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Abstract. It is shown that a general, irreducible, SU(w), Sp(w), SO(2w)
monopole with maximal symmetry breaking is determined by its spectral data.
For SU(w) with minimal symmetry breaking the spectral data is defined and
also shown to determine the monopole.

Introduction

In a previous paper [12] the definition of the spectral curve of a monopole, given in
[9] by Hitchin for SU(2), was extended to any compact, connected, simple Lie
group K. In this paper the details of the results announced in [12] are presented. It
is shown that there are r = rankK spectral curves Sl9..., Sr for a K monopole. The
spectral curves are labelled by the simple roots {α1?..., αr}, and when αf and α,- are
joined on the Dynkin diagram the intersection StnSj has a splitting as SinSj = Sίj

vSfi. The curves and this splitting constitute the spectral data of the monopole.
The main result of this paper is that for SU(n), SO(2w) and Sp(n) an irreducible,
general monopole is determined by its spectral data.

In Sect. 1 the basic material on monopoles and the definition of the magnetic
charges {m1? ...,mr} of a monopole, with maximal symmetry breaking at infinity,
are reviewed. The definition of the twistor space 2Γ is also recalled and used in
Sect. 2 to generalize the twistor correspondence of Hitchin and Ward. The general
twistor correspondence associates to any K monopole with reduction at infinity to
a maximal torus T, a holomorphical principal bundle Q, on 2Γ, with structure
group G, the complexification of K, and two reductions R+, R~ Cβ to Borel
subgroups of G.
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The spectral data is defined in Sect. 3 by combining two different approaches.
The first concentrates on the representation theory of K and realizes the spectral
curves Sl9 ...,Sr as sections of line bundles of degree 2mt. This incidentally shows
that the magnetic charges must be non-negative. The second approach uses the
Bruhat cell decomposition of G/B and determines the decomposition Sir\Sj = Sij

uS,,..
In Sect. 4 the standard representations of SU(π), SO(2n) and Sp(τt) are used to

define a vector bundle associated to Q with a flag. The method used by Hitchin in
[9] to reconstruct the SU(2) monopole can be applied to each step of the flag to
reconstruct the bundle.

The last section considers non-maximal symmetry breaking. In particular for
SU(n) with minimal symmetry breaking it is shown that the spectral data, a curve S
and a section of a vector bundle over S, determine the monopole.

1. Review

A magnetic monopole is a solution of the Bogomolny equations that satisfies the
Bogomonly-Prasad-Sommerfϊeld (BPS) boundary conditions.

We start with a principal K bundle P-»R3, where here and throughout K is a
compact, connected, simple Lie group. A monopole configuration is a pair (A, Φ)
where A is a connection for the bundle P and Φ is a section of the adjoint bundle,
called a Higgs field. These satisfy the Bogomolny equations if

*FA = dAΦ, (1)

where FA is the curvature of A, dA the exterior covariant derivative and * the
duality operator on R3.

The BPS boundary conditions essentially require that at infinity the bundle P
reduces to a sub-bundle determined by the Higgs field. This reduction is obtained
by requiring that for any choice of origin and radial gauge around it, that is a

section s of P such that (s*A, —} = 0 where (r, θ, ψ) are polar coordinates, the

limiting map Φ°°:S^->ZJί, defined by ΦCG(θ,φ}= lim s*Φ(r,θ,ψ) exists and its
r-»oo

image is contained in an orbit of the adjoint action of K on LK. Such orbits have
the form X/C(Γ0), where C(Γ0) is the centralizer of a torus T0 in K. Generically T0

= T a maximal torus so the orbit is just K/T. The subgroup C(T0) is the isotropy
subgroup of Φ°° evaluated at some point on S^ the two sphere at infinity. The
Higgs field at infinity therefore determines a section of PCO(K/C(T0)) = PCO

xκK/C(T0), where P°° is the bundle at infinity, and by a standard result [11] this
means that P°° has a reduction to a C(Γ0) sub-bundle. This sub-bundle is
isomorphic to the pullback by Φ°° of the standard C(Γ0) bundle K-*K/C(T0).

In a radial gauge s the connection s*A takes the form s*A = Aθdθ + Aφdφ. If the
limits of Aθ, Aφ exist we say the connection has a limit on the bundle at infinity and
likewise for the curvature.

Now the Bogomolny-Prasad-Sommerfϊeld (BPS) boundary conditions are:
BPS 1. The Higgs field at infinity, Φ°°, exists and is at least C1 and the

connection at infinity, ^4°°, exists and is at least C2 with curvature given by F°°.



Monopoles 541

BPS 2. For any line γ in R3 if we choose orthogonal coordinates f, along y, and

el9 e2 and a gauge s in a neighborhood of y such that (s*A, — } = 0, then the limits
\ δ ί/

of A! and A2 exist and are at least C2 where s*A = A1de1 + A2de2.
BPS 3. For some x e R3 and choice of radial gauge 5 we have a uniform

expansion of S*Φ outside of some compact set as

_ψ + θ( —
r \r

BPS 4. Φ00 lies in an orbit of the action of K on LK.

_ —
where ιp:Si^LK. r \r

d\Φ\
— —BPS 6. — — =01-2-1, where in polar coordinates

'd\Φ\

These conditions are independent of the choice of origin and radial gauge. This
is obvious for all except BPS 3. But if we look at the Bogomolny equations it is easy
to deduce that ψ= — *F°°, where * is the duality operator on Sj>. So BPS 3 says

that falls off as 0 { -^ ), which is independent of the choice of

origin.
The first two of these conditions are rather technical but are necessary to prove

Theorem 21. It seems plausible that by using the Bogomolny equations they could
be deduced from BPS 3, 4, 5, 6. Taubes (unpublished) has shown that BPS 5, 6
follows from BPS 3, [10].

Until we get to Sect. 5 we will assume that the isotropy subgroup of Φ°° is a
maximal torus, that is, the magnetic monopole has maximal symmetry breaking at
infinity.

