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Abstract. In this paper we give sufficient conditions for the stability of the
standing waves of least energy for nonlinear Klein-Gordon equations.

0. Introduction

In this paper we give sufficient conditions for the stability of standing waves of the
nonlinear Klein-Gordon equation:

u,—Adu+u+f(lul)argu=0, xeR", n>2, 0.1)
or equivalently the steady-state solutions of the modulated equation:
u, + 2iou,— Au+(1— w?*u+ f(|u) argu=0. (0.2w)

We show the stability of the standing waves of lowest energy in the energy norm.
They are stable with respect to the lowest energy solution set of

—Au+(1—o?u+ f(lu))argu=0. 0.3w)

The existence of solutions of (0.3w) has already been shown in [9] and [10]. In the
generality presented in Sect. I this problem was solved by Berestycki and Lions in
[10]. The condition for stability is very simple. If we define

d@) =172V, dx+(1— 0?2 [lp,ldx+ | Gllo,)dx,

where G'=f and ¢, is a least energy solution of (0.3w), then:

Theorem. If d(w) is strictly convex in a neighborhood of w,, then ¢, is stable.

Equation (0.1) arises in particle physics. It models the field equation for spin-0
particles [4]. The existence of stable standing waves has, until now, eluded any
rigorous proof. Anderson [1] showed by numerical computation that these
equations can have stable standing waves. He studied the particular example
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where f(lul) argu= — |ul*u+ |u|*u, xeR3, and showed numerically that there are
both stable and unstable standing waves. We have shown in [6] the existence of
unstable standing waves for this example when w is close to 1. Here we show that
d(w) is strictly convex for some w and therefore there are stable standing waves.
This problem was subsequently considered by Lee [4] and others who arrive at
the same conclusion, heuristically, using the principle of least energy.

It can be shown that the condition d(w) is convex, is equivalent to the condition
that the energy of Eq. (0.1) E(u, v) restricted to the charge Q(u, v)=Q(¢,,, iv¢p,) has
a local minimum at (¢, i®@,), where the charge Q(u,v)=1Im [uvdx. This agrees
with the physical intuition of the problem [4].

The theory of linearized stability does not give a clue to whether there are
stable standing waves or not. The spectrum of the linearized problem might lie
entirely on the imaginary axis and therefore one cannot deduce the stability of
these waves.

It is interesting to compare this result of stability with the instability result of
the ground state, i.e., the least energy steady state solution of Eq. (0.1). Berestycki
and Cazenave [2] showed that for special type of nonlinearities, solutions that are
close to the ground state blow up in finite time. In [6] we generalized this result to
show instability, but not necessarily blow up, of the ground state for all
nonlinearities that we can prove the existence of a ground state for.

Finally, for the Schrodinger equation: iu,— Au+ f(|ul) argu=0. Cazenave and
Lions [3] showed the existence of stable standing waves for some nonlinearities.
Berestycki and Cazenave [2] showed the existence of unstable standing waves for
another type of nonlinearities.

Notation. We employ here the standard notation
H!(R")= {u, radially symmetric functions on R"
lull = (J V() *dx + [ lu(x)*dx)'"> < oo},
L2(R") = {u, radially symmetric function on R"
lul, = (Jlu(x)IPdx)"'? < o0},
Co(R") = {radially symmetric, infinitely differentiable functions
with compact support},
fs)=o(s) <= |f(s)/s|=0 as |s|=0,
f(s)=0(s) <= |f(s)/s| is bounded as s—0.

1. Standing Waves
Consider the nonlinear Klein-Gordon equation
u,—Au+u+f(u)argu=0, f(O)=f0)=0, xeR", »n>2. (0.1)

iot

This equation has nontrivial standing waves, u(x, t)=¢'*'¢(x) provided that

—4p+(1—w*)e+f(e))argp=0 (0.30)
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has a nontrivial solution.
Definition 1.1. Let
To)=1/2[7plPdx +(1 - w?)/2 [ [plPdx + | G(lyp)dx,
where G'(|y))=f{(ly]) and G(0)=0,
K (p)=(n—2)/2 [ Ppl*dx +n((1 —0?)/2 [ [pl*dx + | G(lyldx),
M, ={peH,(R"), K,()=0,p+0}.

