
Communications in
Commun. Math. Phys. 91, 329-380 (1983) MathΘΓΠatiCSl

Physics
© Springer-Verlag 1983

Lattice Yang-Mills Theory at Nonzero Temperature
and the Confinement Problem

Christian Borgs and Erhard Seiler

Max-Planck-Institut fur Physik und Astrophysik, Werner-Heisenberg-Institut fur Physik,
D-800 Mϋnchen, Federal Republic of Germany

Abstract. We discuss finite temperature lattice Yang-Mills theory with special
attention to the confinement problem. The relationship between the confine-
ment criteria of Wilson, Polyakov, and 't Hooft is clarified by establishing a
string of inequalities between the corresponding string tensions.

The close connection between finite temperature Yang-Mills models and
spin models is exploited to obtain new and rather sharp upper bounds for the
critical coupling constant above which there is confinement. This same analogy
also allows us to establish infrared bounds for the gauge models that yield a
lower bound for this critical coupling and thereby show the existence of a weak
coupling regime without confinement at nonzero temperature in three or more
space dimensions.

Finally we discuss extension of our results to other forms of the lattice
action, the Hamiltonian lattice models of Kogut and Susskind and 't Hooft's
N-+oo limit.

I. Introduction

One of the outstanding problems of quantum field theory is to understand the so-
called confinement of quarks. In the most general sense this means the question
why the particle content of quantum chromodynamics (QCD) consists only of
hadrons but not of anything like quarks or gluons (not even in bleached form).
Since this is an almost intractable problem, at least for the moment, one normally
considers some simplified version of it.

First of all, since (continuum) QCD has not been constructed so far, one uses
the device of replacing space-time or at least space by a lattice together with some
more or less well-founded scaling hypotheses this still allows one to gain insight
into the properties of the continuum theory. On the other hand the well-developed
machinery of lattice statistical mechanics becomes available for the analysis.

The next drastic step that is conventionally employed consists of eliminating
the quarks from the theory and only considering "quark test charges" or "infinitely
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heavy quark sources" as probes to test the properties of the "glue" that is supposed
to keep the quarks together. This leads to the well-known Wilson criterion for
confinement [61].

So far even this reduced problem has not been settled completely but both
numerical [9] and analytical work [8, 25, 34, 36, 55] make it plausible that in four
spacetime dimensions nonabelian lattice gauge theories in the usual "compact"
form show indeed "permanent confinement of quarks" (attempts to see signs of
confinement in "noncompact" lattice versions of QCD have produced negative
results [39, 48]).

The problem of confinement in this restricted sense can also be posed in a
slightly different form: one may ask whether the (free) energy per unit length of a
chromo-electric flux tube goes to zero if the tube is allowed infinite room in the
transverse directions or if it tends to a nonzero limit.

Or one may ask whether the minimal energy of a pair of quark sources grows
indefinitely with their separation, or levels off. This last question is most naturally
first asked in the framework of quantum field theory at finite temperature with
"energy" replaced by "free energy", as Polyakov pointed out some years ago [40].

This is also an interesting question in its own right. QCD at finite temperature
is relevant both for the very early universe and possibly for superdense stars one
might argue that even present day experiments do not work at temperature zero
but at 2.7 K, the temperature of the cosmic microwave background.

In this paper we first give a systematic discussion of finite temperature lattice
Yang-Mills theory (Sect. II), in particular we discuss the introduction of external
sources in this framework in some detail. While these concepts have been
occurring in the physics literature for some time, we feel that a completely
satisfactory derivation of the formulae which are employed is missing so far (this
might also be the reason why the usual formulae are not absolutely correct). This is
why we include this rather elementary section. We also include a careful treatment
of the so-called τ-continuum limit that removes the lattice cutoff in the time
direction and leads to the Hamiltonian formulation of lattice gauge theories due to
Kogut and Susskind [26]. Some rather tedious technical details of this limit are
banished to an appendix.

We then introduce the three concepts of confinement (Wilson, Polyakov,
't Hooft) and prove inequalities between the associated string tensions. It turns out
that confinement a la 't Hooft implies all other types of confinement and
confinement a la Polyakov implies confinement in Wilson's sense.

We then adapt the formalism of Durhuus and Frohlich [15] linking Yang-
Mills theories in d + 1 dimensions to spin models in d dimensions to the problem
considered here. By combining this formalism with the random walk methods for
spin systems of the same authors, we obtain a new and sharper lower bound
for a possible critical coupling of a deconfining transition.

Section III is devoted to the proof and application of infrared bounds in the
sense of Frohlich et al. [18] adapted to the case of lattice gauge theories. They lead
to a rigorous proof of the existence of a weak coupling regime without confine-
ment at finite temperature in any lattice gauge model in at least four space-time
dimensions. This has been expected on the basis of heuristic arguments [40, 41, 52,
60] and numerical studies [16, 27, 33].
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It turns out that the high temperature, weak coupling regime of lattice gauge
theories resembles a ferromagnet at low temperature and breakdown of confine-
ment corresponds to the existence of spontaneous magnetization in the fer-
romagnetic analog.

In Sect. Ill we first show how deconfinement is proven for the highest possible
temperature on the lattice since this is technically easier. After that we treat the
general case our bounds are strong enough to carry over to the τ-continuum limit
and to 'tHooft's N-+00 limit \_g2N fixed; N refers to the gauge group U(JV) or

SU(iV)].
Finally in Sect. IV we describe various modifications of the model that can also

be treated and we discuss some open questions such as Debye screening in the
gluon plasma and the behavior of full QCD with dynamical quarks.

Section III is based to a large extent on [2] a brief description of the results
appeared in [3].

II. Lattice Gauge Theories at Positive Temperature

We assume that the reader has some familiarity with the general formalism of
lattice gauge theories (see for instance [45]).

In the general formalism [38,45] reflection ( = physical) positivity is used to
construct a quantum mechanical Hubert space and a transfer matrix
(«Hamiltonian) in a rather abstract fashion. The fact that the lattice action
couples only neighboring sites or links (essentially a Markov property) then allows
us to go to a simpler and more explicit description of the Hubert space and the
transfer matrix which is more suitable for our investigation. We start with this
description and leave it to the reader to establish the almost obvious relation to
the general formalism. Everything is formulated in a finite volume the thermody-
namic limit will be taken when needed.

1. Hubert Space

We consider a spatial box Λo QΊLd. We may think of this as the time zero slice of a
space-time lattice Λo x τZ. We pick a positive orientation for all p-cells (sites, links,
plaquettes etc.) of Λo and Λo x τZ.

The classical configuration space consists of all maps from the positively
oriented nearest neighbor links (xy}eΛ0 into a compact group G, the gauge
group [which in most applications will be U(JV) or SU(iV)]. If <xy> is positively
oriented we define gyx = g~y

1^ Our Hubert space J^Λo is simply the L2 space over
this configuration space with respect to Haar measure:

2. Transfer Matrix

The transfer matrix 3Γ is a positive trace class operator on Jf^o, which sometimes
will be written as 3Γ = exp( — τH) and corresponds to translation by one lattice unit
τ in the time direction. (The general formalism provides such a &~ if the model
possesses reflection positivity with respect to reflection both in lattice planes and
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in planes lying half-way between lattice planes.) 8Γ is of the form

*Γ = MT0M, (II. 1)

where M is multiplication by a positive function and To is a positive convolution
operator. The precise form of M and To depends on the version of lattice gauge
theory considered.

For instance for the lattice gauge theory of (Wegner [59] and) Wilson [61]

M = Mw({gxy}) = e x p | j M £ Re(χfeP) - χ(l)), (IL2)
p

where the sum is over all positively oriented plaquettes of Λo and χ is a faithful

character of G gdP stands as usual for the ordered product Y[ gxy (the starting
(xy)edP

point is arbitrary). Furthermore To is given by convolution with

where the sum is now over all positively oriented links. (The subscripts E and M
refer to "electric" versus "magnetic".)

Contact with the usual euclidean formulation is made by setting

2τ εd ~3 2ε εd"3

JM=T~P~' JE=T^Γ- ( I L 4 )

[For G = U(1) one conventionally replaces 2/g2 by 1/e2.] To sum up: The Wilson
transfer matrix has the kernel

Our notation is motivated by the τ-continuum limit. Sending τ to zero we
obtain as will be seen below:

τ - * O τ 0 P Z <xy>

where /) x y is the Laplace-Beltrami operator on G and corresponds to E2 (the
square of the electric field) whereas the first term corresponds to B2 (the square of
the magnetic field in the classical continuum Hamiltonian \ \(E2 + B2).)

Other lattice gauge models have different functions M and To; for us it is
essential that

(1) M and To are positive definite, positive and
(2) for #2->0, become concentrated more and more at the unit element of the

group. One other choice that is of interest is the so-called heat kernel or Villain
action:

2 ) , (Π.7)

Π < y > ) . (Π.8)
<χy>
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But it is also possible to make different choices for To and M, for instance to
choose T— TH and M = Mw. A simple fact is the following

Lemma 11.1. Let T0 = TH or Tw, M = MH or Mw. Then the transfer matrix is
bounded and strictly positive.

Proof. Only ^Γ>0 is not completely trivial (see [29] for a proof for a special case).
Since obviously M > 0 and TH>0, we only have to show Tw>0. Since Tw is a
tensor product over links, it suffices to show that the operator t given by
convolution with the function

is strictly positive.
Using the Peter-Weyl theorem [24] one gets for the eigenvalues of t

j dg γ

1

with

τ is a label for the irreductible representations of G. Since χ was assumed to be
faithful, R.Qχ(g)<χ(t) if g φ l and for J-*oo, expJReχ(^) becomes very sharply
peaked around 1. Therefore

—L-»l as J-^oo,

m0

and thus for each τ at least one cτ

nm > 0 which implies mτ > 0 for all J > 0.

Remark. Lϋscher [29] proved ^ > 0 for the case G = U(1) or SU(N).

The lemma allows us to define a self-adjoint semi-bounded Hamiltonian Hτ by

τ

Theorem II.2. Let G be a compact Lie group

1

uniformly Lipschitz continuous and

2

Then for To = TH or Tw

e~
βH
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in all Jp norms (p^l) (Jp is the space of all compact operators A such that

Proof. This requires some rather technical considerations which we describe in
Appendix A.