The Higgs field at infinity defines a homotopy class [Φ°°] e Π2(K/T) which is
independent of the choice of radial gauge because K is connected. As the
Bogomolny equations are defined in the adjoint representation we can assume, for
simplicity, that K is simply connected. Then from the homotopy exact sequence of

(2)

where r is the rank of K.
In Sect. 3 we will discuss the topology of K/T in some detail but it is useful to

review the two-dimensional topology here. The homotopy group Π2(K/T) has a
natural basis [cί9 . . ., cr} labelled by the simple roots {αl5 . . ., αr} of K with respect
to some fundamental Weyl chamber. IfΛcLT* is the lattice of weights, then each
λeΛ defines a representation Λ,:Γ-»U(1) and therefore a line bundle <£λ

associated to the principal bundle K(K/T, T). Taking the Chern class of <£~λ

defines an isomorphism [3]

λY (3)
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The natural pairing of [/] eΠ2(K/T) and c(J^~λ)e#2(K/T,Q) is then

<m9c(^-λ)y = c(f*^λ)eH2(S2)^. (4)

In the basis {c1? ...,cr} this is also given by [3]

where < , > is the Killing form.
Then the topological charges m1? ...,mr are defined by

(6)

Here we choose some point N e S^, fix the torus T to be the isotropy subgroup of
Φ°°(ΛΓ) and let the fundamental Weyl chamber be the one containing ΦGO(AΓ). If
{/Il5 ...,/lr} are the fundamental weights defined by

then

*(̂ ";i1)). (7)

Using the fact that (Φ°°)*(K) is the reduced bundle at infinity and that the
connection reduces we have

c(Φ°°*jS?-A9= ~ - J αί(*F°°)vol(S2) = 2^(*F00), (8)
2π s2

and therefore mi = 2λί(*Fco).
We see from these results that the topological properties of [Φ°°] eΠ2(K/T)

can be obtained from *FCO evaluated along any direction in R3. We will often
abuse notation and write Φ°° or *F°° when we mean Φ°°(ΛΓ), *F°°(J/V) for some

Using the Lagrangian from which the equations are derived [4] it is not hard to
show that the topological charges are constrained by the requirement that

<*F°°,Φ«>^0. (9)

We will show in Sect. 3 that they must, in fact, be all nonnegative.
To define spectral curves for magnetic monopoles for arbitrary groups we need

to use the twistor method of Hitchin and Ward [9].
Their twistor correspondence is a correspondence between SU(2) monopoles

and certain holomorphic bundles over a complex manifold ZΓ . The twistor space
y is the space of all oriented lines in R3. If y is such a line there is a unique unit
vector u in the direction of 7 and a unique shortest vector v from the origin 0 e IR3

to y. So

(10)

and therefore y is a two dimensional complex manifold.
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This complex structure can also be described intrinsically. The space y is part
of the double fibration (cf. [7])

S 2 xR 3

P / ^π (11)

R3 y
where p projects onto R3 and π(u, v) = {u + ίv|ί e R}. The fibres of π are the orbits of
the action of R on S2 x R3 given by (u, v)n*(fl, ffl + v), for t e R, and induce a vector
field X, the "geodesic flow", on S2 x R3.

With the natural metric on S2 x R3 the tangent bundle splits into a one-
dimensional bundle parallel to the geodesic flow and an orthogonal bundle which
has a natural complex structure obtained from the complex structure on S2 and
cross-product with the geodesic flow X. This complex structure is invariant under
the geodesic flow and projects onto the complex structure on y [9].

The twistor space has an antiholomorphic involution τ\y-+2Γ given by
reversing the orientation on each line. A subset S of y is called real if τ(S) = S.
There are no real points on y but there are real "lines." These are determined by
picking a point x in R3 and letting

Px = {y e y\ Ί goes through x} , (12)

which defines a real holomorphic curve on y [9]. In terms of the double fibration,
if x e R3, px = π(p~ί(x)) and if y 6 y, the corresponding line is y = p(π~ 1(y)). So we
have the basic correspondence

{oriented lines in R3}<-»{points in

{points in R3}<->{real lines in3, , _ _ _ , , . . _ . _ , . ^ 03)

In holomorphic terms y~ TJP1 and we can define the bundle 0(k) on y by
pulling back 0(k) on Pt. Then the real lines px are divisors of real sections of 0(2)
[9].

The choice of origin in R3 is arbitrary and we can regard y as an affine bundle
over 1P1. A choice of zero section corresponds to a choice of origin and vice versa.

2. Twistor Correspondence

The twistor correspondence of Hitchin and Ward [9] relates monopoles for an
SU(2) vector bundle on R3 and holomorphic vector bundles on twistor space y. It
will be useful for our purposes to derive the equivalent correspondence for
principal bundles.

We recall first that any compact, connected Lie group K has a complexification
G. This is a complex Lie group containing K as a subgroup and whose Lie algebra
LG is the complexification of the Lie algebra of K. The basic example is K = SU(n)
and G —SL(n,(C). In this case we note that the map X\-^(X*)~1 is an anti-
holomorphic automorphism of SL(n, <C) whose fixed point set is SU(n). In general
such a real structure always exists and we will denote it by g\->g.

To define a holomorphic structure on a complex vector bundle E over a
complex manifold y it is necessary and sufficient to define an integrable
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δ-operator. A 3-operator is a C linear map

d : Γ(£)->Γ(£)® T°' \9*) (14)

satisfying d(fs) = df®s+f®ds for all / e C™(3~] and 5 e Γ(E). Such an operator is
said to be integrable if δ2 = 0. It is then a corollary of the Newlander-Nirenberg
theorem (see [2]) that this determines a holomorphic structure on E for which it is
the natural ^-operator.

In the case of a principal bundle with total space Q, base space 3~ and structure
group G a complex Lie group, an analogous result holds. Such a bundle is
holomorphic if Q is a complex manifold, the G action is holomorphic and Q-+^
admits holomorphic local sections. Alternatively, to determine a holomorphic
structure on the bundle it suffices to choose a cover {l/α} of 2Γ and local sections
5α: UΛ-*Q such that the transition functions gaβ : UanUβ^G are holomorphic.

By analogy with a connection a 3-connection can be defined as a distribution of
subspaces of the complexified tangent space of Q or as a certain 1-form on Q. For
our purposes it will be most useful to have the following local definition.

Definition (1 5). A δ-connection is a collection of 1-forms {A^} with AaeΓ(U^
LG0T0'1) satisfying

Aβ = gaβAg~βL + gaιβdg~βL.

If the {gΛβ} are holomorphic there is a natural <9-connection obtained by taking
all AΛ to be zero. Given a δ-connection we can define a global (0,2) form
FeΓ(^",adβ(x)yl0'2T*^") with local coordinates

Fa=δAΛ + AaΛAa, (16)

and the ^-connection is said to be integrable if F = 0. In such a case it again follows
from the Newlander-Nirenberg theorem that we can choose a holomorphic
structure on Q so that this ^-connection is the natural one (see [2]).

Now we start with a principal K bundle P->R3 with a connection A and Higgs
field Φ and define a principal G bundle Q-+^~ with fibre over y e ?Γ given by

Q(y) = {se Γ(7, P
c) | <s*,4, y*> = is*Φ} . (17)

Here Pc = P x κ G is the complexification of P and y^ the unit tangent vector field to
the geodesic γ in the direction of orientation.

We can now generalize Hitchin's theorem (4.2) to obtain:

Theorem (18). // (A, Φ) is a solution of the Bogomolny equations Q has a
holomorphic structure and an antiholomorphic map σ:Q-^Q covering τ\ZΓ-^3~,
satisfying

(1) Q is holomorphically trivial on real sections,
(2) if q e Q, g e G then σ(qg) = σ(q)g,
(3) σ2 = l.