In order that Eq. (0.3w) has nontrivial solutions it is sufficient that f and G satisfy
[10]:
H1 3In>0s:G(n)<0
H2 lim fin/n'20, I<1+4/(n-2).
n= o

Definition 1.2. Let o*={infw=03:3n,(1 —w*K*/2+ G(y)<0}. Thus w*e[0,1).
We shall always take o* <w<1.

Lemma 1.1. For we(w*, 1)M,, is a C* hypersurface in H}(R") bounded away from
zero.

Proof. See [6].

Proposition 1.1. If ¢ € H}(R") is a solution of (0.30), and [ G(|¢,|)dx < oo, then
K (9,)=0.
Proof. Let ¢4(x)=¢,(x/B), then
Jol@g)=B""22[ IV ) 2dx + B"(1 — 0?2 [l l*dx + [ G(lo,Ddx),  (1.1)
since ¢,, is a solution then dJ,(¢,)=0 = d(J (p,)/dBl,-, =0, but
A (@ p)/dBls = =(n—2)2 [ IV |2 dx +n(l— )2 [lo )2 dx + | G(p,ldx),
therefore K (¢,)=0.

Theorem 1.1. Let w?e(w*?, 1), n>2, then
)= g 2.0
is achieved for some v=0, and
d(w) = {inf1/n [|Vv]?dx, K () <0, 00}
Moreover v satisfies
—Av+(1— 0+ f(v)argr=0. (0.3w)

Proof. First we show the equivalence of both minimization problems. Consider
any function ve H}(R") such that K (v)<0. Let v(x)=u(x/f). Then

K (vg)=B""*(n—2)/2 [ [Vo|*dx + p"n((1 — ©?)/2 [ [o?dx + [ G(lv))dx). (1.2)
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Now for f=1 K (v,)=K,(v) <0 and for f close to zero K (v;) >0. Therefore there
exist a f,€(0,1) such that K, (v, )=0, and
1nf Vv |2dx =By~ 2/n [ |Vol*dx <1/n [ |Vv|2dx.
Since J(v)=1/n([ [Vv]*dx + K ,(v)), then
dw)= vérbllf;, J () =inf{1/n | |Vv]?dx, K (v)=0,v+0}

=inf{1/n | |Vv]*dx, K (v) £0,v+0}.

Next, consider any minimizing sequence v,. Then ([ |Vv,|*dx) is bounded. By H.2
for every ¢ >0 there exist C,(¢) >0 such that G(y)> —¢&/2n*— C,(e)y' " !, where [ <1
+4/(n—2). Since K_(v,) =0, then

02 K, (1) =(n—2)/2 [ Vv 2dx + n((1 — 02)/2 [ Jo,2dx + | G(lv)dx)

and this implies

0=(n—2)2{ Vv 2dx+n((1 — w?> —&)/2 [ lv,|*dx — C,(e) [l [T *dx).

Now by Sobolev embedding H!(R")—LP(R"), 2<p<2+4/(n—2) and since
(| v |?dx) is bounded we get that |v,| is bounded. Therefore there exist a
subsequence, also denote it by (v,), such that

v 20 e HIRY and v, —v,el? 2<p<2+4/(n—2),
since for radially symmetric H}(R") —L?(R") is compact for 2<p<2+4/(n—2). By
lower semicontinuity of weak limits we have:

K ,(ve)=(n—2)/2 [ |V,|2dx +n((1 — 0?)/2 [ |vol*dx + | G(lv,|)dx)
< lim (n—2)/2 PP+ (1~ )2 [ o, dx + [ Gl ) =0.

And from the above argument the inequalities are equalities and the weak limit is
strong. Consequently v,+0 by Lemma 1.1, and

d(w)= DérAllfw Jo0)=J ,(vg).
Finally, to show that v, satisfies Eq. (0.3) we have by the Lagrange multiplier
method
0J ,(vy) =A0K ,(v,), (1.3)
or
— Avy+(1— o), + f(lve)) argo,
=~ (n—2)Advy + n(1 — 0o, +nf (Jv,]) argv,).
By Proposition 1.1 we have
(n—2)/2 [ Pvol*dx + n((1 — 0?)/2 [ [vel*dx + [ G(lvel)dx)
=A[(n—2)%/2 [ |Vv,2dx +n*(1 — w?)/2 [ [vel?dx + [ G(lvghdx)].  (1.4)
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But
K (vo)=(n—2)/2 [ |Vv,)2dx +n((1 — ®?)/2 [ [vel*dx + [ G(lvohdx)=0,
therefore
0=A[(n—2)%/2 | IVv,2dx —n(n—2)/2 | [Vv,|*dx],
0=2An—2) [ [Vvy|*dx,

and this implies that A=0.

