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Abstract. In this paper we consider massless systems which are strong
perturbations of the massless lattice free field. Under quite general assumptions
on the potential, we prove that the continuum (scaling) limit of these systems is
Gaussian.

1. Introduction

In this paper we study the (continuum) scaling limit of some massless models of
classical statistical mechanics. The main particularity of the systems considered is
that their correlations are not absolutely summable; typically they have a
clustering like \x\~d in d dimensions. Such a situation arises for the low temperature
rotator model [1] or for the lattice dipole gas [2]. These systems are rather well
approximated by the following model of an anharmonic crystal, defined on Έd and
described by the Hamiltonian [3] :

H=\Σ(KΦ)2+mΣ(KΦ)\ (i)
X X

where φx is a real random variable uniformly distributed on the real line. For small
coupling λ the (block spin) scaling limit of this model can be obtained using the
machinery of Gawedzki and Kupiainen based on rigorous renormalization group
arguments as announced in [4] (see also [5] for related results by Magnen and
Seneor). For large coupling λ, the question of the scaling limit is, so far, totally
open.

In [6] we developed a method essentially based on correlation inequalities to
obtain bounds (uniform in λ) on the long distance behaviour of general correlation
functions of model (1). We feel that those bounds should be useful to study the
scaling limit of this model for arbitrary λ.

In this paper we consider a simplification of model (1): the Hamiltonian that
we choose is

± Σ 2 Σ W (2)
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where A is the lattice Laplacian and a>\. Using the method of [6], we are able to
show that for arbitrary λ, the (continuum) scaling limit of this model is Gaussian.
In the case α > ^ , the dielectric constant of the system is ^-independent. This is
precisely the fact which makes this problem simpler than the case oc = ̂  [which is
equivalent to model (1)]. Indeed, in the case of model (1) the dielectric constant is
renormalized by the interaction, see [6, 5]. We finally want to mention that model
(2) has been studied in the weak coupling limit by Malyshev and Tirozzi [7], and
Federbush [8,9].

The paper is organised as follows: in Sect. 2 we give a precise definition of the
model and of its properties, in Sect. 3 we present the results, and in Sect. 4 we give
the proofs.

2. The Model and its Properties

2.1. Definition of the Model

Let φx(xeZd,d^3) be a real random variable. To each region A (A is a
parallelipiped of side lengths 2l1,...,2ld) is associated an Hamiltonian HΛ with
periodic boundary conditions on δA:

xsΛ xeΛ
ξ

where

Vϊφ = φ(x + eξ)-<Kx), {eξ}
d

ξ=1

is the canonical basis oΐZd(eξ = δiξ, i=l,...,d). Here ( — ΔΛf = δΛ is defined by δΛφx

Σ β ) Φ

peΛ*

ρξ = p-eξ, A* is the dual lattice associated to A, i.e.

{p\pξ = 2πnξ/lξ; nξ=-lξ, -lξ +

and \A\ is the cardinality of A.

We also introduce the Hamiltonian:

For mφO expectation values of functions g of the type Y[ φ. are defined via
ieA

<9>Λ,m = Zll ί g^p-HAtmY\dφx,
RMI xeΛ

where

ZΛ= f e x p - H Λ m Π # ;
R M I ieΛ

Here A is a "subset" of A in order to avoid exponents we allow repetitions of the
same element in A, which is why we used the word subset in quotation marks.
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2.2. Brascamp-Lieb (B-L) Inequalities and Definition of the States

2.2.ί. Definition. A function F :1R"-*JR+ is log concave if F(φ) = Qxpf(φ), and / is
concave. (It is understood that / can take the value — oo.)

2.2.2. Let A be a strictly positive symmetric nxn matrix, and denote by <> 0 the
Gaussian measure associated to it:

consider a perturbation of ( ) 0 by a log concave function F:

OF = [ί exp [ - i(Φ, AΦ)] F(Φ)dΦ^ " ι J exp [ - %Φ9 AΦ)~\ F(Φ)dΦ

φx, xe{l, ...,n} denotes a component of Φ. We can now state the basic theorem:

2.2.3. Proposition [10]. The covariance matrix Mζy = (φxφy}F — <Φx>F<Φy)F satis-
fies the inequality Mζy^(A~ 1)xy in the sense of forms. (This will be denoted by B-L
inequalities.)