Conversely such a bundle defines a solution of the Bogomolny equations.

Proof. Using the double fibration (11) a local section 5 of Q over Uc^ can be
regarded as a section s of p*P over π~1(t/) satisfying

0. (19)
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Here A, Φ are pulled back from R3 to R3 x S2 and X is the geodesic flow on R3

xS2.
Now if we pull back A with § to a 1-form on π~1(ί7) and take the (0,1)

component of the projection onto the orthogonal this defines a 1-form A° l. If this
1-form is invariant under the geodesic flow we can use it to define a ^-connection
on Q. As the real sections span the holomorphic tangent space to any point of 2Γ it
suffices to show

.d
+ dy

or in the obvious notation dt(Ax + iAy) = 0. Now from Eq. (19) we have At = iΦ, and
using the definition of curvature we obtain

dt(Ax + iAy) = Ftx + dxAt - lAt, Ax~\ + ί{ - Fyt + 8yAt

because of the Bogomolny equations. Because A is a connection on R3 the
transformation properties (15) are clearly satisfied.

As in [9] we note that any (0, 2) form is a multiple of ΰ1 Λ ΰ2, where u1 is in the
direction of the fibre of S2 x R3 ->R3. But A on S2 x R3 is a pullback connection to
it follows that the δ-curvature vanishes and that the bundle Q has a holomorphic
structure.

Clearly if we construct an associated vector bundle this δ-connection induces
on it the ^-operator defined by Hitchin in [9].

To show triviality over real sections we choose some point x e R3 and p e P in
the fibre over x, then for each line y through x we can choose a section s : y-+P with
s(x) =p and <s*^4, y^) — is*Φ = 0. This defines a section s over S2 x Re S2 x R3 but
as A is a pullback connection we must have (s*^)0'1 = 0.

The construction of the real structure σ follows from the real structure on Pc

and the fact that τ(y)= —y.
The inverse construction is done by the same method used by Hitchin in [9]

applied to the adjoint bundle.
The theorem is now proved. D

As an aside we note that because the monopole equations are defined in the
adjoint representation they should not depend on π^K). To see this in the twistor
picture assume we start with a group G with universal cover G and therefore have
the exact sequence

0->π1(G)->G-^G^O. (20)

Using suitable transition functions for Q we see that the obstruction to lifting it to a
G bundle is a two cochain with values in πx(G) which is a cocycle because πx(G) is
central in G. Moreover H2(2Γ, π^G)) restricts isomorphically to #2(P1? π^G)) for
any real section and Q is holomorphically trivial on real sections so this
obstruction must vanish. As any two lifts differ by an element of H^(3Γ, πx(G)) = 0
the lift is unique and we may as well assume π1(G) = 0.

To complete the twistor correspondence we must consider the effect of the
boundary conditions. In [9] Hitchin observed that for SU(2) they implied that the
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bundle E-+£Γ has a sub-bundle which means that the SL(2,C) frame bundle of E
has a reduction to a Borel subgroup - the upper triangular matrices. We shall see
that this is true in general where for the group G a Borel subgroup is a maximal
solvable subgroup BCG. It can be chosen so that BnK=T the maximal torus
defined by the Higgs field at infinity.

Before stating this result we recall the definition of the bundle Lλ (λ e R) defined
by Hitchin in [9]. This is the bundle on 2Γ defined by a U(l) monopole with Higgs
field iλ. Note also that if R is a reduction of Q to a Borel subgroup B and λ e LT*
any weight of K the induced representation λ : £->C* defines an associated line
bundle R(λ) consisting of equivalence classes [r,z], of pairs (r,z), where (r,z)
~ (rb, λ(b~ 1)z) for all fe e B. The result we need is

Theorem (21). If (A, Φ) satisfies the BPS boundary conditions with reduction at
infinity to a maximal torus T, then the holomorphic bundle Q has two reductions R + ,
R~ , to B, B sub-bundles respectively such that

(1) σ(R+)
(2) R±(λ)

Proof. The essential point of the proof is to define a Borel sub-algebra bundle
Jf Cadβ using a decay condition as in [9]. We recall that there Hitchin showed
that for the twistor correspondence for vector bundles a local solution sz of the
equation (Vt — iΦ)sz = Q had the property that

||dsj ;gconst||sj as ί-»±oo.

Therefore to find a sub-bundle fixed by the 3-operator, that is a holomorphic sub-
bundle, we must look for solutions constrained to grow no faster than some given
rate.

The bundle adβ can be realized as Q xGLG or equivalently as

where adPc is the complexification of ad P. With out conventions the Borel
subgroup B has the Lie algebra

α > 0

where α>0 precisely when α(Φ°°)>0. Applying the result of Coppel [5] we have
that for each xαeLα(L0 = LTc) there is a solution sαead<2(y) with

5α(ί)Γ
 α(*F°°)/2eα(φoo)ί->xα as ί-> + oo .

So if we define

X(y) = {seΓ(γ,adPc)\\\s\\ is bounded as

we see that X(γ) is the span of the sα with α^O. Moreover if we bracket two such
solutions they decay faster and as the possible rates of decay are bounded below
(that is the number of positive roots is finite) all iterated brackets must eventually
vanish. This shows that X(γ) is a solvable subalgebra of adg(y) and as dimJf(y)
= dimLB it follows that X(γ) is a Borel subalgebra. The comments at the
beginning of the proof imply that X is a holomorphic sub-bundle of ad(λ The sub-
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bundle X defines a reduction R+ cQ with structure group B and by looking at
decay in the other direction we obtain another sub-bundle jR~. Property (1)
follows easily.

The proof of property (2) is that used by Hitchin in [9]. We work with a
monopole with Higgs field Φ — U(Φ°°). If we look at the equation Vs = 0 instead of
V — ίΦs = 0 then this also defines a bundle M on y and by looking at the sub-
bundle with + U(Φ°°) eigenvalue we obtain a sub-bundle MίcM. The BPS
boundary conditions are sufficient to show that Mx is C

1 and has a C2 connection.
The Bogomolny equations imply that on each real section the curvature of this

connection is a multiple of the volume form. Because the real sections span the
tangent space to y at any point we deduce that the curvature form on y is the
pullback of the curvature form restricted to the zero section. Now from [1] we see
that a C2 connection defines a holomorphic structure, and because the curvature is
pulled back we must have Mί ^ π*0(jp) for some p. In fact it is not hard to show that
M1^π*0(-2λ(*F00)).