Definition 1.3. Let S, be the solution set of d(w)= inf J (v).

veM,
Corollary 1.1. S is also the solution set of
infJ (v)=d), o’e(@*%1), 1/n{|Pv]?dx=dw).
Proof. Suppose Jv such that 1/n | |Vv]*dx =d(w) and J (v) <d(w). Then
1/nK (v)=J (v)—1/n | [Vv[*dx <O0.

But by Theorem 1.1

d(w)=inf{1/n{|Vv|*dx, K () S0,v=%0},
and this contradicts the above assumption. Therefore

infJ (v)=d(w), 1/n||Vv]Pdx=d(w).

Now to show that the solution set of this problem is S, we note that Vo which is a
minimum we have

8J,(v)=2dv, or —(1+A)dv+(1—w?*v+f(jv])argo=0, (1.5)
and by Proposition 1.1
1+ (n— 2)/2j [Vv|2dx + n((1 —wz)/Zj [v]2dx + f G(jvldx)=0
= J (0)=1/2[|Pv]*dx—(1+2) (n—2)/2n) [ |Vv|*dx = d(w)
= J,(0)=1/n[|Vo]*dx— An—2)/(2n) [ [Vv]*dx = d(w)
= A=0and .. K (v)=0 = veS,.

Corollary 1.2. Let v*e HX(R") be a sequence such that 1/n||Vt**dx—d(w) and
J (") —=d* <d(w), then v* has a strongly convergent subsequence v*—¢ e H(R") for
some @_,€S, and

J (G~ Gllp)dxi=0,  d*=d(w).

Proof. Since | |Vv**dx and J (v*) are bounded, v* is a bounded sequence in H(R")
(see the proof of Theorem 1.1). v* has a weakly convergent subsequence, also
denote it by v*, such that

vy e HYRY, vF—v,el?, 2<p<2+4/(n—2).

Now 1/n||Vv,|*dx §kii_n; 1/n [ [Pv*?dx = d(w), and Kw(vo)gkl_im K (v*) (by the proof
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of Theorem 1.1), therefore
Kw(vo)énkli_’_n;s(.]w(vk)— Un [ |P*?dx)
or
K (vp) S d" — d(@) Z0.
But from Theorem 1.1 we have
d(w)=inf{1/n[|Vv]*dx, K (v) £0,0%0}.

Therefore all inequalities are equalities and the weak convergence is strong.
Therefore

[ G(o)dx— [ o Ddx and d'=d().
Since 1/n [ [Vv,|?dx=d(w) and K ,(v))=0 = v,€S, and .. v*—>v e HI(R"), v €S,

Remark 1.1. This is the only place where radial symmetry is needed. One can
generalize the above result to include the space H*(R”) by using the notion of
“concentrated compactness” introduced by Lions [5]. In this case the sequence
vueH'(R") of Corollary1.2 will have a subsequence v, ~such that
v, (- + ¥, )eH'(R") is relatively compact in H '(R") for some sequence (y, ).

2. Standing Waves as a Function of Frequency

In this section we’ll study the behavior of d(w) = I/nf [V, |?dx as a function of the
frequency w.

Lemma 2.1. Let o, <w, be such that [w,,w,]C(w* 1), then d(w) and
jl(pwlzdx((pwe S,) are uniformly bounded in we[w,,w,].

Proof. Since K is continuous in , d(w) is bounded for we[w,,w,]. Now for peS,,
K (¢,)=0. By H2 G(n)=—cn'™"; I<1+4/(n—2), for n large, and G(0)=G'(0)

=G"(0)=0 = for any a>0, %n2+G(n)> —C ot Iy =1+4/(n—2),

f(% o] + G(Ivl)) dx=—C, [ [of* tdx.