( — λ) Σ (δΛφx)
4 is a concave function on lR|y1', because the matrix of its second

xeΛ

derivatives is positive. For any h :/t-^lR,

= 12 Σ h(x)h(y) Σ (δΛΦfβJ.x " z)βΛ(y - z)
x,y ze/

= 12 Σ (<5>J
zeΛ

We can therefore apply Brascamp-Lieb inequalities to show:

where φ(f)= Σ/(x)φ x , and / : /L->IR; C™(x,y) is the kernel of the operators {-AΛ

H-m2)"1.
We shall use the notations Cm(x,y)= lim C%x,y) and Cm = o(x,y) = C(x,y).

Λ-+ X)

Because of the properties of the Gaussian model and because of (2.2.3), one can
define the limits (possibly via subsequences)

l i m l i m < 0 > Λ m s < g > ( d ^ 3 ) . (3)
miO /1 | oo

For d<3 the limiting state is only defined on functions of the type Y[
(x,ξ)eA

where A is a "subset" of A x {ev ...,ed}. For more details see [3]. In what follows
<( ) will denote any of the limiting states obtained from (3). If / is a real I2 function
defined on Έd, its Fourier transform is defined by:
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2.3. Bounds on the Two Point Function

We mention two bounds on the Fourier transform of the two point function
S(p) = (φoφx}\p). The upper bound is a rewriting of Proposition 2.2.2; the lower
bound is a kind of Mermin-Wagner bound [11].

2.3.1. Proposition

(i)

(ϋ)

where

-3λw(p),

(4)

(5)

w(p) = 2Σ(l-cosp e)Γ \(δφo)
2>,

e = l J

which is finite in any dimension.

2.3.2. Remark. (5) is based on integration by parts formula that we now recall.

Let {φz}
n

z=ί be a set of Gaussian random variables and μ be the corresponding
Gaussian measure with covariance C'xy. We have the formula (see [12])

μyF({φz})dμ =

2.3.3. We introduce the set

F({φz})dμ. (6)

2.3.4. Proof of 2.3.1 (ii). As we shall see, it is convenient to introduce the notation
c*/? = y. For any / in sέ\ after using (6) twice, we have:

-3λ

+λ2 Σ Rχ)f{y)y{χ-z)y{y-z'){{δφzγ{δφ^y.
z,z' ,x,y

The third term of the right hand side of (7) can be written as

λ2 f X f(χ)y(χ~z)(δφz)3}2\ ^ o . •
\ £ J /

3. The Results

3.1. Definition of the Continuum Scaling Limit

3.1.1. For any integer 0 > 1 , we introduce the scaled fields:
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where α(0) is a function of the scale parameter θ, that will be specified later, and

The scaled correlation functions are given by:

Ge(xv...9xj = *φ)\φθxι...φθxn>

a(θ) is chosen such that lim Gθ{xv ...,xπ) exists. The weak limit of the random
θ-*oo

fields φθ

x as 0->oo is called the continuum scaling limit of the theory. We refer to
[13-16] for an introduction to the concept of scaling limit and for other
definitions.

Given any fe SfQR?) (the Schwartz space on Rd), we shall denote its restriction
to ZQ-I, by fθ. It is convenient to smear out the scaled fields:

Σ θ-dφβ

xf(x). (8)

Equation (8) can be rewritten as:

>= Σ fl

= Φ(fe)>

where fθ(x) = θ-d(x(θ)f(θ~1x).
For obvious reasons we shall always use the notation φ(fθ) instead of φθ(fθ).

3.1.2. Scaling Limit of the Lattice Gaussian Free Field. In the case λ = 0, it is easy to
show that the scaling limit exists; we have to choose a(θ) = θ(d~2)/2. Define

5 |/β-(p)|2f2Σ(l-cospe)]-1dip.
-π [ J

After scaling pθ-+p, this becomes

which converges to

2(2πΓd+f \Γ(p)\2p-2ddp^(fDf);
— oo

Γ(P)= f f(x)cxp(ipx)ddp.

This shows that the continuum scaling limit of the lattice massless free field is the
continuum massless free field.
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3.13. Remark. A similar computation would show:

lim Σ C%x,y)fθ(x)fβ(y)=0,

where C%Y, y) denotes the kernel of the operator

3.1.4. The main result of the paper is that the continuum scaling limit of the theory
with λ arbitrary is the continuum Gaussian free field. Again in this case a(θ)
= θ{d~2)l2. This is expressed in the

3.2. Theorem. Choose oc(θ) = θ{d-2)l2. For any Λ>0, and any
(i) Jim

(ii) lim
0->oo

3.3. Remarks

3.3.1. Even though all our results have been formulated for d^3, they extend
trivially for any d. In the case d S X we have to use the scaled fields Vφθ

x = θd/2(φθx + x

3.3.2. Our results also extend to more general interactions: YJλ{δφxy can be for
JC

instance replaced by λP({δφx)
2\ where P is a polynomial with positive coefficients.