Then by the same method used by Hitchin we can show that R + (λ)®L~λ(φco}

= Mί and the theorem is proved. D

At this stage the spectral curve S can be defined as a subset of y. Each fibre of
the bundle adβ contains two Borel subalgebras adR+ and adR~. In general any
two Borel subalgebras contain a Cartan subalgebra and generically it is their
intersection. So we define S to be the collection of γe^~ such that dim(adl?(y)
nad#~(y)) > rankK and this is a closed subset of 2Γ. Now the proof that solutions
of (V — iΦ)s = 0 have certain decay rates depends on relating solutions of

2r ' " V*"2

to solutions of the unperturbed equation

τ-l(φ"-dr \

Coppel [5] shows that for small enough values of the integral of the perturbation
there is a bijection between bounded solutions of both these equations. Now as the

perturbation is 01 -y 1 it follows that there is some R > 0 such that any line further

than JR from the origin has the perturbation term suitably bounded. However, the
unperturbed equation has only a rankX dimensional space of bounded solutions
and therefore this is true also of the equation (V — iΦ)s = Q. But the bounded
solutions clearly from ad#+(y)nad.R~(y), so we have shown that S is contained in
a compact subset of y. As S is closed it then follows that

Corollary (22). The spectral curve S is compact.

To see how these ideas work in practice we consider the case of SU(3). Here the
Higgs field has the asymptotic expansion
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We define the projection map xt by x{(i diag(μ1? μ2, μ3)) = μt. The Borel subgroup
B is the subgroup of SL(3, <C) consisting of all upper triangular matrices. The
associated vector bundle E = g((C3) therefore has two flags

induced by R±. An application of Theorem (21) tells us that

and

The real structure σ on Q induces an antiholomorphic isomorphism σ : £->£*
covering τ on 9~, and if for any WcE* we define PF1 by W^ = {veE\ω(v)
= 0 VωePF}, then σ(Ef)± = Eϊ, σ(E^ = E^.

3. Spectral Data

The spectral curve S has been defined as a subset of SΓ . In this section it will be
examined in more detail using two different approaches; the representation theory
of K and the cell decomposition of K/T. This will enable us to show that S is the
union of r = rankK real, algebraic curves {S1? ..., Sr} labelled by the simple roots
{αl5 . . ., αr} and to determine a decomposition SfOSj = SyuS^ whenever i and; are
joined on the Dynkin diagram. These curves and the decomposition together
constitute the spectral data of the monopole.

If K->GL(F) is a representation of K with lowest weight — λ then it extends to a
holomorphic representation of G and therefore determines an associated vector
bundle

E = QxGV. (23)

As a representation of the torus V decomposes into a direct sum of weight
spaces

(24)
μeπ

where π is the set of weights of V. Using the facts that

Lβ = LΓc0Lα, L5=LTc0Lα, (25)
α>0 α<0

and Lα V(μ) C V(μ + α), we see that F( - λ) is 5-stable and 0 V(μ) is β-stable.



Monopoles 549

The vector bundle E therefore has two sub-bundles defined using the
reductions jR+ and R~, these are

E+=R+( 0 V(μ)}9 E~=R-(V(-λ}). (26)
\μ>~λ J

Here and throughout R+(X) = R+ xBX, Q(X} = Q*G

χ etc. As these sub-
bundles are of complementary dimensions we can define Sλ9 the spectral curve for
the weight λ, to be the points where E~ CE+ or the divisor of

Ψ:E--+E/E+ . (2?)
From Theorem (21) we see that Sλ has degree 4λ(*F°°).

If the representation is chosen to be unitary we can use the real structure
σ:Q->Q to define an anti-holomorphic isomorphism σ :£->£*, \_q,υ\\-^[σ(q),
<X — )] , where < , > is the hermitian inner product on V and [g, v\ is the equivalence
class of (q, v) in Q XG V. As the spaces V( — λ) and (J) V(μ) are orthogonal it is
easy to check that μ> ~λ

(28)

Now we can show that Sλ is real, that is, τ(Sλ) = Sλ. From (28) we have the
commuting diagram

E- -^ E/E+

"I I (29)

(defining Z) where div(JQ — τ(div^) = τ(Sλ). Now divX^divJί* and

but (£*/(£ 'J1)* -£~? (E+)λ*~E/E+ so we see that X* - .̂ We have now nearly
proved

Proposition (30). The spectral curve Sλ is a real, compact, algebraic curve of degree
4λ(*F°°).

Proof. The only thing left to prove is compactness. But it is clear that if
n(adβ+) is a Cartan subalgebra then £~n£+ = {0}, so SλcS and therefore
compact from (22). D

The weights ΛcLT* form a lattice generated over ΊL by the fundamental
dominant weights {λl9 ...9λr} satisfying

=V (3DJ

For every dominant weight, that is every weight of the form Σ m

i = l

nonnegative mί? we have defined a spectral curve. Consider now two dominant
weights μ1 and μ2 and let μ = μ^ +μ2 Denote the corresponding K modules with
lowest weights — μ, — μ t and — μ2 by 7, Fi and F2. We wish to show that Sμ = Sμί
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+ Sμ2. If the consider the K module Vv (x) V2 and take the irreducible component of
this containing V^ — μl)®V2( — μ2) this is just V. Now consider the map

V-+Vιl Θ ^(α)®^/ 0 72(α)
α> -

which does not annihilate V( — μ). But this is a β map so it follows that its kernel is
φ F(α). We therefore have a 5 isomorphism

α> -μ

— μ i= 1 \ / α > " ~ A ί i

and a B isomorphism

V(-μ)*V1(-μ1)®V2(-μ2).

Forming associated bundles we obtain the commuting diagram

E- — Φ— > E/E +

I I

where Sμ-div^, SM1 = div^! and Sμ2-div^2. It follows that Sμ = Sμι + Sμ2.
We can now define the spectral curves [Sl9 ...,Sr} of the monopole to be

= Sλί, and in view of the preceding remarks we have

r

Proposition (32). // λ = Σ nt^i is a dominant weight then

ί = l

We now see that S contains the spectral curves St. Moreover S is the zero set of
the map

so that S = S2δ where 2δ = Σ « = 2 Σ Λ i It follows then from Proposition (32)
α>0 i = l

that S is the union of the St.
Now in the SU(2) case it was important that the line bundle L2 restricted to the

spectral curve S had a section ξ. This section can be defined by the diagram

E/EΪ

φ/ 4 \ «
/ I \
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where the broken arrow indicates that ξ is defined only where φ vanishes. More
correctly we have the commuting diagram of sheaves

0 -* El -t ElEl -> 0S(E/EΪ) -> 0

i i TΊ n
0 -> EΓ -» E -> E/EΓ -» 0

and here ξ is a global sheaf map.
For the general case we can define a similar diagram and section ξt and these

will be important in the reconstruction of the monopole.
We note first that if λt is a fundamental weight, then V( — λt) is one dimensional,

moreover λi — ai = λi — " ' αf is conjugate to Λ,; under the Weyl group so

F( — Λf + a,-) is also one dimensional. The space F( — λ^)®V( — Λ + oίj) is stable
under B so we can define the f t h fundamental diagram

0 V(μ)\
>-λl J

}*> \ξ (33)

