However, since D(k) is not square
integrable, no such operators exist and in fact the representations are mutually
unitarily inequivalent. (A general study of such displaced Fock representations can
be found in [22].) Combining this with (4.15) and (4.16) one appears to get an explicit
example of the analysis of Doplicher, Haag and Roberts [23], which for the case in
hand is based on regarding the currents as the "observables" associated to the
"unobservable" Thirring fields.

Unfortunately, to the best of our knowledge this picture can be, so far, only
substantiated by rigorous mathematics when (p, σ) = (± 1,0) or (0, + 1). To explain
the difficulty, we observe that the exponentiated smeared currents are irreducible in
each charge sector. (To see this, recall that the Weyl operators in the Fock
representation are already irreducible when their arguments vary over a dense
subspace of Jtif. The assertion therefore follows from (4.7).) Thus, if one wishes to
view the currents as the observables associated with the fields ψ[*\ the latter had
better be cyclic on the vacuum. Indeed, this is a minimal requirement for regarding
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the currents as "functions of the fields". However, a proof of cyclicity is lacking for
the interacting case. Even in the four free cases mentioned above there appears to be
no direct argument showing cyclicity of the limiting fields, but here cyclicity is a
consequence of developments sketched in the next section.

Of course, we are aware of the usual point-splitting procedures to "reach" the
currents as limits of bilinear expressions of the fields. However, it appears that this
formal expansion method has not even been put on a solid analytical basis in the
context of the free Dirac theory. In this connection, let us comment on another
strategy that suggests itself: this is to start with point-split expressions for the
approximate fields, to renormalize and smear these, and then take limits so as to
obtain the non-cutoff smeared currents. One problem with this is that the topologies
in which such limits exist appear to be far too weak to be useful. This is true in
particular for the type of convergence sketched in [11]. Another one is that even if
strong convergence could be shown, it would not be immediate that the limits lie in
the closure of the subspace spanned by the non-cutoff fields acting on the vacuum.

We do believe, though, that it should be possible to handle the interacting
case, too. At any rate, we conjecture that cyclicity holds true for any (p, σ) φ (0,0).
(If p = σ = 0, then cyclicity evidently breaks down, cf. Def. 2.2.) At the end of the
next section we shall briefly return to this problem.

5. Formulation on the Charged Fermion Fock Space

In this section we shall sketch how one can formulate the preceding constructions
on the usual Fock space #"β(L2(IR, dp)2) for charged Dirac fermions. This will also
enable us to establish cyclicity in the free cases, and to comment on the background
of our Def. 2.2. We shall have occasion to use some results bearing on the
boson-fermion correspondence, cf. [12,15-20]; closest in spirit and notation
is [12].

Taking y5 diagonal, the chiral components of the free massless Dirac field on
3F a are given by

ψ°(t9x) = (2π)~1 / 2 Jdpθ(sp)la(p)exp(ip(x - sή) + sb*(p)exp(- ip(x - si))], (5.1)

the corresponding currents by

and their charges by

Qs = J dxJJtO, x) = μPθ(sp)[a*(p)a(p) - b*(p)b(p)l (5.3)

Under the action of β s , Fock space decomposes as

^a= © ^n.,n+, (5-4)

where

Smearing Js(0,x) with a real-valued y{x) satisfying (4.11) leads to a self-adjoint
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operator Js(γ), such that

s(t,x) = e x p [ - iy(x - sή]ψ%x)exp[Us(y)l (5.6)
0_s(ί, x) = φ°_Jt, x)exp[iJs(r)]. (5.7)

It is easy to see Js(y) is not an operator when y has different limits for x—>±co.
However, the corresponding gauge transformations are unitarily implementable
when exp[/y(x)]-• 1 for |x|->oo. (More precisely, when the Fourier transform
of exp[/y(x)] — 1 satisfies (4.11).) In particular, setting

η{x) = π + 2 Arctanx, (5.8)

there exist unitary operators <%s, unique up to a phase, such that

%ψ°(t9 x) = e x p [ - isη(x - st)]^°(ί, x}W89 (5.9)

WsφUt,x) = Ψ°-Jίt,xWa (5.10)

In contrast to the exponentiated smeared currents these operators do not leave the
charge sectors invariant. Instead, one has

%Qs = (Qs - i )* s , ®sQ-s = Qs^s (5.11)

Furthermore, % + and °U _ anticommute. Hence, the operators

S+ =(-)2+^*,S_ =(-)Q+

+Q-W*_ (5.12)

commute and lower the charges by one unit.
Comparing with Sect. 2, it is not hard to guess the next step: this consists in

identifying the space #"o,o of this section with the one of Sect. 2, i.e., with the neutral
boson Fock space J*S(L2(IR,dk)\ since the Ss can then be used to extend the
isomorphism to the whole space. To this end we recall some well-known facts.
First, the currents can be written in terms of the field

π 1 / 2

φo(t9x) = —Sdylθ{y-x)-θ(x-ymJ+(t,y) + JAt,yΏ (5.13)

by virtue of current conservation. Explicitly,

Js = 2^ϊf2(Sχ-sdt)φ0. (5.14)

The current algebra

[Js(ί, x), Js.(t9 y)-] = sδss,δ'(x - y)/2iπ (5.15)

implies that φ0 satisfies the equal-time CCR. Since one also has D φ0 = 0, φ0 is a
massless free pseudo-scalar neutral boson field, and can be written

dk
Ψo(t9x) = f 2[c(/c)exp(- i\k\t + ikx) + h.c], (5.16)

where the c(*] (k) satisfy the usual CCR. From (5.14) it then follows that

J(t) jdke(sk)\k\[c(k)zxp(ik(x - sή) - h.c.]. (5.17)
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If one inverts this, one can infer that c(k)Ω = 0, so that one is dealing with the Fock
representation of the CCR on # Ό 5 θ .