Now because K (¢,)=0, and by Sobolev embedding
(n—2)/2[ Vo |2dx+n(1—w*—a?)/2 [lg,|*dx— C([ Vo, |*dx)* <0
for a small.
This implies that [|¢g,|*dx is uniformly bounded for we[w ,w,]C(w*,1).
Proposition 2.1. a) d(w) is a decreasing function of we(w*,1), b) if w, <w,,
i) d(w,) <d(w,)— (w3 —0})2f |, *dx+o(w, —w,)
ii) dw,))<d(w,)+(@3—w?)/2[lp,,|*dx+o(w, —w,).

Consequently, d(w) is a continuous function of we(w*,1).
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Proof. a) Let w, <w,, then
K, (0,)=0=2)2[Vo, Pdx+n((1-w3)/2[lo,,|*dx+ | G(e,,Ndx)
or
K, (9,)=0n=2)2[IVp, *dx+n((1-o?)/2[le, |*dx
+G(@,,,)dx) = (@} —0})/2 [ o, ldx,
K o(900,)= K, (90,)—n(@} —o})/2[lp, dx,
but K, (¢,,)=0
= K, (9,,)=—n;-0})/2]lp, [*dx<0.
Therefore
dw)=1/n[Ve, [*dx>inf{1/n [ |Vv]*dx, K, (1) <0,0%0},
since K, (¢,,,) <0,
= dw,)>dw,).
b) Again let w, <w, and 1p,,(x)=(pwl(x][3), then
K, (wp)=(n=2)p""2/2[ IV, [Pdx+np (1~ w3)/2[lp, [*dx+ [ Glo,,)dx),
K, () =(1=2""?/2[ Vo, [Pdx—B'(n—2/2[ IV, [*dx
+n(w3 —w?)/2 {1, [2dx).

Let
4,,= (02— 0})2[lp, [ 2dx, @.1)
then K, (py)=(n(n—2)d(w,)/2)"" 2—n((n—2)d(w,)/2+ 4, ,)p", and for
L =1/(1424,,/(n=2)d(w,)"?,  K,,(,;,)=0, (2.2)
wd@)SUn [V, Pdx=p5"2/n Ve, Pdx =5 2d(o,). 2.3)
But for o, —w, small, |4,,| < C(w?—w?), since {|¢,|*dx is bounded. Therefore
By i=1—4,/dw,)+o(4,,), (2.4)
and from Eq. (2.3) we get
dw,)Sd(w,)—4,,+0(4,,), (2.5)
or
dw,) Sdw,)—(@3—0})2[lo, |*dx+o(w,—,). (2.6)

To show the second part of b) let y.(x)=¢,,,(x/y), then
K, (p,)=0—=21""2/2{Ve,,I*dx+ny"(1 - )2, 2dx+ [ G(9,,)dx),

or

K, (p,)=(n(n—2)d(w,)/2y" " * = n((n—2)d(w,)/2— 4, )", 2.7)
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where
4y =(@3~07)2[lp,,| dx, (2.8)
since | [Vo,,|*dx=nd(w,) and K, (¢,,,)=0.
For

"= 1/(1 - 24‘21/(}'1— 2)d(w2))1/2 B

) ) 2.9)
K, ,)=0 = d)sUn|Vy, Pdx=7]"*/nf|Ve,, Pdx=y]"dw,),
but for w, —w, small
ViT =144, /dw,)+o(w,—w,), (2.10)
cd(w ) <d(w,)+ (@3 —w})/2[le, 12dx + o(w, —w,). (2.11)

The continuity of d(w) follows from Eq. (2.6) and (2.11).
Next we’ll need this lemma about strictly convex functions.

Lemma 2.2. Suppose h(w) is a strictly convex function in a neighborhood of w,, then
Ve >0 IN(e)>03:|w,— 0yl =¢,
a)-w,<w, <o, |o—w,|<e/2

(h(@,) = h(w))/(w, — ) = (h(wo) = h(@))/(@o — ) = 1/N(e),
b) w<wy<w,, lw—wy|<e2
(h(w,)— h(@))/(w, — ) 2 (W(w,) — h(w))/(w, — @)+ 1/N(e).

Proof. The proof is very easy to see geometrically from the picture below.