Applying Theorem (21) and for simplicity not repeating the middle term we
obtain

(34)
)(φ°°)((-/lI. + αί)(2*F00))->0

recalling that λi(2*Fco) = mi (7). It follows that

. (35)

As an example consider the SU(3) monopole. Here the spectral curves are

and we observe that Sf

1nS2 = S12uS2i, where

In this case ^ vanishes on S21 and ξ2 vanishes on S12 precisely.
We can gain some insight into this decomposition by considering the flag

bundle F(E). For a three dimensional vector space V a flag is a pair of subspaces V1

C V2 with dim V= i. If we fix a flag (Vf , F2

+) the set of all flags F(V) has a nice cell
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decomposition given by

X0 = {(VΓ, V2~)\(Vn is disjoint from (Vf)} ,

X2 = {(Vι~, F2~)|as for Xv with + interchanged},

ι 2 = {(*T ,V2~)\ V2- = Vί , F!+ Φ Ff } ,

2i = {(JT , *7) I as for *i2 with 1, 2 interchanged} ,

The natural ordering XΛ C Xβ and the dimensions of these cells are

X0 dim 6

X1 X2 dim 4

X12 X2ι dim 2

\ /
X3 dimO.

Now the flag bundle F(E) is defined as F(E) (y) = F(E(γ)). If we take the section
defined by (£f~) this defines a cell decomposition of each fibre of F(E) and
intersecting this with (E+) and projecting onto 5" yields Sί9 S2, S12, and S21. In
the remainder of this section we shall generalize this example and show that
whenever i, j are joined on the Dynkin diagram there is a natural decomposition St

nSj = SyuSjj. Moreover the divisor of the sections ξi can be defined in terms of the
Stj and the Car tan matrix of the Lie algebra LK. The spectral curves and this
division will be called the spectral data of the monopole.

For a general group G the flag manifold is the compact, complex homogeneous
space

G/B-K/T. (36)

The "opposite" Borel subgroup B acts naturally on the flag manifold G/B
which is a projective algebraic variety and the orbits of this action are known as the
Bruhat cells. They are, in fact, algebraic affine spaces <Cm of various dimensions and
give a cell decomposition of G/B. The closures of these cells are algebraic
(irreducible) subvarieties of G/B that may have singularities.

The cells are naturally indexed by the Weyl group

W= N(T)/T^K/T^G/B . (37)

The natural partial ordering on the cells c^c'ifcCc' induces a partial ordering on
the Weyl group. This can be described as follows [3]. First we recall that W is
generated by the simple root reflections σf = σαι and that for any w e W the minimal
r such that ω = σiί...σirtis called /(w) the length of ω. Such a minimal expression for



Monopoles 553

ω is called reduced. Then if w is a reduced expression the set S(w) of elements of W
obtained by deleting σ/s from this expression depends only on w. The partial
ordering on W is defined by

(38)

The (real) dimension of any cell Xw is then [3]

άimXw = dim G/B - 2/(w) , (39)

and the cells define a basis for the homology H^(G/B\ 22).
The cohomology of G/B can be realized as follows. Any weight λeΛcLT*

defines a representation λ:B-+(Cx and therefore a holomorphic line bundle ££λ

= GxB<C, where b(g,z) = (bg, λ(b)~1z). Taking the Chern class of g~λ defines a
map α : A®Q^>H2(X,(ί2), λ\-+c(<£~λ\ which extends to an algebra epimorphism
α : R = S(A®z<$)-+H*(X, Q). The kernel of α is J the ideal generated by the Weyl
group invariant elements of positive degree.

The natural pairing of cohomology and homology is realized in [3] as a pairing
between .R and the cells {Xw}. First we define for each σt a map

At:R^R, f^ \ (40)
αt

and then if we W and σw = σtί...σir is reduced the map Aσw = Aiί...Aίr depends
only on w and for w e W, f e R the pairing is

<*„,/> = (4J)(0). (41)

Using this non-degenerate pairing we can define a dual basis {Pw} of
cohomology and in [3] it is also shown that if P denotes Poincare duality then

(42)

where σ is the unique longest element of W.
With these facts we can deduce a number of simple results.

Proposition (43) (i) Pσffk = λk,

(ϋ) <xσσfσj., λkλty = %$+ δkjδ\ - δiδ}2^^,
\OCj-, (Xj /

(Ίii) P P =P +PV111/ ^ ιr j Γ ij i Γ ji ?

Proof, (i) If /(w) Φ1 then <Pσw, λky = 0, moreover <Pσffj> λfc> = J'̂  = δ*.
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(iii) Let PtPj = Σ^jPki τhen from (ϋ)

, xσσhσιy = δίδl + δiδi - δ\δ{

P,P, = Σ 0i 5/
M

(iv) If /=_/ then because fcφ/ <5£<5/ = <5j<5£ = 0 so

Now from the Borel-Weil theorem [16] we know that H°(G/B, ^λ} is the
representation of G with lowest weight λ. Hence

and dimF-λ = dim(7(-λi + α ) = l. We then have

Proposition (44). (i)_// ξ _
(ii) XσinXσj = XσiσjvXσjσi as varieties if

(iii) If ξe V(λi) and η e V(λt + ̂  then

Proof, (i) The Pojncare dual to Xσ. is from (42) P(X_ff) = Paai = ̂ . Hence div(ξ) is
homologous to Xσ.. However, div(ξ) is stable under B so must be a union of cells. It
follows that div(ξ) = Xσ,

(ii) Consider the set theoretic intersection Xσ.nXσ . This is fixed under B and
therefore is a union of cells. Now clearly 0yτf, σpj ^ σf and σ^σb σpj ^ σ7 so

On the other hand if Xw C XσιnXσ., then w < σt , σ7 , so a reduced expression of σw
contains σt and σ7 . Therefore either σf σ; >w or σ7 σ f >w in either case XwQXσ.σ.
\jXσ.σι, and it follows that

Now we have to check for multiplicities in this formula. From [8] we see that
this can be done by knowing the expansion of Xσ. -Xσ. in homology._As
intersection pairing is Poincare dual to cup product we can expand P(Xσί Xσ)
= P(Xσ)P(Xσ) = λtλj in terms ofP(Xσjcσι) = Pσσkσι. So we wish to determine the m\\

But from (ii) mfj = <Λ;σσfcσz,/l0 >, so because /φ; we have

r\ / \

(iii) This is proved as for (ii) but this time using Pf — Σ — / — k\l P/α from

Proposition (43). D fcφ/ <^^ >
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We now return to the spectral curves. The bundle Q has two reductions R+,
R~ to B and B sub-bundles. Because G acts on G/B we can form the associated

fibration Q(G/B) ^R + (G/B) ~R~ (G/B) . (45)

Now the bundle R+(G/B) has a tautological section R+ and the fibres of R~ (G/B)
have a cell decomposition given by the actions of B. We can now define

7] = (Λ+)*JR-(^σι), (46)
and we have

Proposition (47). The curve Tt is the ith spectral curve St.