4. The Proofs

As will be shown below, Theorem 3.2(i) is a direct consequence of Proposition
2.3.1. To derive part (ii) we shall use methods developed in [6], where we were able
to combine Brascamp-Lieb inequalities and the method of duplicated variables to
get bounds of the type

Σ Λχ)f(y) ίii^xΦTC^yΦT} - <(^oΦ)">2] =c II/Hz2 >
χ,y

where c is a ^-independent positive constant.

Caution. In the whole paper, c will denote a positive constant which can take
different values at different places.

4.1. Proof of Theorem 3.2(ϊ)

Using Proposition 2.3.1 we obtain the bounds:

(i) <φ(fθ)
2}^ Σ C(x,y)fθ(x)fe{y),

x,ysΈd

(ϋ) <Φ(fθ)
2> ^ Σ /β(x)fθ(y) ίC{x9 y)-3λφφo)

2}σ(x, y)l

with ε = 2α —1>0. Section 3.1.2 and Remark 3.1.3 imply that, in the limit θ->oo,
the upper and lower bounds coincide with (/, Df). •
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4.2. The Scaling Limit of the 2n Points Functions

4.2.1. The main part of the paper concerns the proof of Theorem 3.2(ii). It is based
on two propositions, the first one being obtained using methods developed in [6]
that we now recall. Let us introduce a new set of variables {φ'x, xeTLd], which is just
a duplication of the set {φx,xeZd}. Consider the unnormalized density

(9)

Using the variables

(9) becomes

(10)

< > will denote the normalized measure associated with (10). We also introduce the
notation:

For any / and gesf,

4.2.2. Proposition. For any /,

<Ψ+(f)2"ψ-(g)2} - <Ψ+(f)2n> <ψ-(g)2>

S 3A<φ+(/)2"> J \g'(p)\2w(p)ddp, (11)

where w(p) is defined in (2.3.1)

Proof. (ψ+(f)2nψ~(g)2} can be written as:

We used the notations: dψ± = Y\ dψx, and ZΛ=\dψ+ dψ~G(ψ + ,ψ~). For any

configuration of ψ + ,

is convex. Therefore, using Brascamp-Lieb inequality (2.2.3), we have:
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<Ψ+(f)2nΨ~(g)2> ί Σ ΪC(χ, y)g(χ)g(y)(ψ+(f)2"> •

χ,y

So

<Ψ+{f)2"ψ-(g)2}-(ψ+(f)2")((ψ-(g)2)

i ΣΊ9(χ)g(y)ίC(χ,y)-<φ(χ)φ(y)>l(ψ+(f)2">.
x,y

Now using the lower bound on the two point function of Proposition 2.3.1, this
last inequality finishes the proof 4.2.2(i). •

4.23. Remark. In the case of a purely Gaussian theory {λ = 0) we have

<Ψ+(f)2nw'(g)2} = <Ψ+(f)2n> <Ψ~(g)2>,

and this translated into the φ and φf variables, expresses <Ψ(/)2" + 2> in terms of
(Φ(f)2ky (2SkS2n). Therefore using this relation in a recursive way we get Wick's
theorem.

4.2.4. We shall first use Proposition 4.2.2 to show <lφ(fθ)Ϋn> ^ c(/, n), where c(f n)
is / and n dependent but θ independent. This last result will be used in Proposition
4.2.7 to get a lower bound on <[</>(/θ)]

2">. Finally combining Proposition 4.2.2 and
4.2.7 with an induction, we shall prove Theorem 3.2(ii).

4.2.5. Corollary.

V/e^(JRd) and V ^ G N , (φ(fθ)
2n}^c(f,n),

where c(f9 n) is θ independent.