Remarks. 1. Strong convergence has been proven by Gawedzki [19]. See also [10].
2. Note that the theorem involves a choice of normalization for the generators

\La of the group G which is given by

In the abelian case one normally drops the factor \ which leads to a change from
g2/2 to g2/4 in the Hamiltonian with g2 = 2e2 we obtain again the standard form,
but with e2 in place of g2.

3. External Charges, Gauss's Law, Confinement

JίfΛo is not gauge invariant. If we transform

ίg^gJ^ίK'g^} (11.9)

(where h is a function from Ao into G) this induces a unitary map U(/z) on Jί?Λo:

(U(h)Ψ)({gxy})=Ψ({gxyn (Π.10)

U(/z) defines a unitary representation of &= X G on J^Λo'9 we may decompose
xeΛ0

J4fΛo according to the irreducible representations {τx}xeΛo of ̂ :

The projection on 34f{τχ} we denote by

P ^ = Π Pτχ- (π.12)
XGΛO

It is easy to see by the Peter-Weyl theorem [24] that(PτχΨ) ({gj) = dτJχτχ{h)Ψ{{gxy}
h~*°)dh, (11.13)

where ΛJCo is the m a p

[h (x =

and ίίτχ is the dimension of τXo (cf. [45]).
We°say that J^{τχ] is the subspace having (external) charges {τx} if τx = t (the

trivial representation), we say that there is no charge at x.
Clearly

D T , P { τ J = 0 (11.14)

etc., so these charges do not move for that reason they are called infinitely heavy.
The subspaces ^{Xχ) may be considered as different superselection sectors.
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There is a slightly different way of looking at these sectors based on a lattice
version of Gauss's law: Let G now be a compact Lie group, assume that for each
link a direction has been selected, choose a basis {La}

n

a=1 of g, the Lie algebra of G.
Then we define (in a slightly arbitrary fashion) the operator of the electric field

^0,0 b y

((E°xoyo) Ψ) (g) = lim - (Ψ(gJ - Ψ(φ), (II. 15)

where

~ Xy

Furthermore let ρa

Xo be defined as the operator of an infinitesimal gauge
transformation at x0:

ε->σ 8

where now

1 J* lexpεL0

It can then be checked that

(11.17)

where (D E)xo is some kind of covariant divergence of E at x0:

OD £)*O= Σ B;,- Σ te;,1^,/ (ins)

in obvious notation.
By Stone's theorem ρa

Xo is an antiselfadjoint operator; the set {gXo}
n

a=1 spans a
representation of the Lie algebra g of G and the decomposition (11.11) corresponds
to the decomposition of this representation into irreducible components.

To say that at point x there is an external charge τx means therefore that the
"charge densities" ρa

x act according to the irreducible representation τx. This is the
appropriate generalization of the statement (that makes sense only for abelian G)
that ρx has eigenvalue τx.

We can now define partition functions and free energies corresponding to
inverse temperature β and external charges {-rj by

7 =p-βF{τx)=:rTrp p~βHτ_

At this point we can make contact with the usual euclidean lattice formulation
of gauge theories. There one starts with an action

gdp), (π.20)
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where the sum is over all plaquettes in a space-time lattice A which we assume to
be of the form

We impose periodic boundary conditions in time, i.e. we identify β +1 with t.

For Wilson's model we specify furthermore Sw = £ SP w with
p

- s ={JM R e l^dp): p spat ia l

P } P Γ Vf;Reχ(gf5p): P contains the time direction,

where χ is as before a faithful character of G. Then we have

Lemma Π.3.

where Po is the projection operator onto the chargeless subspace.

Proof (cf. also [7] for a special case). This is just a computation. Gauge invariance
may be used to freeze all links in time direction except in one time layer in
\e~Swdg. These remaining link variables may be identified with the gauge
variables h in the definition of Po (recall that

Lemma 11.4. Let Lx denote a closed loop in time direction (closed because of the
periodic boundary conditions), gLχ the corresponding ordered product of link
variables (with arbitrary starting point), χτχ the character of the representation τx.
Then

£ = 1

where τx = τx if x = xt and τx = t otherwise.

Proof This is almost the same computation as before. •

Remarks. 1. χXχ(gLχ) is variously called a Polyakov loop, thermal Wilson loop,
Wilson line, etc Its relevance was first pointed out by Polyakov [40].

2. The formulae hold just as well for other actions than Wilson's.

3. Z{Zχ} and F{tχ]= — — \ogZ{τχ] have a finite limit as τ->0;

limZ f t , = TrP(_ ,e~βH. This is an obvious consequence of Theorem II.2.

These facts suggest the following definition: Let

Fg=-ilogZ0,

I
Fq(χ)ξ(y)=--β
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be the free energies with and without external quark sources \_q stands for the
fundamental representation of G = SΌ(N) or U(iV)]; q is its conjugate
representation.

We then define a (temperature dependent) quark-antiquark potential Vβ

{ Γ ( }

by

where

G(x-y)=^$e-sφJχq(gLy) (11.22)

(we assumed translation invariance, as guaranteed for instance by periodic b.c. in
writing G as a function of x — y). (Linear) confinement is then understood to mean
that in the thermodynamic limit Λ0/εΈd

lim -J—V£x-y)>09 (11.23)
|*-y|-oo \X-y\ qq

which is equivalent to exponential decay of G(x — y), whereas long range order of G
[i.e. HmG(x)φO] clearly means absence of confinement.

Remark. This way of looking at the confinement problem is due to Polyakov [40].
We mention some simple general properties of Vq-:

Lemma II.5 (cf. [44]). Assume that the thermodynamic limit has been taken at least
in the l-direction, and let eι be the unit vector in that direction. Then ^-(LέJ grows

V -(Le ) — V -(0)
with L, is concave and — ^——^— falls with L.

Remark. This says that the quark-antiquark potential is always attractive but the
force decreases with growing distance.

Proof. The first two statements follow from the existence of a positive transfer
matrix &~ for translations in the 1-direction and the spectral theorem:

with some positive measure dμ because we can express GiLeJ as (Ψ,3ΓLΨ). The
last statement is an easy consequence of the first two. •

There is a slightly different way of looking at the confinement problem that
consists of studying the free energy of an electric flux tube impressed on a periodic
box; this concept is due to 'tHooft [54].

We want to describe it here from our point of view and establish some
connections to the previously defined concept of confinement. The following
discussion uses some elementary notions and facts of lattice (co)-homology: we
refer to [58] or the excellent review [14] for details.

Let ω be an element of C(G\ the center of G. We define the operator of the
"central electric field" E™oyo by

(11.24)
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where

Because this "electric field" is now abelian, it allows us to define a "central electric
flux" Φω(Σ) through a closed 2-surface *Γ on the dual lattice. More generally let Σ
be a 1 co-cycle on the original lattice, that means Σ is a function from the oriented
links {xy} into the integers obeying

Σ((yx))=-Σ((xy)), (11.25)

and

£ Σ((xy» = 0, (11.26)
(xy}eδp

where the sum is over all links <xy> contained in the boundary dp of a plaquette p
with positive orientation. Then

Φω(Σ)= Yl {E^yY
{<xy>)

 9 (11.27)
<χy>

where the product Y\f is over all positively oriented links.
A "central charge" ρ"o at a point x0 may then be defined by the central electric

flux through the elementary cube of the dual lattice enclosing x0, i.e.

£„ = Π Ky (II-28)
<χy>

x = xo

It is then clear that the spectrum of E™y, Φω{Σ\ ρ™o lies on the unit circle
(because all these operators are unitary) furthermore it is discrete: Exy, Φω(Σ\ ρ™0

have the possible eigenvalues τ =χ~(ω\ where τ is the irreducible repre-

sentation of C(G) induced by the representation τ of G and χ~ is the corresponding

character of C(G). This means that the eigenvalues of E™y, Φω{Σ\ ρ"o will lie in C(G\

the dual of the center of G.
Note that E™y, ρ™0, Φω(Σ) commute with all gauge transformations and with the

convolution part of the transfer matrix. ρ ô commutes with the full transfer matrix
because it is a gauge transformation. Furthermore

[.r,Φω(2;)]=0. (11.29)

because the multiplication operator M is only a function of gdP and Σ is coclosed
[Eq. (11.26)].

There is also a Stokes' formula: Let *Ω be a set of elementary cubes of the dual
lattice (or more generally Ω a 0-cochain of the original lattice) and *Z = 3*Ώ its
boundary (properly oriented), i.e. Σ its coboundary. Then obviously
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(again the product \\f goes only over the x contained in Ω with positive
orientation) or more generally

Let now χτe C(G). The corresponding eigenprojection Qτ(Σ) for the electric flux
through Σ is then

Q\Σ)= ί
C(G)

where dω is the normalized Haar measure on C(G).
We are now ready to define the relative free energy of central electric flux in a

periodic box Λo of lengths LVL2,L3 by

1

1
^ ( 2 3 ) = - - { l o g T r P o e ^ 2 3 ) ^ ^ - l o g T r P o e ^ 2 3 ) ^ ^ } , (11.32)

where Σ23 is a direct product of fundamental 1-cycles in the 2- and 3-directions of
Λo and Q} is the projection corresponding to the trivial representation. Note that
P o and Qτ commute.

By (11.29) Σ23 may be deformed into a homotopic 2-cycle without changing
anything, because there are no external charges around (P0QχQ = Po because ρ ô is a
gauge transformation).

Let now

Zkr,L2L^^PoQτ(Σ23)e-βH (Π.33)

be the partition function in the presence of electric flux. It has an important
symmetry property:

Lemma II.6.

Proof. The second equality is obvious. To see the first one note that
TrΦω(Σ23)Poe-βH is obtained from

by replacing Sp by χ(ω)χ(ί)~ 1SP for one plaquette in each 01-plane. This is clearly
symmetric under interchange of the 0- and 1-directions.

Next we note some commutation relations:

Lemma Π.7. Let C be a closed loop in Λo, gc the corresponding ordered product
of link variables ("Wilson loop"). Then

χτ(gc)Φω(Σ), (11.34)

where Σ(C) is the 1-cocycle Σ evaluated on the 1-cycle C. Furthermore

Qσ(Σ)χτ(gc)=χτ(gc)Qτ~εm°(Σ), (11.35)
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where we used the label τ both for an irreducible representation of G and the element
of C(G) induced by it.