Proof. From the Borel-Weil theorem the representation with lowest weight — λi is

Consider the evaluation map

This is, in fact, invariant under B and from Proposition (44) it vanishes on Xσι. It
follows that R~(Xσ) is defined by the vanishing of R~(G/Bx V(-λ^)
->R~(yλί). So Tt i sΛe divisor of

Now on each fibre of R~(G/B)^TP1 the bundle R~(G/B x V(-λ$) is a copy of
V( — λi), and therefore we have

R + *(R-(G/BxV(-λί)) = R-(V(-λi)).

To determine the second bundle consider the evaluation map

This is also B invariant so defines

Taking an equivalence class [r + ,φ] where r+ εR+ and φεH°(G/B, 5£~λl\
and following through this map we see that it vanishes when φ(B) vanishes. Now
the subspace of φeH°(G/B, <£~λi) vanishing at B has codimension 1 and is B
stable so must be

0 V(μ).
μ>-λt

It is easy to check now that Tt is the divisor of the natural map

+( © V(μ)\,

and comparing with (27) we see that Tt is the ith spectral curve. D

Using this cell decomposition we can also define

(Xσίσί (48)
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and from Proposition (44) we deduce

Proposition (49). (i) Sir^Sj = SίjuSji.

Proof. The result (i) is clear. For (ii) we inspect the proof of Proposition (47) and see
that ξt is the pullback by R + of the map induced by G/B x V( - λt + α,) -> & " λi and
from Proposition (44) the result follows. D

To summarize; we have defined for any monopole some spectral data, this is a
collection of curves {Sl9 ...,Sr} with a division SίnSj = SίjvSji when i and j are
joined on the Dynkin diagram and from (35) and Proposition (49) we see that these
are constrained by the requirement that the divisor

represent the point on the Jacobian of St defined by the line bundle

<«*,«*>
If we assume the curves are distinct and smooth we can do a naive parameter

count. It is not difficult to show that τ(Sl7) = Sjt and the St are real so it suffices to
count complex parameters.

If Si φ 0(Wi φ 0) we see from [9] that this determines {(m( + 1)2 - 1 } - (mt - 1)2

parameters because dimH°(^~, 0(2mf)) = (m^ + 1)2 and dim Jacobian Sf = (mt — I)2.
If m = 0 this gives — 1 so the parameter count is

4 Σ m£ - rankK + card {ΐ 1^ = 0}, (50)
i = l

agreeing with the result calculated by Weinberg in [16].
We have now constructed a map from the moduli space of all monopoles to a

certain subvariety of the moduli space of curves and at smooth points these have
the same dimension. In the next section we show that for a general SU(n), Sp(n) or
SO(2ή) monopole this map is one to one.

4. Reconstructing the Monopole

In this section we will show that the spectral data determines the general monopole
for the classical groups SU(n), Sp(n), and SO(2n).

For each classical group we can form a standard associated bundle E with a
flag, real structure and some algebraic structure such as a skew or symmetric form.
Each of these vector bundles has a number of exact sequences associated with its
flag and by analyzing the representation theory we can show that these are "lifts" of
the fundamental exact sequences in (33). To perform this lift we need to assume
that StriSj is finite. In Proposition (53) we show that this is true for the general
monopole, that is, there is a non-empty open subset of the moduli space of
monopoles for which StnSj is finite.
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Having recovered the bundle we need to define the real structure and any
algebraic structure so we can recover the principal bundle Q with real structure as
a sub-bundle of the frame bundle of E. However, the bundle E came from a
monopole so we know it admits the required structure. If the bundle E has a non-
trivial holomorphic automorphism the general twistor correspondence for linear
equations implies that the bundle E on R3 has a non-trivial automorphism s such
that dAs = Q and [Φ,s]=0. It follows from this that [FA,s]=Q and [d^Φ,s]=0.
Now adPc->End(£) by an irreducible representation LK->End(F) where
E = P(V). It follows from Schurs lemma that if [s, adPc] = 0 then s is a scalar. Now
if the connection is irreducible the values of the curvature span adPc, so we have
proved

Proposition (51). // (A, Φ) is an irreducible monopole and V an irreducible
representation, then Q(V) has no non-trivial automorphisms.

It follows from this proposition that if we start with two monopoles (A, Φ),
(A', Φ') for classical groups and produce two vector bundles β(F), Q(V) on y
which are isomorphic as vector bundles then they are isomorphic as vector bundles
with real and algebraic structure. This means that to show that the spectral data
determines the monopole it suffices to show it determines the vector bundle.

We show now that there is a non-empty open subset of the moduli space of
monopoles for which S fnSy is finite. As this condition is "open" we only have to
show one such monopole exists. We observe first that because the spectral curves
(S1? ...,Sr} are compact there exist closed balls {D1?...,Dr} in R3 with the
property that any line on Sf must intersect Dt. Then we deduce

Lemma (52). If DίnDj = Φ, then S^Sj is finite.

Proof. If DtnDj = (I) then there are an infinite number of points x eR3 such that no
line through x goes through both Dt and Dj. This means the real section px does not
intersect StnSj. But if S/nSy is not finite it contains an algebraic curve that must
intersect every real section so the result is proved. D

Proposition (53). The general monopole has StnSj finite Viφj .

Proof. We use Theorem II of [14] which says that if we choose SU(2) solutions
(A\Φl), i=l, . . . ,r, a number d large enough and points {x1? ...,xr} with |xt

— Xj\>d, then there is a K monopole solution (A, Φ) such that on some ball of
radius R(d) about x{ it satisfies

where g is a gauge transformation defined on his ball. Moreover as d-» oo , R(d) gets
larger and ε(d) gets smaller. Also if the topological charge of (A1, Φ1) is mt then the
topological charges of (A, Φ) are {m1? ...,mr}.

Now for each of (A\ Φ1) there is a ball Bl intersecting all the lines on the spectral
curve of (A*, Φ1) so there is a d such that

EicB(xi9R(d)).

From the inequality between (A\ Φ1) and (A, Φ) it follows that Dt (as defined above
for (A, Φ)) is "close" to B\ In particular, if we choose d large enough we must have
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DI C B(xt, R(d)). From the method of proof and the fact that the topological charge
of (A1, Φ1) is mi there cannot be other lines in St not intersecting D^

The result now follows from the lemma. D

We now prove the basic lemma needed for the reconstruction. Let /, J be line
bundles and £, F vector bundles over a complex manifold. Assume the following
diagram commutes where the horizontal sequence is exact.