Fig. 2.1

We'll give a proof for the case w,<w,<w and the second part follows by an
identical argument. Assume that the claim is false. Then there is an ¢, >0 and a
sequence w3 :|w, —wg|=¢o, |0, —wy| <e/2,

(h(@o) = hw ) (o — @) = 1k <(h(@,,) — (@ )(@,, — o). (2.12)
Pick w, such that o, <w, <w,, then
(h(@o) = h{@w )/ (o — ;) > (h(w,) = h(w))/(@, — ®}) (2.13)

[since h(w) is convex]. From Eq. (2.12) we get
(h(ew,,) — h(w))/(@,, — o) > (h(w,) — h(o)/(0, —w)—1/k. (2.14)
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Since w, is bounded it has a convergent subsequence. Also denote it by w, such
that w, ~»w, 2w, >w, >w,. Now from Eq. (2.14) and continuity of h(w)

(h(e,,)— W@ )@, — ®,) = (h(w,)— hw,)/(0, —o,). (2.15)
But since A(w) is strictly convex
(h(@,)— h(w )@, —w,)> (hw,)— h(o)/(w, —o,), (2.16)

which contradicts Eq. (2.15). Therefore the claim is true.

Theorem 2.1. Suppose that d(w) is strictly convex in a neighborhood of w,, then for
w close to wy In(w)>0, y(w,)=0, such that

()~ d(@g) Z (@ — ©) [, *dx +1(w).
Proof. Let w<w,,  close to w,. Then from Lemma 2.2 and for o <w,<w,,
(d(w,) = d@)/(@, —w) =(dw,) - d(wo))/(@, —w,)— 1/N(w), (2.17)
and from Proposition 2.1
(dw,)—dw)/(@, —wa) < — (@, +@e)/2 [ 1§, )2 dx + 0o(w, — wy)/(w, — w,).
From Eq. (2.17) and (2.18) (218)
()~ d(@))/(@, — ©) S — (@, +0)/2 [ ¢ *dx — 1/N(@) + 02, = 0o)/(@, = ).

Let w, »w,, then by continuity of d(w)

(d(@o)— d@)/(wy—®) = =, [ @, |*dx—1/N(w),
or
d(w)— d(@y) Z wg(we— ) [ @, 7 dx +(w, — w)/N(w). (2.19)
For w>w,, from Lemma 2.2 and w>w,>w,, we have
(d(@) ~ d(@))/(0—0,) 2 (d(we) —d@,)/ (@, —») +N@), (220
and from Proposition 2.1
(d(wo)—d(@ )@y —w,)Z(@y+ )2 [ @, Pdx+ o(w, — wy)/(w; —w,). (2.21)
Again from Eq. (2.20) and (2.21) and letting w, —»w,,
(d() = d(c4)) Z = o(0 = ) [ |9, *dx + (0 — @20)/N(w) (222

and this concludes the proof of Theorem 2.1.

3. Stability of the Standing Waves

Now if we consider the Cauchy problem
u,—Au+u+f(ul)argu=0, xeR",
u0)=u,e H}(R"), u(0)=u,eL*(R"),
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we don’t have strong solutions (u(-)e C([0, T], H}(R"),u,(-)e C([0, T), L2(R")) for
the general nonlinearities we are considering; but we always have weak solutions

(u(-)e L=([0, T), H} (R"), u(-)e L*([0, T), L7 (R")),

that are weakly continuous in t. Also we don’t necessarily have uniqueness, or
energy identity, but we always can find a weak solution that satisfies the energy
inequality

1/2 [ u (012 dx + T o(u(t) £ 1/2 [ u, Pdx+ T o(uy) ,
provided | G(Jul)dx < oo (see Strauss [8]).

Definition 3.1. Define the metric space X = {completion of ue Cj(R") with the
metric

Q(up “2)2 ||u1 —uzll + U (G(lull)— G(luzl))dxl

and define the modulated energy functional of Eq. (0.2w), E(u, v)=1/2[v|[*dx
+J,(u), ue X, ve I2(R").
Rl ={ueX,ve LAR"); E (u,v)<d(w), K (u)>0}{(0,0)}
= {ueX, ve LX(R"): E, (u,v) <d(®), 1/n | [Pul2dx <d()} ,
R2={ueX,ve L:(R"); E (u,v)<d(w), K (1) <0,u=+0}
={ueX,ve L2(R"); E,(u,v) <d(w), 1/n | [Vul*dx > d(w)} .

Lemma 3.1. R} and R? are invariant regions under the flow bf 0.2w) for the
solutions that satisfy the energy inequality.