Remark. (11.35) can be stated verbally as follows:
"Wilson loops create electric flux."
The proof of Lemma Π.6 is an elementary computation.
Finally we want to prove some inequalities between the various quantities

introduced:

Lemma Π.8. Let e1 be the unit lattice vector in 1-direction and y = x + L1εev Then

Fq(x)<ϊ(y) — Fq(x)q(y) ' (Π.36)

if β^β' and

G ( x - j ; ) l i m ( Z j L ; L 2 L 3 ) L ^ ^ ^ Z ^ i ; L 2 L 3 , (11.37)
L—• GO

where G is to be taken in a box that is infinite in the 1-direction and periodic of
lengths L2, L3 in the 2- and ^-directions.

Proof. (11.36) follows from the definition of the free energy and the standard fact
that for A ̂ 0 (TrΛ*)1" is decreasing in t.

To see (11.37) we have to interchange the roles of the 0- and 1-directions. The
right hand side is clearly symmetric in β and Lx (by Lemma II.6). The left hand
side can be rewritten as

lim ( T r P o ^ L ~ L l M * ^ L l M ) ( T r P O ί r
L ) - 1 + L l / L , (11.38)

L-+00

where 5" is now the transfer matrix in 1-direction and M is the multiplication
operator corresponding to the insertion of χ(gL), M* its adjoint.

Denote by e~εE°= \\&~PQ\\ the largest eigenvalue of ^Po and by Ω the
corresponding eigenvector (which is unique by the Perron-Frobenius theorem
[43]). Then (11.38) becomes

(Ω,M*<TLlMΩ). (11.39)

By the Perron-Frobenius theorem Ω may be chosen to be a positive function in L2

(see [43]) and therefore it does not contain electric flux:

Q\Σ22)Ω = Ω (11.40)

[because Q\Σ23) commutes with &\Ω has to be an eigenvector of it, but because
of varying phases the eigenvalue cannot be 1 for τ φ l , hence it has to be zero].

Thus by (11.35)

Qq{Σ23)MΩ = MΩ, (11.41)

and

(Π.42)
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where in the last step we used the symmetry (Lemma II.6) once more. This proves
(11.37). •

If we rewrite (11.37) as follows

^Li; L 2 L s ZβLί; L l L 3 (ΊT4TI

we can look at the behavior for \x — y\=Lί-+oo. The second factor on the right
hand side of (11.43) goes to 1 and we obtain

- lim r logG(x-y)^ lim — βAFq

βr.LI . (11.44)
|jc-y|-oo \X — y\ Li^oo L1

 μ u

Now we use the monotonicity of

1

\x-y\β * G(0)

(see Lemma II. 5) to obtain from (11.44)

This is true for all L2, L3, x, y with y = x + Lev so in particular we can first send
L2,L3-^oo and then \χ — y\-+co.

From (11.45) one can infer an inequality between string tensions defined in
different ways:

Let 't Hooft's string tension be

σ>tu(β) = L ψl^ ti^ γ-ΔFqβLi;L2L3 (H.46)

and Polyakov's string tension

σp(β) = lim V x - (11.47)

(where Vβ

{x)-(y) is to be taken in the thermodynamic limit).
Thus (11.45) implies

σ,tH(β)SσP(β). (11.48)

For the sake of completeness let us note one more (trivial) inequality for string
tensions at zero temperature: If WLT is a rectangular Wilson loop of sides L and TJ
Wilson's string tension is defined as

σw=- lim - L l o g < ^ L Γ > . (11.49)

L,T-+oo LI

It is then easy to see that

(11.50)
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(this follows from the fact that (WLT) =(ΨL9^
τ/τΨL) with a suitable vector ΨL (cf.

[44,45] and the fact that the trace of a positive operator dominates any
diagonal matrix element). We conjecture σp(co) = σw = σ,tH(co\ which follows in
the region of convergence of the strong coupling expansion from Mϋnster's work
[35].

The string of inequalities (11.48) and (11.50) shows that it suffices to prove
confinement in the sense of'tHooft; this is the route followed by Tomboulis [55]
in his approach to the confinement problem. We also see that it suffices to prove
deconfinement in the sense of Polyakov since σp = 0 implies σ,tH = 0. To prove
σp = 0 at weak coupling is the subject of Sect. III.

4. Connection to GxG Spin Systems

Durhuus and Frohlich in a very interesting paper [15] stressed and used the
connection between d+l dimensional lattice Yang-Mills theories and
ίi-dimensional GxG spin models with fluctuating coupling constants. This is
analogous to the well known classical relation between (static) (d+ l)-dimensional
Yang-Mills- fields and d dimensional Yang-Mills-Higgs systems.

In our context this spin interpretation is both natural and very useful.
It is convenient, also in view of the later sections, to modify our notation. We

label spatial points by x, y etc. and time layers by m, n etc. A spatial link is now
given by <x, m; y, ra> we denote the corresponding gauge field by v™γ. A temporal
link is given by <x,ra; x ,m+1) we denote the corresponding gauge field by w™.
These temporal gauge fields will now be considered as G-valued spins. Their
coupling in the action would be of the usual ferromagnetic nature if the spatial
gauge fields v were equal to the unit element; if v™y is a pure gauge /^(/z™)"1 the
coupling between the w's

- SP = JE Reχ{ιςh:+1Qς+1r \u™T ^(tζΓ')

simply would tend to make the gauge transformed w's, i.e. (h™)~ίu™h™+1 and
(/ϊy + 1)~1u™h™ equal. In general the u's will fluctuate away from pure gauge
configurations but the spatial plaquettes will still favour u's that are close to a pure
gauge (i.e. will tend to suppress large magnetic fields).

It is now easy to see that we will have confinement provided the w-spins show
exponential clustering uniformly in the random coupling field v (see [15]):

Let

Π e-s«™\ (11.51)
P in time dir.

Π e->«**K (Π.52)
P in time dir.

Then

Π
P spatial
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and therefore

v,a,a',β,β'

Durhuus and Frόhlich [15] also show how a well known expansion [5] of
<wxwy>y in random paths leads to an expansion of the Wilson loop in random
surfaces spanned into the loop. Here we obtain an expansion of G(x — y) in random
surfaces spanned between the two Polyakov loops Lx, Ly.

For completeness we give a simple derivation of this expansion in Appendix B.
We finally note that this expansion can be used to obtain very good lower

bounds on the critical coupling Jc provided G is U(l) or SU(2) (see Appendix B).
Irrespective of JM and temperature we are sure to have confinement for JE < Jc

where

J = - ^2=(d-^Γί for SU(2), (11.55)

Jc= -zY^id-iΓ1 for U(l). (11.56)

These bounds are substantially better than the ones obtained by the standard
strong coupling cluster expansion even in the refined form of Guerra et al. [22]
[his bound for SU(2) is Jc^\{d+\)~ι~\.

It is noteworthy that the Monte Carlo result of [27] for one time layer and

J c = 0.31±0.04

is just barely compatible with (11.55) (which gives Jc^0.353). If one accepts
furthermore the estimated transition temperature of the 0(4) classical Heisenberg
model [ = SU(2) x SU(2) spin model] [3]

J°w = 0.47 ±0.01

as an estimate for Jc - which seems reasonable - the value of [27] and even the
value Jc = 0.375+? given in [33] seem hard to accept. This is probably an
indication that finite size effects still play an important role for lattice sizes like 83

to 103 which were used in those Monte Carlo computations.
This makes it more desirable to give a proof that the deconfining transition

actually occurs. This is done in the following section.

III. Breakdown of Confinement at High Temperature and Weak Coupling

/. One Time Layer

The interpretation of lattice Yang-Mills theory as a Gx G spin system becomes
most obvious in the case of the highest possible temperature which corresponds to
a lattice consisting of only one time layer. The infrared bounds of Frohlich et al.
[18] are easily transcribed to this model and yield a rather sharp lower bound for
the critical coupling for the deconfining transition.
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The "Polyakov loops" consist now simply of single links in time direction
biting their own tail we label them by their spatial locations x, y etc. and denote
the corresponding gauge fields by ux, uy etc. Spatial links are now simply labelled
by pairs <xy> and the corresponding gauge fields by vxy.

The "electric" part of the action is

-SE(u,v) = JE £ R e χ ί u A y M " 1 ^ 1 ) , (ΠL1)
<χy>

and the "magnetic" part is

), (III.2)

where the sum runs over all spatial plaquettes.
For χ we take as usual a faithful character of the compact Lie group G we may

then also identify the group elements with the unitary matrices of the correspond-
ing representation. Then (III.l) can be rewritten as

Σ \\(Dvu)xy\\2+2d\Λ0\jEχ(t)
<χy>

(1113)

X

where the scalar product ( , ) is the usual Hilbert-Schmidt scalar product, i.e.
(tί,u) = Tru*u' (u,u' are unitary matrices!), Dv is a covariant finite difference
operator:

( M x y = ^xy^y^xy1 ~ Wχ ' ( I I L 4 )

and AV = D*DV a covariant finite difference Laplacian.
After these preparations the proof of an infrared bound can to a large extent be

taken over from [18], but for the benefit of the reader we give the complete
argument here.

First we define a perturbed partition function Z({hx}) by replacing in III.l or
III.3 all ux by ux-hx t (/ixeC). The following bound holds:

Lemma III.l .
\Z({hx})\SZ({0}).

Proof. The essential ingredient is the existence of a transfer matrix in space
direction. We will first consider the 1-direction and then the other space directions.
First note that (in close analogy to Lemma II. 1) we have

Z({λ,}) = TrJ>0 f ί fj, (IΠ-5)
7 = 1

where the operators P o , 5 r

1 , . . . ,^ r

L i now act on the Hubert space of square-
integrable functions of the link variables corresponding to the "transverse"
directions 2,3, ...,d.

The transfer matrices ^ depend on the perturbations hx with xx =εj and are
again of the form
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where Mj is multiplication by a positive function and Tj is a convolution operator
with kernel

where the products are over the sites xλ and links xλyλ, respectively, of the
"transverse" lattice (x1 fixed) and hεj, x± is an obvious relabelling of hx.