J
F\ίθ (54)

We use the dashed arrow to indicate that ξ is only defined on S, the divisor of φ.
Then from the ideal exact sheaf sequence of φ we have

>0S(J®F*)-*0 , (55)

and using the exact cohomology sequence we have the coboundary map

#°(0S(J®F*)) Atf^F*®/) . (56)

Now fί 1(F* ® /) classifies (isomorphism classes of) extensions of / by F and we have

Lemma (57). In the situation above δ(ξ) = [E].

Proof. We note that from an extension

0->/-»£->F-»0,

we can form the exact sequence

0->Hom(F, ί)->Hom(F, F)-+Hom(F, F)-»0 ,

and the exact cohomology sequence of this has the piece

#°(Hom(F, F))^H1(Hom(F, /)) .

Then if id e //°(Hom(JF? F)) is the identity map δ(id) = [E] is the equivalence class
of the extension

O_>/->E_>F->O.

Now as F as a locally free sheaf [that is 0(F) the sheaf of holomorphic sections
of F is a locally free sheaf] the co variant functor Hom(F, — ) is exact. The diagram
(54) can be written as

I I ΐ * ΐ ζ

0->/^F^ F ^0

where both horizontal sequences of sheaves are exact and ξ is a globally defined
sheaf map. Applying the functor Hom(F, -) to this diagram we obtain

and clearly

, / A Hom(F, J) -

II ί' ΐ^*
0-»Hom(F,/)->Hom(F,F)-> Hom(F,F)



Monopoles 559

Now using the exact cohomology sequence we have the commuting diagram

and therefore δ(ξ) = δ(ξ+id) = δ'(id) = [£] as required. D

We note that the dashed arrow must be carefully interpreted when S is not
irreducible. The correct interpretation is to regard ξ as a global sheaf map - as we
have in this proof.

We will now prove the following theorem by working through each of the
classical groups SU(/t), Sp(rc), SO(2w) separately.

Theorem (58). The general irreducible monopole for the groups SU(rc), Sp(n), and
SO(2n) is determined by its spectral data.

The Lie algebra of SU(n) is the collection of all n x n complex matrices X with
X = — X* and tτX = 0. For the torus of L SU(n) we can take the diagonal matrices

m

ίdiag(αl9 ...,#„) with α^elR and Σ ^i = 0. If we choose the fundamental Weyl
ι=l

chamber to satisfy a1>...>an, then the asymptotic expansion of the Higgs field is

(59)

where μ1> ...>μn and Σ^i — Σ^i = 0. If Xj is the projection x^idiagO^, ...,απ))
= dj then the positive roots are [xi — Xj\ l^i<j^n} and the simple roots are {xί

— x2, . . . ,x n _ 1 — xn}. Then the fundamental representations are C",
Λ2<Cn, ...,Λn~l<Ln with highest weights {x1? x1+x2, ...,x1 + x2 + ... +x,,-ι}. So
from (7) we see that the topological charges are

— If Wl — If I IT- γyt — b I I lr I f\(l\
ι — IVι y 'f*2, — 1 '^ **'2' * * *' n 1 — 1 ^̂  * * * "̂  n 1 * V /

The Dynkin diagram of SU(n) is

o-o-o o
1 2 3 ... n-1. (61)

The standard representation fo SU(n) is C" and this has weights {x l9 ...,xπ}
with highest weight X j . As x± =x ί_ 1 +(Xj — Xj- i ) the weights are ordered by

x 1 >x 2 >...>x M . (62)

The weight decomposition of (C" is just the standard decomposition (Cκ

= <C0...0(C and the Borel subgroup (the upper triangular matrices) fixes the
standard flag

If we have an SU(n) monopole the twistor correspondence defines an SL(n, (C)
bundle Q and two reductions, .R+ and R~, to Borel sub-bundles. The Borel
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subgroups B and B are the upper and lower triangular matrices and if X e SL(π, <C)

If we form the associated vector bundle E = β(<C") this is naturally isomorphic
to #+(<C") and R~(<Cn) and the latter contain the flags

where {C*} are the flags

(63)

(64)

As SL(rc, (C) is acting on the left of Cn these are stabilized by the upper and lower
triangular matrices respectively.

The spectral curve Sπ_p is the set of y e 3Γ at which E~(y)nJE*_p(y)=l=0. This
follows from the fact that the representation with lowest weight — xί— x2

-...-xn-.p = xn-p+i + ...+xp is Λp<Cn so Sπ_p is defined by

φp:Λ'(E;)^Λ'(E/E;-p). (65)

From Theorem (21) we know that

R^λ)* Lλ(φc°\ ± 2λ(*F°°)), (66)

and applying this to the quotients of the flags above we obtain the exact sequences

£2

+-> L«2(-/e2) ^0

E -> L^(-kn) ->0
(67)

Each of the exact sequences in (67) defines a diagram

(68)

W->o.
and if we join two of these together we obtain a diagram

Vf \ Nl,

(69)
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where Wp is the appropriate bundle that makes the lower exact sequence the
pullback of the upper. Some representation theory shows that the lower exact
sequence is the pih fundamental exact sequence (33). In particular the divisor of ξp is
determined by the spectral data.

Now we see from Lemma (57) that the spectral curves and the sections ξt are
sufficient to recover the bundle E. This is done by an iterative procedure along the
flag and the observation that

^E;+1^(E;+o*®de^^^^

On the other hand the spectral data determines the spectral curves and the sections
ξt. We now have only to show that {Si9 ξj can be determined from {Si9 <fj.

We first observe that if we have recovered the exact sequence of the diagram
(69) then φp is given as the map defining Sn-p and ήp is unique. The latter fact is
established by taking two such ήp and projecting their difference to obtain a global

Then using the various exact sequences and the following lemma we can show this
difference must vanish

Lemma (70) For any μeR, μφO and keTL, H°(^,Lμ(k)) = 0.

Proof III-].

Now ^p-ι can be used to define ξp given ξp because we have

Lemma (71). On the set Sn-p — Sπ_p + 1 the following diagram commutes

ΪΛP-IE:

ΛP(E/E:.P}

Proof. Now IS»-'+1(kH-J =

Iϊ»-*(kn^
o-ί

, so if xe£;+1 and y1,...,yp_leE; then+ 1 , +1 1,...,p_l

® /\ y,. =
7=1 / 7=1

As we are not on Sn-p+1 we have E = E~-1Q)E*-p+i.> and therefore

(72)

so we let y/ = y/©yj with respect to this decomposition, and then

v) =(X + £M

+-P)A "/\(y'j+
/ 7=1

Comparing (72) and (73) it suffices to show that yj e£π

+_p, then the diagram
commutes. But y] e £M

+_ p + 1 n E ~ from (72) and this is a 1 -dimensional subspace. As

;„„). (73)
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we are on SM_P

so

and we have y' e £n

+_p as required. G

From this lemma <fp is determined by £p on Sn_p — Sπ_ p + 1 but for a general
monopole Sn-pnSn-p+l is finite and so by continuity ξp is determined completely.

These results enable us to recover the bundle iteratively and we have proved
Theorem (58) for SU(rc).