Proof. We'll prove this by contradiction. Let (u,,u;)e R, and assume that there
exist a ¢, such that (u(r,), u,(t,))¢R.. By lower semi-continuity of K, (u(t)) there exist
a minimal ¢, such that (u(t,),u(t,))¢R., ie. K, (u(ty))<0 and K (u(t))>0 for
te[0,t,). Now
Un [ |Pulty)2dx <lim 1/n | [Vu(t)|*dx
t—to
t<tp
<lim 1/n(f [Vu()|*dx + K ,(u(t)),
t—to
t<to

therefore

n§IVuto)?dx < lim J ,(u(8) < lim E,(u(t), u(0)) < d(w),

t—to t—to

and we also have K(u(t,))<0. This contradicts the definition of
d(w) =inf{1/nf [Vv|*dx, K (v) <0,v+0}.

Therefore R} is invariant under the flow of Eq. (0.2w). Similarly we can show that
R2 is also invariant.
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Lemma 3.2. Let u(t) be a solution of
u,,— Au+u+f(lu)) argu=0,
u0)=u,eX, u(0)=u,eL}R",

323

that satisfies the energy inequality. Then for every K >0 there exist 6(K) such that if

(g, Poyo) + 1y — i@l < 5iK) )
then d(w,+1/K)S1/n [ Vu(t)?dx < d(w,— 1/K) V.

Proof. Fix K>0 and let o, =w,+1/K, o_=w,—1/K, and u(t)=v (1)

=v_(t)e'*~". Then
Uy, 2w vy, — Ao, +(1—wi), +f(v,|)arge, =0,
v,0)=uy, v 0)=u,—iw, u,.
The energy inequality of this equation is
E,, wi(0) v (0)S1/2[|u;, —iwuol*dx+1/2 [ |Vu|*dx
+(1—w%)/2 [ lugl?dx + | Glugldx,
or
120 vs (OPdx+J, (@) S1/2 [ |u, —iw ugl2dx +J,,, (),
but
luy —iw yugl, Sluy —iwep,, |, +lwg@,, —w L@, |, + 0L @, —o ul,

= 1/2[u; —iwug|?dx (0o —1)?*/2 [ |, |2dx

+ C(@4, 00) [ luy —iwop, |*dx+ [ lug— @, |*dx.
Now since d(w ) <d(w,)<d(w_) and

dwo)=1/n{ Ve, [*dx=1/n[|Vuy|*dx+ 0(S).
If we pick 6 small enough we have
dlw ) <1/n{|Vuo)*dx <d(w_),
E,, (uguy— i ug) (0o —w.)*/2 [ o, |2dx+J, (¢,,)+ O(5)
S (00— )0 [ 19 42X+ T 4 (@) + 0(9) ,
since (wf—w3)2+(wy— w1 )*2=(wy—w )0,
By Theorem 2.1 and for § small
(wo— 1) [ 10,2 dx+d(wy) + 0(9)
S(wo— 02 )wg [ @y, |2dx +d(@y) +n(w,)Sdw,),

and therefore from Eq. (3.6) we have the energy inequality

12, (OPdx+J,, (u(t) <dw,) Vt

= dw.)<ln{|Vu@)Pdx<d(w_) Vt
by Lemma 3.1.

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

3.7)

(3.8)



324 J. Shatah

Theorem 3.1. If d(w) is strictly convex at w,, then the standing waves of frequency
w,, are stable in the following sense : for every € >0 there exists a 6(¢)>0 such that if
Q(u07 qoa)o) + |u1 - iwo(Pwolz < 5(8)’ then

inf’ (Q(u(®) w) +lut)— iwgpl,) <e for all t.

PESwq

Proof. Assume not. Then 3 sequence (u,,,u,,), () and an &,>0 such that
(o 11,) (@ i06P, JEXDL]

and

inf Q(“k(tk)> p)+ |ukz(tk) —iwgpl,>¢.