An elementary though crucial fact is contained in

Proposition III.2. Po commutes with ^.{j=l9 ...,1^).

Proof. Po averages over (xί independent) gauge transformations. So it obviously
commutes with the second (magnetic) factor of III.7 as well as the corresponding
magnetic part of M. Gauge transformations also commute with the first (electric)
factor of (III.7) because

They also commute with the electric part of M because

From this the proposition follows. •

We can rewrite (III.5) as follows:

Z({fex})=TrP0 Π ^

= TrP 0 [ ] L
j=i

where T0 = T,\hj = 0.

Applying now Holder's inequality for operators we obtain

U ft \\PoMjT^2\\2

2Lι ft IITo-^^To-^IL

fl K ~ 1 / 2 W 1 / 2 I L (111.11)

Here we used Proposition III.2 to move Po back and forth between the various
factors || || ̂  = || || is the operator norm.

To proceed we need another fact that can essentially be transferred from [18] :
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Proposition III.3. Let To = 7}|Λj = 0. Then || T~ 1/27}T0"
1/21| ^ 1.

Proof. It suffices to prove this for the simpler case where T. is an operator on

L2(G,dg) with kernel exp \\u — u'— hyt\\2\ and To is obtained from it by
J

2
deleting h . Then one can use the imbedding of G in a suitable Cn to essentially
diagonalize Tj9 To by Fourier transformation (the constraining δ-functions do not
cause any trouble). In Fourier space the shift by h becomes multiplication by a
phase factor so that Proposition III.3 becomes obvious. See [18] for more details.

This proposition eliminates the second factor in (III.9), i.e. it bounds Z({hx}) in
terms of partition functions where all the /z's have been deleted from links in the
^-direction. Repeating the argument with the 2, ...,d-directions in place of the
1-direction completes the proof of Lemma III.l. •

Lemma III.l implies an infrared bound in the standard way: Expanding the
inequality to second order in the perturbation h we obtain (because the 0 th orders
cancel and the first order term vanishes by translation invariance)

iJK(Re(M, ^ ) ) 2 > - \JE((K Δvh)y ^ 0 . (111.12)

o the unit matrix the subscript v on Λυ can be dropped

<(Re(u, Δh))2) g ^-(K Δh). (IΠ.13)

Because h is proportional to the unit matrix the subscript v on Λυ can be dropped
and we obtain

Replacing h by ίh gives

((lm(u, Δh)2) ̂  — (h,Ah)9 (III. 14)
JE

and combining (III. 13) and (III. 14) we get the result

S(KΔh) h). (111.15)
JE

Remark. For G = SU(2) or G = O(n) (more generally whenever G can be imbedded
into a real euclidean space instead of a complex unitary space) we can obviously
improve (III. 15) by a factor of 2.

We write out explicitly the infrared bound we have obtained.

Theorem III.4. Let G{x-y) = <ΊnζΊruγ) and

its Fourier transform. Then for any compact Lie group

2^ (1 — cos p.) G(p) g —— (III.l 6)
ι = l ^E

and for G = SU(2) or O(n)

(III. 17)
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Proof. This follows from (III. 15) by setting A1/2h=g. •

To draw any conclusions about deconfinement from the infrared bound we
have to assume in addition that the expectation value of a single Polyakov loop
vanishes in a periodic box. For G = U(iV) or SU(JV) and χ = χq (the fundamental
character) this is so because of the global invariance

where ωeC(G) (the center of G). So we state the following result only for this
physically relevant situation.

Corollary III.5. In the U(N) or SU(N) lattice Yang-Mills model with Wilson's action
and maximal lattice temperature external "quarks" are liberated for

JE^NI(d) (any N) (III. 19)

JE ^ I(d) (U(l) or SU(2)J . (111.20)

2εd~2

In terms of the coupling constant g2 = — - — this means deconfinement for
τJτJE

( a n y N ) ( Π I 2 1 )

or SU(2); . (111.22)

(Here I(d) is the integral

which has the value

0.5054620197 for d = 3 [18]J

Proof. The bounds (III. 16) and (III. 17) can be transferred to the thermodynamic
limit. We need the easy bound

l , (111.23)

i.e.

JG(p)^P^(2π) d (111.24)

[remember that G(p)^0 because G is clearly positive definite].

Equation (III. 18) follows from the Clebsch-Gordan decomposition

|Tru|2 = l + £ C i X i ( u ) , (111.25)
ί

where c ^ 0 and χt are some irreducible characters, and the fact that by reflection
positivity <χf(w)>^0.

Since G(p)^0 it is the density of a measure and (III. 16), (III. 17) say that it is
absolutely continuous with respect to Lebesgue measure everywhere except
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possibly at p = 0, where it may have a discrete contribution cδ(p). In d^3 (III. 16),
(III. 17) are compatible with (111.24) only if c > 0 for sufficiently large JE. c>0
implies long range order, that is

According to our discussion in Sect. 2 this means absence of confinement. •

Note that for d = 3 and G = U(1) or SU(2) the upper bounds (III. 19), (111.20) are
not too far from the lower bounds (11.55), (11.56).

0.353 gJ c (SU(2))^ 0.505

0.364 ̂ J c (U( l ) )g 0.505.

This concludes our discussion of the simple one layer model.

2. Many Time Layers, Hamiltonian Limit

Unfortunately we do not see a way to extend the simple infrared bound of the
previous section to the general case. The main reason is that the basic variables we
are interested in are the Polyakov loops which are now complicated nonlinear
functions of the basic link variables occurring in the action.

Frohlich et al. [18] give, however, a less elegant but more basic proof of a
slightly weaker infrared bound in their appendix. It is based on the obvious fact
that the transfer matrix in space direction becomes a multiple of the identity for
infinite coupling between the spins. This is still true in our system and actually it is
possible (with some sweat) to adapt that proof to our situation.

We again denote by 3Γ the transfer matrix in the 1-direction. Furthermore we
have to consider a two point function that is smeared in the transverse directions

Gh(j)= Σ h(x1)G{εj,x1-yA)h(y±), (/εZ), (111.27)
x±y±

and its Fourier transform

Li

GhiPι)= Σ eίPίJGh(J)- (111.28)

The main technical result will be

Lemma III.6. There is a function f(JE) that falls monotonically to 0 as JE-+ oo such
that

(1 - cos P l ) Gh(Pl) £ f(JE) Σ \KxJ\2, (111.29)
Xj.

or equivalently

( l - c o s P l ) G ( p ) ^ / ( J £ ) ; (111.30)

f(JE) may be chosen to be (1 +2JE

1χ{t))Lo- 1.
The cubic symmetry of the lattice then gives the obvious:
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Corollary III.7.

£(l-cosp.)G(p)^/(J£), (111.31)
i= 1

which is the desired infrared bound implying deconfinement for JE^f~γ 1.
\dl(d)l

To prove (111.29) we will make use of a lemma proven by Frohlich et al. [18]
that follows from the existence of a non-negative transfer matrix in 1-direction:

Lemma III.8.

)~Gh(l). (111.32)

The right hand side of (III. 32) is the expectation value of a double
commutator:

h -\ (111.33)

where 2Γ is normalized in such a way that TrP0&~Lί = 1 and

L(h)=Σh(xJLXχ (Lx±=χ(gLχJ) (111.34)

is a "smeared Polyakov loop." Our job will be to estimate this double commutator.
It seems obvious that it will vanish as JE-+oo, but we will prove a more precise
statement.

The transfer matrix ZΓ is again of the form

βΓ = M^M (111.35)

with a multiplication operator M and a convolution operator T. Tis a product of a
"magnetic" part involving only the v variables (spatial plaquettes) and an "electric"
part TE coupling the u and v variables (timelike plaquettes see Sect. II.4). TE is a
tensor product:

TE=(g)Tx±, (11136)
χ±

where T has the kernel

TXL(UXL, «;i) = e x p ( - ^ \\uXλ-u'x± I!2). (111.37)

So clearly

ίτXla(gLyfi=o (IΠ.38)

for x1^=y1.
Since everything else commutes the double commutator in (III.33) really only

involves the double commutator

[L(/z),[L(/ι),T£]]. (111.39)

By (IIL38)forx 1 + 3;1

IΣZ, lLyχ, Γ J ] = - [ Σ " , TXJ T-1TT-1 LTy±9LyJ . (ΠI.40)
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Therefore

which implies

[The fact that the unbounded operator TE

X occurs requires (111.41) to be
interpreted as a form inequality on a suitable dense domain.]

Now notice that TE is also a tensor product over time layers:

TE= S ) T m = ( X ) (g) Tmx±. (111.42)
m = 1 x± m = 1

If we identify w^ m + 1 with the unitary matrix (u^x

a

i

rn + ί) corresponding to a
representation with character χ3 we can write

1 1 m mxx m ^mx± m
{cim, bm} lm = 1

- Π ubmbm+ίTmua"x

amA. (IΠ.43)
1 i mxx m mx± ^ /

m = l J

Actually we could use the factorization

Tm=(g)Tmx± (IIL44)
χ±

to pull out all factors Tmyχ(y1ή=xA) in (111.43) because they commute with umXλ

(always regarded as a multiplication operator).
What remains is a sum of products of expressions of the form

ΰFa't~γuwt or uwtxfa' (111.45)

with t given by its kernel

•^Wu-u'W2). (111.46)

We can shift our point of view concerning this whole computation following
Eq. (III.37) by imbedding the unitary matrices in (C^2 this means that the Hubert
space on which our operators act will consist now of functions of
βjvsx (number of imks)? SqUare-integrable with respect to a (5-measure that restricts (C*2

back to U(N) or SU(iV). But we can also regard the kernels like (111.46) as kernels
of operators on the L2 with respect to Lebesgue measure. All our inequalities
remain true in this interpretation, but the meaning of the symbol T~ \ for instance,
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is changed. By multiplying inequalities like (111.41) in this new interpretation from
both sides with density functions that are square roots of suitable approximate
^-functions we obtain - taking limits - inequalities that refer again to our original
Hubert space.