Now it will be clear how to continue: one may identify the vectors f\ c*(/f)f2
i

from this section with the vectors \\A*(f^Ω from Sect. 2. Of course, for our
i

notation to be consistent, it should then be shown that one can obtain each vector in
the vacuum sector #Ό 0 of this section through linear combinations and limits of the
former vectors, as this holds true for the latter vectors in the sector J^ o 0 from Sect. 2.
But this is a consequence of [15,18,20,12].

Under the isomorphism just described we get boson annihilators Λ(k) and α(fe)
and operators W(f) and exp[//s(y)] on the fermion Fock space. We now explain
how these are related to the c(k) and exp[/Js(y)] of this section. First, by construction
A(k\ α(/c) and c(k) coincide on the vacuum sector. Hence,

W(gs)F = exp[*/s(y)]F - exp[ίJs(y)]F, Fe&Otθ9 (5.18)

where the notation (4.8) is used. Second, it can be shown that

Φ5exp|>7s(y)] = e x p [ - /C(y)]exp[*Js(y)]^s, (5.19)

(5.20)

where ζ(γ) is given by (4.9), cf. [18, 20, 12]. (This can be formally verified by
pretending that ϋlίs can be written as exp[/sJs(^/)] and then using the current algebra
(5.15).) Using (5.12) and comparing with (4.25)-(4.26), it follows that for (p,σ) = (l9 0),
j s coincides with J s , and hence α(/c) with c(k) and φ with φ0.

For these values of the parameters the approximate fields, transported to the
fermion Fock space, can be written

ΨsΛt>y) = —π—ΰ72~Xε(ί-5j;)1/2exp[ίsJs(^ε

v_sf)]^s* (5.21)
(4πε)

by virtue of the above and (4.23). The cutoff functions R and L were chosen
precisely so that this would hold true under the identifications just described. To
explain this, recall that °ll* implements the gauge transformation corresponding
to exp[— isη(x)']. Thus, the product of the two unitaries occurring here implements
the gauge transformation corresponding to exρ[ — isη((x — (y — st))/ε)'], cf. (4.18) and
(5.8). Previously, two of us had proved that the right-hand side of (5.21) (with a
fixed choice of phase for ̂ s ) converges to the free field φ° in the following precise
sense: let F be an algebraic tensor whose constituent functions are CQ and let f(x)
be a function whose Fourier transform is C£. Then one has

s.lim j dyψ™(0, y)f{y)F = \ dxφ**Xθ, x)f(x)F. (5.22)

The proof of this did not involve n-point functions. Rather, it hinged on the
simplicity of the implementer corresponding to the gauge function η(x) and its scaled
translates; we could show that the latter functions are the only ones for which the
implementer has this simple structure [12]. Subsequently we discovered that this
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function also has the unique property of leading to the desired n-point functions with
ε > 0 .

The fact that the limits of the approximate fields are cyclic on the vacuum for
(p, σ) = (1,0) (as claimed in the previous section) is evident from (5.22) and the fact
that ψi*J(t, x) only depends on x — si, cf. (5.21). The assertion for the three other cases
then follows from an observation that is of interest in its own right: there exist
unitary operators 0t and £ such that M2 = S2 = H and

@ψSιε{t, x p, ϋ)3t = ψStε{t, x; - p, - σ), (5.23)

Sφsβ, x; p, σ)g = φs,ε(t, - x; σ, p). (5.24)

These reversal and exchange operators are most easily described on the space 3F of
Sect. 2: by definition they equal ΓB( — ί) and ΓB(P), respectively, on each sector. Here,
ΓB(U) denotes the usual product operator corresponding to the one-boson operator
U on J"f, and P is the one-boson parity operator

(P/)(fc) = _ / ( - * ) , fejf. (5.25)

Note that (5.23) and (5.24) imply that one may as well restrict the parameters to
the wedge p Ξg |σ|.

To conclude this section, let us emphasize that the convergence of the
approximate fields φsε with (p, σ) = (1,0) to fields φs with the free rc-point functions
is not enough to conclude cyclicity of φs. Of course, the free field φ° is cyclic, but
one needs an additional argument, here given by (5.22), to conclude that ψ equals
φ°. To convince those readers who are still with us that we are not out to kill
phantoms, an example may be in order. Let Uτ be unitary operators on the
one-fermion space L2(U,dp)2 which for T-»oo strongly converge to an isometric
operator U ̂  that is not unitary (think of wave operators and bound states). Then
for any T ^ oo the fields.