To prove Theorem (58) for Sp(n) it is enough to embed Sp(n)-*SU(2n) in the
standard way. The spectral curves S i , . . . , Sn for Sp(n) give rise to the 2n — 1 spectral
curves Sίy ...,Sn_1 ? Sn, Sn-ίy ...,SΊ for the SU(2rc) monopole. If we denote these
curves by T1? . . ., T2n_ ± respectively we see that a general Sp(w) monopole regarded
as an SU(2n) monopole has T{r\Ti+ i finite and therefore can be reconstructed by
the methods used above.

For the SO(2n) case we obtain a more complicated flag-inside the bundle
β((C2") = £. It has the form

Using the same methods as for SU(rc) we can reconstruct the flag up to £ I n, E ~ and
then E ~+ x is determined by

and the rest of the reconstruction is straightforward.
The SO(2w +1) monopole is not possible to do by these methods. The problem

is that considered as an SU(2n + 1) monopole its spectral curves Sl9...,Sn become
the 2n curves S1? ...,SΠ, Sπ, ...,SΊ and it is not a general SU(2rc+ 1) monopole.
Other choices of representation lead to similar problems.

For the exceptional groups this same problem occurs so at present Theorem
(58) is proved for the SU(ft), Sρ(n), and SO(2n) monopoles and I conjecture that it
is true for the others.

5. Non-Maximal Symmetry Breaking

For the case of general symmetry breaking we have Φ 0 0: S2-»K/C(T0). If we fix a
point N e S2 we can choose a maximal torus so that Φ°°(j!V), *F™(N) E LT. Now in
this case Φ°° = Φ°°(JV) doesn't determine a base of simple roots. However, we can
consider the set of bases A that have the property that αί(Φ°°)^OVαI 6Zl. This
corresponds to choosing those fundamental Weyl chambers that have Φ°° in their
closure. If we choose one of these, say A, then the others are all related to it by the
action of a subgroup W0 of the Weyl group W0. This is the subgroup of the Weyl
group fixing Φ°° or C(Γ0)nJV(T)/T the Weyl group of C(Γ0).
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Now if we order the simple roots in Δ so that we have

l^ί^s and a^°°) = 0, s+l^i^r , (74)

we can consider the set of fundamental weights λl9...9λs. These are invariant under
the action of WQ9 in fact because W0 is generated by the reflections σt for s + 1 ̂  i ̂  r,
it suffices to consider σ^λj) for i>s and j^s but this is just λj. The topological
charges of the monopole are therefore defined to be [6]

2λi(*Fco), l^i^s. (75)

The remaining fundamental weights are not invariant under W0 so the magnetic
charges are defined to be [6]

{(ωλj) (*F°°) 1 5 < i ̂  r, ω e W0} . (76)

For this case the flag manifold K/C(T0) is diffeomorphic to the space G/P
where P is a parabolic subgroup of G. The Lie algebra of P is the subalgebra of LG
generated by LB and all the Lα. for s + 1 ̂  i ̂  r.

The twistor correspondence of Sect. 2 generalizes in the obvious way to give a
holomorphic bundle β with two reductions R + , R~ to the parabolic subgroups P
and P respectively.

As an example we consider minimal symmetry breaking for SU(n). We
consider a Higgs field of the form

(77)

where μ1 >μ2 and (n— I)μ2 + μι =0 = Σkr The Weyl group W=SW, the group of
permutations of {1,2, ...,«} and W0 is the subgroup leaving 1 fixed. A base for
which a

Δ = {(xι-x2),(x2-x3),...9(xn-l-xJ} = {(!,- 1,0,. ..),.. .,(0,0,. ..,!,-!)},

and the associated fundamental weights are

{(1,0,. ..),(!, 1,0,. ..),(!, 1,1, ...),... ,(1,1,. ..,0)}.

The subgroup W0 clearly only fixes (1,0, ...) so the topological charge is k±.
The parabolic subgroup P is the subgroup of SL(n, C) fixing a line in C" and P

is the subgroup fixing the orthogonal plane. So if we form the associated vector
bundle E = β(C") it has a line sub-bundle Ef and a hyperplane sub-bundle E~_1.
By applying the methods used to prove Theorem (21), these are seen to satisfy

, n ,

£ ~ TVifl- k \
n-1 — ̂  V^lJ '••? κn) 9

£/£„-_ ̂ L"^), where 0(Pl,...,pJ = 0(p1)Θ...ΘO(pJ.

The spectral curve S of this monopole is defined by

, (79)



564 M. K. Murray

and S is in the linear system |0(2k1)|. The fundamental diagram is then

V (80)

or

>Lμ2(-/c2,..., -fc)-»0

and it follows that ξ is a section over S of Eί~μ2(kί + k2,..., /q + /cw).
For this monopole the spectral data is defined to be S and the section ξ. It is

immediate from Lemma (57) that E can be recovered from the spectral data. From
the comments on endomorphisms at the beginning of Sect. 4 this means that the
monopole is determined by the spectral data.

The other minimal SU(rc) case is to take λi<λ2 and this is treated similarly.
Putting these together we have proved

Theorem (81). The irreducible minimal SU(rc) monopole is determined by its spectral
data.

To see what is happening from the flag-manifold point of view we consider the
action of P on G/P. Now G/P is just (CPΠ _ 1? complex projective n — 1 space and the
action of P divides it into two orbits, the lines intersecting the plane fixed by P and
the lines not intersecting this plane. The first set is a copy of CPM _ 2 and the other its
open complement.

Now we can form the bundle Q((CPW_1)-:R+((CPM_1) = JR"(CPW_1). As P
acting on <CPn_ x preserves the decomposition above #~((CPn_ J has a decompo-
sition in each fibre. On the other hand P preserves a point in (CPM _ 1 so R + ((CPn _ J
has a section. If we intersect this section with the decomposition above and project
onto ̂  we obtain the curve S.

In the general case because LP contains L_αj. for s<j^r the highest weight
space Vλi(λi) C Vλ. is stable under P only when 1 ̂  i ̂  s. This means we can define s
spectral curves as in Sect. 3. It is not clear what the remainder of the spectral data
should be. I would expect a combination of the two cases we have looked at, that is,
some sections of higher rank bundles and some divisors on the curves, as these are
the two "extreme" cases.

6. Summary

We have seen that the spectral data determines the SU(n), Sp(n), and SO(2n)
monopole for the maximal symmetry breaking case and an SU(n) monopole for
the minimal symmetry breaking case. It would be nice to have a method of proof
that worked for all groups and all symmetry breaking. This would seem to require
either working with the adjoint representation or reconstructing the principal
bundle directly.
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In a recent paper [13] Nahm has shown how to define (n— 1) algebraic curves
for an SU(n) monopole. As yet I am unable to show that this curves are the spectral
curves although it seems highly plausible.
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