The imbedding allows us to use a Fourier transformation to compute (111.45): t

becomes then multiplication by exp \\k\\2\ and uab gets replaced by the
2J /

differential operator

2 8 *' " • " ' (111.47)
idkab i\dRekab dlmkab,

This produces the identity

hΓ't- luwt = uhh'ur'+ ~δabδa,b,t; (111.48)
JE

(III.48) can now be used to expand (111.43) in powers of J% 1. The expansion has no
constant term and terminates:

Lo / 2\k

TL,T~ιL,T—L T L = y ) A . (111.49)
fc=i VEI

Λk can be described as follows: let

Σ U^r'TjC^1- (ΠL50)
{am,bm} m = 0

Then Ak arises from Ao by replacing k of the factors ub

1^
brn + 1Tmu^x

atn + 1 by

T'h

there are ,°) of them I.and summing over the different such possibilities

It is a little easier to see what this means if we reinsert this in the trace (III. 33)
after using the inequality

ίm.ίUhl^^^ΣlHxJ'^^^-'L^-L^L^}, (111.51)

which is a trivial consequence of (111.41). It is also convenient to rewrite the
expansion (111.49) with the full transfer matrix instead of just TE:

(f)V (ΠI.52)

We obtain thus from (111.33), (111.51), and (111.52)

Gh(-ί)-2Gh(0) + Gh(l)

= Σ Σ T r ί P o B ^ 1 " 1 ) h - , (IΠ.53)
x± k=ί \JEl
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u

π
Fig. 1. Breakup of a pair of Polyakov loops into Wilson loops

where the trace now is to be understood again in the original sense, i.e. without
imbedding in (£N2.

The terms in this last expansion can be described in a simple way: Let

Then

(111.54)

(111.55)

is the expectation value of a pair of Polyakov loops separated by one lattice
spacing in 1-direction.

ΎTPQB^1'1 (111.56)

arises from (111.55) by breaking up the pair of Polyakov loops into Wilson loops by
replacing in all possible ways k pairs of vertical links by pairs of horizontal links
(in the 1-direction). The presence of the projector Po in (III.56) is crucial for
making this interpretation because it restores the horizontal link variables (sec
Sect. II).

So we obtain the following inequality from Lemma II.6:

(1-cospJG^pJ

k=l

L<

Σ
Cu...,Ck

(111.57)

Here the last sum is over all ° sets of Wilson loops {Cί...Ck} that arise from a
\ k I

pair of Polyakov loops separated by one lattice unit in the 1-direction by applying
the breakup procedure described above (see Fig. 1). Because of translation
invariance we can ignore the positions x± of those loops.

If we now apply the trivial bound \W{C)\^χ(t\ we obtain from (111.57)

L o

fc=l \JEI C I , . . . , C ,

LQ / Ί \k ( r
\|2 V ( _ 1 Λ^-ίi^ί

k=l \JE<

JE I
(111.58)
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So we have proven Lemma III.6 in the form

and Corollary III.7 in the form

(111.59)

(111.60)

If we specialize to L o = 1 we realize that we have lost a factor 2d in comparison
with (III. 16). This same factor also occurred in [18] and is typical for this "double
commutator proof." Presumably an inequality

is true for all Lo but we have no proof for it. Certain improvements are again
possible if there are reality properties:

If the representation to which χ belongs is real orthogonal, we may use an
imbedding of our variables in IR^2 instead of (£N2 (N = χ(i)). This will lead to the
replacement of JE by 2JE in (111.48) and all bounds. Again this remark is somewhat
academic because it does not apply in the cases of physical interest [G = U(JV) or
SU(ΛΓ), χ the fundamental character].

Another improvement is possible for G = SU(2) (or more generally whenever χ
is real): We split the u-variables in (111.43) etc. in their real and imaginary parts.
This splits each term in the sum into 2 2 L o new terms, but due to the reality of the
trace only the terms contribute in which for each [~f (Reww + ΠmMw) we pick the

m

imaginary part an even number of times. Compared with the general case in which
only the whole expression, not the individual loops are real, we gain a factor of two
in the infrared bound (111.59) (see [2]).

Let us write out explicitly what we can learn about deconfinement from
Lemma III.6 and these remarks:

Theorem III.7. In the U(JV) or SU(JV) lattice Yang-Mills theory with Wilson's action
and temperature T (i.e. L0 = (τT)~1 time layers) external "quarks" are liberated if

(anyN),

τ Γ

In terms of the coupling constant this means deconfinement for

nd-2

τN
1 + (any N),

(111.62)

(111.63)

(111.64)

(111.65)
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Proof. This is essentially the same as the proof of Corollary III.5.

It is a gratifying fact that the bounds stay nontrivial in the Hamiltonian limit
τ-»0. We have

Corollary III.8. In the Hamiltonian lattice gauge model of Kogut and Susskind (i.e.
the limit τ-»0 of Wilsons model) with gauge group U(iV) or SU(JV) guarks are
liberated for

^ ( y (anyN), (111.66)

(111.67)

Proof This is trivial if one notices that the infrared bound (III.59) has a limit as
τ->0. •

We can also say something about 'tHooft's N-^co limit with g2 = g2N fixed:

Corollary III.9. In 'tHooffs N^oo limit quarks are liberated for

( I I L 6 8 )

Proof Obvious. •

This concludes our discussion of the general case. In the next section we will
discuss abelian models in some more detail.

S. Some Further Results for Abelian Models

For abelian models there is a way of proving the infrared bounds (actually a
slightly stronger version of it) in a more "natural" way that does not rely on the
imbedding of the group in a matrix space.

An additional advantage of this procedure is that it allows more general forms
of the action, such as the so-called Villain action which is considered frequently
[13, 57].

We consider gauge groups U(l) (or ZN; direct products of such groups can be
handled just as well but they would pollute our notation too much) and actions
characterized by an electric plaquette coupling

e-Sp(gep)=Σ^h)UgBP)- (πi.69)
τeG

Here

fe = « X y

+ 1 K ) " 1 C (ΠL70)

for a plaquette p with corners (x, m), (x, m+ 1), (y, m+ 1), (y, m). The sum in (111.69)
is over the irreducible characters τ of G, the coefficients mτ and e~Sp are assumed to
be ^ 0 and we assume

lim mτ(JE) = l. (111.71)
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The magnetic coupling will be of the same form as (111.69), but the coefficients
mτ may be different from the ones in (III.69). We only need that they (as well as
e~Sp) are nonnegative to assure the existence of a nonnegative transfer matrix in
space direction.

Typical examples for (IIL69) are the Villain action for G = U(1)

mτ(J£H expj^τ 2 ) (111.72)

(here τ is an integer) and Wilson's action which for G = U{1) is characterized by

mτ(JE) = Iτ(JE) (IΠ.73)

(Iτ is the modified Bessel function of order τ).
We proceed as in the previous section up to Eq. (111.41) which said

)l2{TEL~X1 TE lKTE-LXίTETζ±}. (111.74)

The right hand side can of course again be factored over time layers:

TE L x ± TE — L X ι TELX±

u= Π Tΰ
1 1 mm= 1

ι-p— 1
mx± m mxi T - π

m = 1

τ

mΰmx± • (ΠI.75)

The point is now that the right hand side of (111.75) is again a convolution
operator; this can be seen by using Fourier transformation which diagonahzes
everything. Again [as in (111.45)] we have to deal with sums of products of
expressions of the form

tΰt~1ut or utU, (III. 76)

where u is multiplication by eiφ and t is convolution by

t(φ) = Σm/τφ (IΠ.77)
τ

Therefore tΰt~ιut is convolution by

and utΰ is convolution by

τ

Therefore

tΰtut = utΰ + r, (III. 78)

where r is convolution by

(ΠI.79)
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So clearly r obeys the form inequality

r^g(JE)utΰ (III. 80)

with

g(J E) = supί ^ l ) . (111.81)

We can now expand (111.75) in powers of r. Using the inequality (111.81) in each
term we can resum to obtain

E J E L : i , (IΠ.82)

and

ίL(h),
X±

•ί(l+g(JE))Lo-U. (111.83)

As in the previous section this yields an infrared bound:

Lemma III.9. For an abelian model characterized by the electric coupling function
(111.69) an infrared bound of the following form holds:

Σ (1 - cosp.)G(p)^ df{JE) = d[(l + g{JE))Lo - 1 ] , (111.84)
i = 1

where

Ξ

Of course this result is useful only if g(JE)-+0 as J£->oo. We check this for the
Villain action. There

gf(JjB) = e x p — - 1 , (111.85)

and hence

T^ - 1. (111.86)

(IΠ.87)

This clearly implies deconfinement for

1
- 1

W/(d)
For the Wilson action

( π m )



Lattice Yang-Mills at Nonzero Temperature 357

and hence

) . (ΠI.89)

The proof of (111.88) requires some gymnastics with Bessel functions and is
given in Appendix C. (111.89) is slightly stronger than (111.60), at least for large JE.

We refrain from giving the resulting bound for the deconfining transition
because it would look somewhat messy.

IV. Concluding Remarks

Let us try to put into perspective what has been proven and point out some
important open questions.

We have shown that lattice Yang-Mills theory with Wilson's action in space
dimension three (or more) will possess, as soon as a non-zero temperature is
turned on, a weak coupling phase without confinement in addition to the well
known confining strong coupling phase.

The situation is slightly different for the Kogut-Susskind Hamiltonian model:
There we have shown that confinement will disappear for any coupling provided
the temperature is high enough [cf. (111.66) and (111.67)]. Convergence of the
strong coupling expansion sketched by Kogut and Susskind [26] has not been
established rigorously; we have no doubt that one could do this, however, and
provide a proof that the string tension σp does not vanish for g2 > g2(T) (obviously
g2 cannot be independent of T here).

It is expected that the unconfining phase behaves like a "gluon plasma" and
shows Debye screening (i.e. exponential clustering) at high enough temperature
the technology to establish this has been provided by Brydges and Federbush [6],
but some work is needed to adapt their methods to this problem the nonlocal
effective coupling between the Polyakov loops will not make this task easier.

In [3] we pointed out that there is even the possibility of two phase transitions:
First from the confining to a Coulombic phase and then to a Debye screened
plasma. For SU(iV) with N large this would not seem implausible because of the
analogy with ZN models [53]. But most physicists seem to regard it as unlikely for
N = 2,3. In fact Svetitsky and Yaffe [53] argue by analogy with the Ising or Potts
models, respectively, that for N = 2 there should be one second order and for N = 3
one first order deconfining transition.