φj{t9 x) = ΓF(Uτ)φ% x)ΓF(U*τ) (5.26)

all have the same n-point functions as φ°. (Here, ΓF(U) denotes the product operator
on 3Fa corresponding to the one-fermion operator U.) Moreover, the fields φτ are
clearly cyclic on Ω for T < oo. But the field φ^ is not cyclic on Ω, in spite of the fact
that the fields φτ (on their polynomial domains) strongly converge to it for T-> oo.

Appendix

In this appendix we sketch the proofs of Lemmas 3.3 and 3.4.

Proof of Lemma 33. To assist the reader in gaining a quick understanding of the
calculations needed to verify the lemma we shall first detail the special case σ = 0 and
then indicate how the general case is handled.

Inserting Definition 2.2 with σ = 0 in the left-hand side of (3.4) we get

/ I V/1 \"P2 n / 1 \(l/2)p2

\2π) \2) MWJ J J J J

S-... S* W{ - pLffn)Ω\ (A.1)



362 A. L. Carey, S. N. M. Ruijsenaars, and J. D. Wright

Since S(*> and W(f) commute, we may cancel all S_ and S*, after which we
apply Proposition 2.1. The resulting inner products may all be evaluated using
(2.17). Then (A.I) can be written

Γ(l + Sj + iujfjl + εj - « i j)T ( 1 / 2 ) ( > T(l + τj + iUj){ί +τj- iUβl

1 4ε,. J L 4τ, J

Γ(l + εj + iM j)(l + β t - i M t ) 1 ~

M L 2ί(Mj.-ut-i(εJ. + ε)i)) J 2i(Uj-Uk-i(τj

l + ε , + / » , ) ( ! + τ t - i L / 2

Comparison with (3.4) for σ = 0 shows that the translation-invariant part comes out
as claimed, so that it remains to check 1) the power of i, 2, Sj and τj, and 2) the
cancellation of the non-invariant terms. Now checking 1) is trivial, so let us consider
2): the offending independent terms are

•[(1 +εj + iujγ-J(l + εj-ίujy-1Yf>2{l +εj + ίuj)
np2. (A3)

But using (2.8) one sees that this is just a complicated way to write 1. The unwanted
l/y-dependent terms drop out similarly, proving (3.4) for σ = 0.

The second assertion is now immediate from Def. 2.2 and the preceding
calculation.

To prove (3.5) for σ = 0, we insert Def. 2.2 in the left-hand-side, obtaining

(1/2)P2 l

IΪ x,,(°X'"-'-""Πx,l- v,f'«-'*"" Π U-
l+l 1 l+l

(Q,Π WipItyS. Π (-)Q-W{pRl^S+tlS*.W(-pUj)

HS*+W(-pRl>)(-)Q-Ω). (A.4)
ί + i J

The factors ( - ) Q - can be traded against a factor ( — ) l ( n ~ ι \ after which the shifts can
be cancelled. The resulting inner product can be written as the product of two inner
products, one involving all R's, the other one all L's, in the order indicated in (A.4).
(This follows from Proposition 2.1 and the orthogonality of R and L, cf. (2.9)-(2.10).)
The result of this is ( — ) l { n ~ l ) times (A.I) (with n replaced by /) times the analogous
expression for the ψ(+]ε9 proving (3.5) for σ = 0.

Let us now consider the general case. If one cancels the shifts in the analog of
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(A.I) and splits the inner product into two inner products containing all the R's and
all the L's, respectively, one obtains the product of two expressions essentially the
same as (A. 1), so that (3.4) follows from the above proof for the special case σ = 0. The
second assertion of Lemma 3.3 is again obvious from Def. 2.2, so that it remains
to establish (3.5). Using arguments familiar by now one sees that its left-hand side
can be written

n I n

1 1 X,Ej\Uj) 1 1 ATjV j) 1 1 ΛTjV j)
l+l 1 l+l

1 l+l 1 J l+l
Wi-pL^YlWi-σU^Ω)^

{p^σ,u^v,U^V,L^R}, (A.5)

where the notation will be clear. Pairing the first and third/second and fourth
group of W's in the two inner products gives rise to the 2/-point function of
φ_/2(n — J)-point function of φ + occurring at the right-hand-side of (3.5), provided
the result of the pairing is combined with all factors up front that do not involve
pσ. Thus it remains to show that

Πz« J(«/'"Πz l j(-l//β <--' )Π Π exp(ip<τ[-(Lίi,L|*)
l+l 1 j=lk=l+l

I n

~ M k = ι+1 V ίUj -Uk- i(εj + τfc)] [uk - Uj - i(εk + τ7)] /

(A.6)

But from (2.17) it follows that this again amounts to checking that the constants
and non-invariant terms drop out, and we trust the reader believes at this point
that they do. •

Proof of Lemma 3.4. From the Weyl relations (2.2) and from (2.17) and (2.8)
it follows that

F = R9L. (A.7)

With the help of this relation and (2.7) the commutation relations (3.6)-(3.11) are
readily verified. •
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