Proof. The proof will follow from an induction on n. Let P(rn) be the proposition:
(Φ(fθ)2py = c(f>P) f° r I ^ P ^ Ξ ^ Ϊ . Assume P{m), we want to prove P(m+1).
Proposition 4.2.2 expressed in the φ variables yields:

<Φ(fe)2m + 2> ύ Σ xbcd<Φ(fθ)2b> <Φ(fθ)2c> <Φ(fθ)2d>
b,c= ί,...,m

d = O , l

•\λ } \f\p)\2w(p)ddp, (12)
— π

where otbcd are positive numerical factors [we have dropped the negative terms that
should appear in the right hand side of (12)].

Using the induction hypothesis we get:

<Φ(fθ)
2m + 2>Scί(f,2m + 2) + c2Uθd-2 } \fXp)\2Φ)ddp. (13)

- π

Remark 3.1.3 implies that the second term of the right hand side of (13) goes to
zero as 0—>oo. Therefore (13) yields P(m+1).

Since the induction hypothesis is true for m= 1 [it is Theorem 3.2, Part (i)],
the corollary is proven. •
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4.2.6. Remark. As a direct consequence of Proposition 4.2.2, Corollary 4.2.5, and
Remark 3.1.3 we have:

fθ)
2nΨ~(fθ)2> ~<Ψ+(fθ)

2n> < Ψ ~ ( / Θ ) 2 > ] ^ 0 .

4.2.7. Proposition, lim (φ{fθ)
2n} ^ I n ! ( n ! 2 " ) " : (/, Df)n.

e->oo

Proo/ Using the integration by parts formula (2.3.2),

<Φ(fβ)2n) = ( 2 n - l)(/β, C/9)<φ(/β)2"-2>

)?(* - z) <Φ(fβ)2"~

It is convenient to use the notations

By Schwartz inequality:

<φ(fθ)
2ny ^{In- " - 2 > θr»-2>!

We now remark three facts:

(i) (fθ,Cfe)7ί<Φ(fe)2>

by Brascamp-Lieb inequality.

where c is a ^-independent constant (see Corollary 4.2.5).

(iii) lim

This is a consequence of the following argument:

where c is ^-independent this result can be derived as in [6].
Finally, lim \\g\\f - 0 [see (14) and Remark 3.1.3].

0->oo

Inequality (15) and (i)—(iii) imply:

lim <φ(fθ)
2n) U2n- 1) <φ(fθ)

2) <Φ(fθ)
2n~2> .

(15)

(16)

A recursive application of (16) yields Proposition 4.2.7. •

4.2.8. Proof of Theorem 3.2.(ii). The proof is by induction on n. Let us first remark

that Theorem 3.2(ii) is true for n = 1 since this statement is Theorem 3.2(i). Let P(p)
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be the following property:

lim

for 1 ̂ n^p. Given P(p) we want to show that P{p +1) is true. Using Remark 4.2.6,
we have:

lim [<ψ + ( / ί )
2 " V - ( / ί )

2 > - < φ + ( / θ ) 2 p X v Ί / θ

0-*oo

Going back to the φ variables, this yields:

lim <<£(/θ)
2* + 2 > g l i m Σ βcde

θ-+oo θ-> oo c.d- \, ...,p
c + d = p
e=0, 1

where βcde are numerical factors, positive or negative. If we now use the induction
hypothesis to

lim iφ(fβ)
2c) (φ(fo)

2dy,

we have:

lim <φ(ff»+2ySc<φ(fβ)
2y+1. (17)

Note that c is independent of λ, and that for λ = 0 (17) has to be an equality;
therefore c = (2p + 2)!/[(p + l) !2^ + 1 ] . We thus have:

lim (φ(fθ)
2p + 2}^[(2p + 2)\/((p+l)l2p+1)~] lim <</>(/θ)2>p + 1;

this combined with Proposition 4.2.7 proves the validity of the induction
hypothesis P(p+1). Π

4.2.9. Remarks. Consider a field theory (in dimension d) described by a set of
Schwinger functions satisfying the Osterwalder-Schrader axioms [17]. Suppose
that the field theory is a scaling limit of some lattice theory. Newman showed that
if the two point (Schwinger) function S(x) of the field theory behaves like |x|~(d~2)

for large x, then it is a massless free field [18]. In our case we do not know a priori
whether the scaling limit of the model we consider exists and satisfies the
Osterwalder-Schrader axioms. So even though we know that the scaling limit of
the two point function has the required behaviour, we cannot use the result
described above. However, our proof has the same spirit as Newman's theorem. In
particular Proposition 4.2.2 shows that the correction to Wick's formula is
bounded by the difference between the scaling limit of S(p) and the free massless
two point function.
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paper.
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