Our inequality (11.48) shows that at positive temperature and small enough
coupling also 't Hooft's string tension vanishes this might have been difficult to
show directly.

Our proof in Sect. III.2 made use of the explicit form of Wilson's action, at least
for the "electric" coupling. So one might wonder how model dependent the results
are. But one should note that first of all the form of the magnetic coupling was
fairly arbitrary; it only had to be compatible with reflection positivity, i.e. a
positive transfer matrix in space direction.
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Secondly, the τ-continuum (= Hamiltonian) limit will be largely independent
of the precise form of the electric coupling for instance Theorem II.2 shows that
the heat kernel ( = Villain) action [13,57] will produce the same "electric" part in
the τ-continuum limit as Wilson's. But since we have an infrared bound for τ = 0, a
similar bound must hold already for τ > 0 , τ small enough. This shows that
deconfinement occurs for a wide class of lattice models.

To see the strengths and weaknesses of our bounds it is instructive to discuss the
limiting cases JM-+0 and JM~^oo. The peculiar feature of our method is that it is
completely independent of J M .

For JM = 0 we obtain the "ultralocal" model already discussed in [38] for τ = 0
this is the strong coupling limit of the Kogut-Susskind model [26] around which a
strong coupling expansion has to be constructed. The ultralocal model shows
confinement at all couplings (and in any dimension!) at zero temperature. For
finite temperature it becomes structurally identical to a one time layer model this
is easiest to see for the heat kernel (Villain) action characterized by a transfer
matrix (in time direction) that is simply given by the heat kernel:

<χy>

(Δ is the Laplace-Beltrami operator on the group G). So the ultralocal Villain
model will depend only on the product

Lo02=^f> ( I V 2 )

and we may put Lo = 1 and change g2 accordingly.
For more general ultralocal actions we still have the structure of the one layer

model, but with a more complicated electric coupling arising from the L0-fold
convolution of 2Γ with itself.

In any case these models can all be regarded as G x G spin models with some
random coupling provided by the v variables (cf. Sect. III. 1). The random
couplings might be expected to create disorder, thereby making deconfinement
harder. For abelian models this follows from Ginibre's inequalities [20]. But for
nonabelian groups the random couplings reduce the symmetry from G to C(G) and
might actually thereby facilitate ordering. This certainly would be relevant for
d = 21. We think that for d^3 the effect of the random couplings is not so
dramatic. Since the infrared bound gives excellent results for spin models without
random couplings we conjecture:

The infrared bound gives a bound on the transition point g2 that is close (~ 10%)
to the actual value for the ultralocal {JM = 0) models, if we either apply it to the
effective one layer version of that model or "steal back" the factor Id lost in the
double commutator proof.

The other extreme case «/M-»oo is also easy to understand. In this limit the
"magnetic fields" υdP are frozen out, the v variables become a pure gauge and can
be gauged away. One is left with a stack of Lo copies of the Gx G spin model the

1 We thank G. Mack for reminding us of this fact
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transition point g2 becomes therefore independent of L o and will be close to the
infrared bound result for one layer:

The infrared bound for one layer gives a bound on the transition point g2 that is
close (~10%) to the actual value for the JM->oo limit of lattice Yang-Mills models.

It is now highly plausible that the true transition point will lie between the
values obtained for JM = 0 and JM-»oo. For abelian models this is of course again
implied by Ginibre's inequalities.

The conventional renormalization group philosophy predicts that all physical
quantities with the dimension of a mass should behave like

A
2g2β0Γ

so in particular Tc, the critical temperature for deconfinement should go like

It is not surprising that our bounds completely fail to produce such a behavior.
To actually prove that a physical quantity shows the correct scaling behavior
would almost be equivalent to the construction of the continuum limit and is
clearly beyond the scope of this paper. If, on the other hand, we assume the correct
scaling behavior (the way it is normally done in the physics literature) and make
the somewhat bold assumption that even for only one layer we can be close to the
scaling region, it is possible to extract a physical value of the transition
temperature that is not unreasonable (a few hundred MeV) this is done by simply
pretending that the transition temperature expressed in units of the string tension
(at the same coupling but zero temperature) does not change much when we go to
the continuum limit.

We should maybe mention that it is not an inherent weakness of the infrared
bound technique but rather our inability to control the continuum limit that
prevents us from establishing deconfinement in the continuum. It should be
remembered that infrared bounds were first found and applied in a continuum
model [the (φ2)2 model in d = 3].

There is one more important open question: What becomes of the deconfining
transition when dynamical quarks (or maybe Higgs fields in the fundamental
representation) are included? Obviously the Polyakov loops will lose their
diagnostic value because, physically speaking, external quarks are shielded by
dynamical ones; mathematically speaking we lose the global symmetry that
assured (χ{g2)} = 0 in the pure Yang-Mills model. Since a fundamental Higgs field
(and probably dynamical quarks as well) has an effect on the system that is very
close to the effect of a magnetic field on a ferromagnet [46] one might expect that
there is no longer a transition. Of course we still expect qualitatively different
behavior at high and low temperatures but maybe not a sudden (nonanalytic)
change.

If our matter fields are Higgs fields in the adjoint representation (such as in
most grand unified theories) the Polyakov loops can still be used to test for
confinement and our methods can be extended to show the existence of a
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deconfining transition. Much less clear is the existence of the supposed first order
transition between a "Higgs phase" at low and a "symmetric phase" at high
temperature [12, 28] that has led to so much cosmological speculation [23, 51].

All this shows in our opinion that it is worth investigating the phase structure
of gauge theories at finite temperature in more detail and that it is also essential to
sharpen the diagnostic tools that should distinguish between the various phases.
This will hopefully lead to a better understanding of what is meant by "confine-
ment" in the full theory and what such terms as "Higgs phase" or phase with
"unbroken gauge symmetry" really mean. The (dis)order parameters proposed by
Mack and Meyer [30], Bricmont and Frohlich [4] as well as Fredenhagen [17]
might be useful steps in that direction.

To really understand what deconfinement means for the full theory would,
however, require the development of a precise (quasi-)particle concept for field
theories at finite temperature and the existence of tools to analyze concrete models
from this point of view.

Appendix A. The τ-Continuum Limit

In this appendix we give the proof of Theorem II.2. For notational convenience we
set ε — 1 and g2 = 1 (it will become clear that this is not a significant loss of
generality). We also choose a basis {iLa} of the Lie algebra g of our gauge group G
with the orthonormality property

b = δab, (A.I)

where χ is the character used in the action and we denote by La also the
representatives of the generators in the faithful representation belonging to χ. L{f
will denote the representative of the generator La in the representation labelled by
q.

We first consider the easier case of the heat kernel (Villain) action and the
corresponding transfer matrix ?Γ = ZΓR. We have to show that

-LV LΔ -lv\β/τ

? 2 e2 e 2 j (A.2)

goes to expjS(^zl — V) as τ-*0 in all Jp norms ( p ^ 1). Without loss of generality we
will consider only p = l.

Strong convergence follows from the Trotter product formula [43] if τ->0
through a sequence such that β/τ is an integer. For the general case we write
β = nτ + 8 with 0 ^ ε < τ , neN. Then

and strong convergence follows by a simple 3ε argument:

1 — P \*2 I )ψ — <T(τ\n(<7YτWτ — 11 \Ψ

(A.3)
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Each term in (A.3) goes to zero: Note that &~(τ)ε/τ-+t strongly because 3~(τ)-+t
strongly.

To obtain J\ or more generally Jp convergence we use Grϋmm's theorem [21]
which says that strong convergence together with convergence of the Jp norms of
the approximants to the Jp norm of the limiting operator implies Jp convergence
(see [49]) for a sharper version).

So it remains to prove

Lemma A.I. Let G be a compact Lie group and Vbe uniformly Lίpschίtz continuous
on G. Then

(A.4)

converges towards

(U-v)
as

Proof. A proof can be based on the Feynman-Kac formula for Brownian motion
on G (see [31]).

For completeness we give an independent proof that does not use the
Feynman-Kac formula (but is inspired by it). Expanding (A.4) in powers of V we
obtain (with N = β/τ)

T Π ((Vf^ή (A.5)

Ύrexpβ(^A — V) can be similarly expanded (the so-called Duhamel-Phillips expan-
sion [11,47]).

ήβA. (A.6)
t = l

It is seen easily that the kth term of both (A.5) and (A.6) is bounded by

k

so that both series converge absolutely and (A.5) converges uniformly in τ. So it
suffices to show convergence term by term. We rewrite the kth term of (A.5) as

tλ

(A, ,
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where we used the notation

and [x] denotes the integer part of x. T is an ordering symbol saying that the
factors should be written with the "times" ί. increasing from left to right. Similarly
the /cth'term of (A.6) can be written as

±-Sdtλ ...dtkΎvT Π {-V(t$e*\ (A.8)
K' 0 i=ί

Equation (A.7) can be read as a Riemann sum approximation of (A.8). Since the
integrands of both (A.7) and (A.8) are bounded by

β_Δ

II T" T 11 If r p -Λ

II V\\i Ίxe2 ,
it suffices to show convergence of the integrands (by the dominated convergence
theorem).

So we have to estimate an expression of the form

Tr [ r Π ( - V(t$- T Π ( - V(Si))] eΐΔ, (A.9)

where | ί . - s f | < τ ( z = l , ...,fe) and 0 ^ ί 1 9 ...,tk,s19 . . .,s k^j8. Note that (A.9) depends
only on the differences t2 — tv...Jk — tk_v ί1 — tk + β by the cyclicity of the trace.
Telescoping (A.9) and using cyclicity of the trace in a similar way we obtain k
terms of the form

RJtt,s) = Ύt(V(t)- V(s)) Π V(uy\ (A.10)
1=2

where | ί - s | < τ ; O^ί, s^u2^ ... ^uk^β
Rewriting (A. 10) in terms of integral kernels and using the positivity of the heat

kernel we obtain the bound

\ £ || 7 | | k - 1 J d d h \ V ( ) V ( h )\Rt(t, s)\ £ || 7||k-1Jdgdh\V(g)- V(h

~\t~s\A L(β-\t-s\)A

•e1 (g,h)e2 (Kg). (A. 11)

Using the uniform Lipschitz property of V this implies

\Rτ(Us)\^C\\ V\\k~x Jdgdhd(gJήe^~slΔ(g,ft)

where d{g, h) is the geodesic distance between g and h and we estimated the second
heat kernel in (A. 11) by a constant.

* (Now we need the well known fact that the heat kernel e* (£, h) for small t

behaves like const i~D / 2exp d(g,h)2) or, more precisely, that
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where D is the dimension of the manifold G n u m b e r o f l i n k s i n y l ° and α < l is some
constant (see for instance [32,42]). Inserting (A.13) in (A.12) shows

\Rτ(s,ή\Sconst γ\t^s\

S const | / τ . (A. 14)

The proof of Lemma A.1 is now complete. •

To prove the analog of Lemma A.I for the Wilson transfer matrix £ΓW it
suffices (again by Grϋmm's theorem) to show that

Ίr3rw(τψ
τ-Ίv3ΓH(τ)βlτ-+<d, (A. 15)

where 3ΓW is of the form

~ V A - ~ V

\ ^ ^ p 2 pF-™ Ίp 2

and eτAτ is a convolution operator with kernel

— exp- Σ Reχ(^),

and the normalization Nτ is chosen to make \dqeτAτ(g, h) = l.
We first want to show that it is enough to prove (A. 15) for V=0. To this end we

expand in V as before:

' ( A ' 1 7 )

Here

Assume that (A. 15) holds for V=0. Then TΐeβAτ is bounded uniformly in τ and the

kth term of (A.17) can again be estimated by constjS f c | |F||^— (see above). So one
fc!

only has to prove convergence term by term and only for the difference of the
integrands of (A. 17) and (A.7). This means we have to analyze terms of the form

k k L A

Tr Π VeSiA*-Ίτ f] Ve2*' (A. 19)
i = 1 / = 1

with 0<sv...,sk^β, Σs^β. Expanding (A. 19) in powers of

I , ,
(A.20)
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and using Holder's inequality we obtain the bound

Σ Σ
C{,...,

\K\=n

— I IT/ I I*

iφK

,2S>/

βlst

(max

(A.21)

where in the first inequality we used that

π
1

e1&i
1

Bis = Π F
iφK

k || 1 a λ

z π F

Si/β

Sί/β

1 =

1

e2

iφK

because e 2 '

By our assumption of convergence for 7 = 0

\\esAτ\ β/s

and hence by Grύmm's theorem

\\R(s)\\βls->o.

This shows that (A.21) goes to zero and therefore (A. 15) holds in general if it holds
for 7 = 0.

We formulate as a theorem what remains to be proven because it seems to be a
slightly nontrivial fact:

Theorem A.2. Let G be a compact Lie group and let eτAχ be a convolution operator
on L2{G, dg) given by its kernel

.j i 1

eτAig,h)=--eτ *X9 \ (A.22)

where χ is the character of a faithful representation of G and Nτ = J dgeτAτ(g, h).
Then

I l \
Tr[eβAτ-eϊβA)-+0 (τ-»0), (A.23)

where A is the Laplace-Beltrami operator on G corresponding to the metric induced

by χ.

Remarks. 1. This theorem can be viewed as a strong version of a central limit
theorem for G-valued random variables. In fact some elements of the proof are
inspired by the proof of the local version of the central limit theorem (for real
valued random variables).
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2. By the Perron-Frobenius theorem [43] eτAτ has a unique positive eigenfunc-
tion Ψo to the eigenvalue \\eτΛτ\\. Since the function i is an eigenfunction with
eigenvalue 1 we conclude Ψ0 = i and \\eτAτ\\ = 1 .

3. To apply the theorem to our problem we may either interprete G in the
statement as the underlying gauge group because for V = 0 all the links are
uncoupled and it suffices to prove (A. 15) for one link or alternatively we may think
of G as (gauge g r o u p ) n u m b e r o f l i n k s i n ^ 0 .

Proof of Theorem Λ.2. We diagonalize expτ^4τ and A jointly by Fourier transfor-
mation on G. Let q run through the inequivalent irreducible unitary repre-
sentations of G. Then exρτ^ τ has the eigenvalues λq/λQ9 where

1

with

χq is the character of the representation q and the subscript 0 refers to the trivial
representation.

The eigenvalues of A are given by the (generalized) Casimir elements

Cβ = Tr L?>L<?>, (A.25)

where l}f is the representative of La in the representation q as announced we will
drop the superscript q in the representation that occurs in the action. To
appreciate (A.25) one should recall the orthonormality convention (A.I); the term
"generalized" refers to the fact that we are not necessarily using the Killing metric.

Next we want to explain our strategy to prove Theorem A.2. We first prove

convergence of the eigenvalues of expτAτ to the eigenvalues of exp-zl; this

amounts to showing strong convergence which was proven already by Gawedzki
[19], but we will actually need and prove a more detailed statement controlling the
speed of convergence (Lemma A. 3). The key is, however, again the approximately
Gaussian behavior of (A.22) for small τ.

Then we have to control the "tails" in the following sense: Let S be some finite
set of irreducible representations of G. Then

q
-e A

qeS

if _

+ Σd2

qe 2 . (A.26)
qφS \ Λ 0 / qφS

We will need the following estimate for the last two terms: For any ε > 0 we have
to be able to find a finite set S such that

qφS
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uniformly for large x. Since the decay properties of exp - - C J are evident we
only have to deal with ^ '

qφS \λ0/

We find it necessary to break up the sum (A.27) into three regions:
(I) C <x9

(II) x<Cq^x1+ε with some 0 < ε < l ,
(III) Cq>xι + \
These three regions are controlled in rather different ways; the necessary

estimates are contained in Corollary A.4 and Lemmas A.5 and A.6.
But first let us study the convergence of the individual eigenvalues. By

Gaussian approximation λjλo will be approximated by

= J - f Tre ίL(») tβdμ t(ί), (A.28)

where we used the summation convention L{fta= YJL
{fta; dμτ is the normalized

Gaussian measure on W with covariance τ = l/x:

μτ(t) = (2πτ)~pl2e 2τ dpt, (A.29)

and p is the dimension of G.
We will prove

Lemma A.3.

(1) ^ const C x ,

Proof. We first consider (2). We use the elementary inequalities

\ + lϊίL(X)\ (A.30)

which follow by the spectral theorem from the corresponding numerical in-
equalities (remember that the L{«] are self-adjoint matrices). If we insert (A.30) in
(A.28) the corresponding Gaussian integrals can be calculated. Using

ΊτLfLfti?Lf ύ Tτ&W)2 = Tr C\ = άf\,
one obtains (2).
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(1) is also easy: Using the coordinates given by the exponential map in a
neighborhood Kε of the identity l e G we see that

λq= 1 J
aqKε

+ O(e~cx)exχ{t\ (A.31)

where Kε is the inverse image of Kε under the exponential map and will be
assumed to be a ball of radius ε. dg(t) is the pullback of the Haar measure and

Taylor's formula with remainder allows us to write

= e
)—2W Y(t)jdsesm),

o I

where

ΞχTr(cosLflίfl-l)+-|ί|2

and

Inserting this in (A.31) gives

= J- j
dq RP

+ exχit){R1+O{e-cx)), (A.32)

where with λ = 1 - 2ε2/4!

< r « Γ \^L\t\t>Λ-n(\t\*\\o 2
~ 2 IP\A\
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where N = \e ^ dptexχ{1\ and we used (A.30) once more. Similarly one obtains

χ0 = jv( 1 + O ( H | . S o w e e n d U P w i t n

λ 0

where in the last step we used the already proven fact (2). This proves (1). •

Lemma A.3 contains a bit more than strong convergence as can be seen by the
following corollary:

Corollary

(1)

(2)

Kτ0
Fo

A.4.

_e~Cq/2x

r C <x

c2

^ const —f-.
x

3Cq

where b is some constant

Proof. (1) is by now obvious. (2) can be seen as follows: By Lemma A.3, (1) and (2)

— ~s A,n ~\ c o n s t C-/ x

3Cfl b

8x χ

where b = const exp (3/8). •

Corollary A.4 allows us to control the sum (A.27) in region (I):

/; \βx

Σ
qφS
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This can be made arbitrarily small by choosing S large enough because

q

So we now turn to region (II): x<Cq^x1+ε. We will use

Lemma A.5. For Cq>x

Proof. Recall that

We claim that

ίίLiq)t \
Aa~ dμΛt)Qχ-p\—~Ί (A.33)

\ i / /

is a multiple of the unit matrix tiq\ This is a consequence of the 0(p) in variance of
the measure dμ:

e Jίqe

= j d^Oe^W,, (A.34)
EP

where Oflb is an orthogonal matrix (the adjoint action of G on g is orthogonal
because we chose an invariant metric on g). Because q is an irreducible
representation we conclude Λq = λqt

iq\
This means that for any normalized vector Ψ

λq = (Ψ9AqΨ). (A.35)

We will choose Ψ as follows: Because Yj(Lif)2 = Cq, there is at least one L{*\ say
(f, such that

We will choose Ψ such that

(<P, (Lf)2 Ψ) = \\Lf \\2^-Cq. (A.36)

Now note that
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where in the product the factors are ordered from left to right (the summation
convention is obviously lifted) and fb is independent of q.

The functions fb(t) are analytic in a disc

and by the Baker-Campbell-Hausdorff formula

/6(ί) = O(|ί|2), b = ί,...,

(see [56] for a detailed discussion). This means that

where

\\B{q\ή\\ ^const | ί | 2 sup | |L^ | | ^const | ί | 2 C g

1 / 2 . (A.38)
a

Using (A.38) and (A.36) we obtain

a=l

+ comtC\l2\\t\2dμτ{t)

= (ψ, Π expί - |(L(

β

β))2j ψ) + constτC\12

as claimed. •

Lemma A.5 obviously implies that for Cq^x1+ε and x large enough there is a
constant ρ < 1 such that for Cq > x

\λq\<ρ. (A.39)

Using Lemma A.3 we obtain in region (II) (x<CqSx1+ε)'-

-τr~ = |ΛJ + const—f ^ ρ + c o n s t ^ , (A.40)

λ0

 q x x
and again by choosing x large enough we can find a c>0 such that

λ0

in region (II). This will control region (II) because

p

X d\ ^ const χ 2 < 1 + e ) . (A.42)
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To see (A.42) note that

371

ά\e~tC« = έ \ % 1) = O(t~ (A.43)
qeG

and therefore

^ const ί V * .

Putting t = x~x~E proves (A.42). From (A.41) and (A.42) we obtain

(A.44)

(A.45)

This leaves us with the region (III): Cq>x1+\ ε<l. To control this region we
will exploit smoothness properties of the kernel of eτAτ which will give decay
properties of the Fourier coefficients λq.

Lemma A.6. (1) Let n^O be an integer. Then

1

with some constant c.
(2) Let t<c~\ Then

2 2

i-ct

Proof. (2) is an easy consequence of (1). So we have to estimate

Σ ά \ λ \ C T = ί exKQχ{9)( - Δ)nl2 exK*χ{g) dg.

— A can be expressed in terms of the standard left invariant vector fields Xa defined
by

L α)Uo> ( A 4 6 )

as

Note the following simple facts

2/c

i= 1

(A.47)

(A.48)

(A.49)



372 C. Borgs and E. Seller

Using (A.48) in conjunction with (A.30) we obtain after the introduction of local
coordinates on G by the exponential map

2k

j dpte~λx]t]\c\t\2f

J dpte-λxltl\c\t\2)k

^N[-\ (2/c-l)! !, (A.50)

where A = l -2ε 2 /4 ! and

= conste2xx{1)$dpte~xlt{

= const$e2xReχi9)dg(l

So we only have to analyze the possible terms arising from Xbι ...Xb2ke
xReχ by

Leibniz's rule and estimate their number. There is one term of the form

which when inserted in (A.50) gives

Then there is a term of the form

2k

Π (V

. i=2

(A.51)

j = l

which after insertion in (A.50) gives

N(c'x)*(2fc-l)(2fc--3)! !

etc. Finally we reach

(A.52)

The other terms do not involve integrals other than the normalization N and can
be bounded collectively by

2k N
X {dxf {2k-l)ιNS{dxf (2k)\NS-(2c'x)k(2k)!

l = lr 2

(forfc>0).
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Summing up the terms from (A.51) to (A.52) we obtain

fc-l

N{dx)k Σ {2k-l)ι{2k-l-2l)l\
ι = o

(for fc>0).
So we finally end up with

$exRQχ{-A)kexReχdg

i=l

^ p*(const)* (2k)! f e2xReχig) dgll

for fc>0. We may absorb the 0 —) in (const)*; so (1) is proven for n = 2k. For
\x)

n = 2k+l the Schwarz inequality completes the job. •

Lemma A.6 can now be used to complete the proof of Theorem (A.2) by
estimating the "tail" (A.27) in region (III): Chose some t>c~1 and define c' = ί/3.
Then for Cq>xί+ε

iχ \2 f/?2xRe

S const xp/2 exp ( - 2c xε'2) exp ( - d ]/CJx)

S c(ε) exp(- cxε/2) exp(- d ]/CJx),

where c(ε) is a constant depending on ε. So for ε>0, x>xo{ε\ Cq>x1+ε we get

and therefore

Σ ί f ^ Σ e-""*. (A.54)

If we recall that by (A.42) the number of representations q obeying K — 1 < Cq ^ K
is bounded by constKpl2 we see that the right hand side of (A.54) goes to zero as
x-»oo. This completes the control of the tails and Theorem A.2 is now
proven. •

Appendix B

In this appendix we want to adapt the random walk expansion of [15] to lattice
Yang-Mills theory at finite temperature. We first decompose our model of Lo time
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layers into Lo coupled nonlinear σ-models in d dimensions:

^ {am,bm} m = l

where we used the notation

(B.I)

l-\=\-e~Smdu, (B.2)

We first treat the case G = SU(2) and use the standard identification of SU(2) with

u(s) = so + is σ,

(B.4)

where σ1? σ2, σ3 are the Pauli matrices. Note that for any #eSU(2)

Our first input is the following

Lemma B.I.
oo

(i) u(s) δ(s2 - 1) = - $ I δ(s2 -1+λ) dλ9

o
c o i n o o i « + l

$ δ ( 2 l λ ) d λ $ Ϊ(ii)

Proof. This is a simple computation using

where

0;

We use this to expand [uxuy~]m. First we use (i) and the property </)tru*(s)g =
obtain

to

\duxux

- 1) d\u(sx)

Γ T

y'\\χ-y\ = ε
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If we continue to integrate by parts using Lemma B.I we obtain the following
expansion of [uxΰy~\m in a sum over all paths ω from x to y:

lUxUyΛm— L J Vω,mVω-i,m+l

Here nx(ω) is the number of times ω hits x, |ω| = Σnx(ω)— 1, and vωm= \\ v™y

x (xy}eω

(ordered product, ω " 1 is obtained from reversing the orientation of ω.
Changing variables in (B.5) we obtain

LUχUyjm— 2^ J Vω,mVω-i,m+l
ω:χ-+y

2 nx(ω) - 1

where Z^v) is obtained from Z ^ } = \e~Srndu by replacing the coupling constant J
for the link <xy> by

Jxy=Vl-λx]/ϊ-TyJ. (B.6)

Note that all integrations over λ can be restricted without loss to the interval [0,1]
because δ(s2 — 1 + λ) = 0 for λ>ί. With the notation

i«χ(ω)-l

* Yliίk^lZf (B.7)
L) ' xeω

we get

[ U ^ ] = X J H ^ω, m ^ω-i.m+l^m^ίί/m^m+lN (B ' 8)

Inserting this in (B.I) we get our desired expansion of G(x — y) into a sum over
("random") surfaces consisting of vertical plaquettes and spanned between Lx and

w
Q(Ύ—V)= V τ\s\ I TΊ π(v v \ωs)γ(υm ϊ \ ίB 9)

S:dS = {Lx,Ly} \m=l /

where ω^n is the path obtained from S by intersecting it with the mth time layer,
Cm(S) is the combined path

ω*°K+1)"Λ \s\ = Σ\<\

(note that we do not include horizontal parts in this "area").
To see absolute and uniform convergence of this expansion let us apply

Holder's inequality to
L o \ l L°

m = l / ^ m- 1
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where 3~m is the transfer matrix (in 1 direction) obtained by replacing J by Jxy

according to (B.6). Now note that

which follows by differentiating < φ | ^ m | φ > with respect to Jxy and noting that the
result is nonnegative by reflection positivity. Applying (B.ll) and Holder's
inequality we obtain

m = 1 m

^ Π \\Po^1/2x(uCm{S))^ll2\\Lo

and therefore [see (B.10)]

Π Z^Φm) 1 X(uCm(S))
m=l

^ -ΎrPo^rLoχ(ί)Lo = χ{ί)Lo.

Now we can bound (B.9), using the fact that the A-integrals contained in the JF'S
[Eq. (B.7)] can be computed:

S:δS = {Lx,Ly]

with

To estimate the sum over random paths we consider all paths starting at x and
having at least length \x — y\. Note that then there are Id possibilities to make a
path ω' of lengths |ω| + 1 from a path ω of length |ω| and at least one of them will
end in a point z with nz(ω')^:2. Inserting this in (B.I3) we obtain

which shows absolute convergence of the expansion and at the same time
confinement provided

Let us now turn to U(l): Here we may represent the elements of U(l) as unit
vectors in R 2 and we obtain an expansion like (B.9) but with J replaced by J/2 and
ί — λ replaced by 1 in the definition of F(...|ω) because the change of variables in
(B.5) involves one less power of 1 —λ We obtain confinement for
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Let us finally remark that (B.I3) can be improved for LO>1. For notational
convenience assume L0 — 2N0, NoeZ+. Then

becomes

which leads to

/ &( Π F(v 9υ
\ 1 1 V~m' ~
\m= 1

/ No

\n=ί

^Zρ(Cm(S)),

/

\
m sπ

/ 1

\iei(̂  (ωs)+l)!
. (B.14)

One could now use the perimeter decay of ρ(Cm(S)) to sharpen the bounds on / (see
[15]) for details.

Appendix C

The purpose of this appendix is to prove Eq. (111.

*Uίh>ΠΉh
Here

2k+n

( C 2 )

is the nth modified Bessel function. Let us first expand the product of two such
functions:

oo / τ\2k + n + m k i

00
i .i \ i /.K —ι— n - I — m i <

(C.3)
& = o \^J κ\yn τ κ)\ym^r κ)\ ym -rn-r κ)\

The last equality was obtained by expanding (l+z)2k+m + n and comparing
coefficients with the product of the expansions of (l+z)k+m and (l+z)k+n.
Equation (C.I) will now follow from

Lemma C.I.

Proof. We have to show that
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For this we use (C.3) to obtain

2 2n)\{2m-2p)\ n + p

(Λ2my Λ2m + 2 + 2n y {2p + 2n)l(2m + 2-2p)\ m-p + l

tΌ\2j £0p!(n + p)!2(2« + p)!(m+l-p)! 4 m-p + 2

> γ (A y (2p + 2n)l(2m-2p)l I n + p _ m-p
= ίoVl phpl(n + pV.2(2n + py.(m-p)l* [n + p + ί m-p+ί

(C3)

where in the sum corresponding to l2

nΐ\ we changed m to m— 1. Note that the last
bracket in (C.3) is positive for n + p ̂  m — p. We may therefore restrict the sum over
m to m^n and the sum over p to p^m — n and thus bound (C.3) by

= o (n + p)l2(m-p)l2

1 / n + p m — p

\{2n + p)l(m-p)l2\n + p + l m-p+l)'

If we change the summation index p in the second term to m — n — p we see that we
only have to show that for 2p^m — n

\(2n + p)\(m-p)\2 ~ (m- n-p)\ (m + n + p)\ (n + p)\2 '

because the positive term then dominates the negative one and thus an{J) ^ 0.
So we just need

Lemma C.2. ^ ^

\(2n + p)\{{m-p)\)2

Proof. We proceed inductively. First put p = m — . T h e n the l e m m a holds
2

because then p + n = m — p (for even p) or p + n = m — p—l (for odd p). Replacing
n o w p by p — 1 the right h a n d side picks u p a factor

{n + p)2 n2 + 2pn + p2

(m—n — p)(n + m — p) {m — p)2 — n2 '

whereas the left hand side picks up the smaller factor

p(2n + p)

(m-p+l)2'
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