WeS e,
From Lemma 3.2, 3 subsequence also denote it by (1,(t")) such that
d(wy+ 1/k) S 1n [ Pu ()P dx < d(w,— 1/k),
and ({ [u,(t*)|*dx) is bounded (by Theorem 1.1). Now as k— o0
Un [ |Vu ()2 dx—d(w,) (3.9)
from continuity of d(w). From Eq. (3.8) we have
12 {10t dx+J,,  (u(t9) <d(wy + 1/k),
therefore 3 subsequence such that
J oo ()= d" <d(w,). (3.10)
By Corollary 1.2 Eq. (3.9) and (3.10) imply that JypeS,, such that
lu ()~ w] -0,
o) = d(e,) .
Again from Eq. (3.8) we have
§10 (P dx = [u (1) — i (95 ~0,
and
I (Gl () — Gllw)dx| -0,

which contradicts the assumption of instability.

4. Examples
We'll present here two examples where we have stable standing waves.
Theorem 4.1. The equation

u,~Au+u—JuP 'u=0, xeR", n=3,

has stable standing waves for 1 <p<1+4/n.



Stable Standing Waves 325

Proof. In order to show the existence of stable standing waves it is sufficient to
show that d(w) is strictly convex for some interval of w.
Solution of the equation

— 40, +(1-0*)p,—1p,l"'0,=0 (4.1)
has the following scaling property: let v(x)=(1/6)¢ (x/f), then
—0p*Av+(1 —w?)ov~6%vP~ tv=0, 4.2)
and for
Br=1—w?=6""", 4.3)
Equation (4.1) becomes
—Av+v—[pP " tv=0. (4.4)

Now
[I7ul*dx=p"~2/6% [ Ve, |2dx
= [V, l2dx=(1— o/ [ [Vo,|2dx, (4.5)

where a=(4-—(n—2)(p—1))/2(p—1).
Now it becomes easy to see when d(w)=1/n[|Ve,|*dx is strictly convex,

() =(1—w)/n [ Vo |2dx=(1— w?Fd(0), (4.6)
= d'(w)=[—20(1 - 0?)* ! +4dofo— D1 — w?)*~ 2]d(0)
= d'(w)=20[ -1+ (20— Dw?] (1 — 02)*~2d(0), 4.7)

since 1<p<1+44/n, a>0, 20— 1>0.
Therefore d”(w)>0 implies — I+ (20— 1)w? >0,

0?>1/2u~1),
a=@4-n-2)(p—1)2p—1).
Moreover w?>1 for Eq. (4.1) to have a solution. Therefore
‘ 1>0?>(p—D/(4—(n—1(p—1),

and this set is not empty for 1< p<l+4/n
Remark 4.1. For 14+4/n<p<1+4/(n—2) we showed that all standing waves
obtained by Theorem 1.1 are unstable [6].

Another example we’ll consider is one which appears in studying spin-0

particles in field theory [4]. The potential, i.e. G(|u]), for this model is of the form
Glul) = — |ul*/4 +ul®/6.

Proposition 4.1. The equation

—du+(1—oHu—[u*u+|u*u=0, xeR3, (4.8)
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has nontrivial solution ¢, of lowest energy for w*e€(13/16,1). Moreover
dw)=1/3[Vep, |?dx—00 as w?—13/16.

Proof. For Eq. (4.8) to have nontrivial solution it is sufficient to have 1—w?>0
and 3y such that (1 —w?)?/2+ G(y) <0. Now

(1—aw?n?/2—n*/4+n%/6<0
for some 7 if
(1/4)* —4(1 — 0?)/12>0
= w?>13/16.

We show that d(w)—> oo as w2—13/16 by contradiction. Assume that d(w) remains
bounded then by Theorem 1.1 |¢,|l is bounded. This implies that 3 sequence
®,~13/16 and ve H}(R?) such that ¢, *~ve H;(R?). Again by Theorem 1.1

K, () sSimK, (¢,,)=lm(; - wf)/2[le,*dx+ K, (@,,) 4.9)
where w3 =13/16. But K, (¢,,)=0, therefore
K, (1) <0. (4.10)

Now K, (u)>0 Yue HY(R?), u=%0, so from (4.10) we have that v=0. By Eq. (4.9)
we have that-the convergence is strong. But d(w)=1/2[[Ve,|*dx is monotone
decreasing function,

dw,)>0 = 0=kli_m d(w,)>d(w,)>0

a contradiction. Therefore d(w)— o0 as w—13/16.

Theorem 4.2. The equation
u,— Au+u—luPu+ul*u=0, xeR3
has stable standing waves for w close to 13/16.

Proof. By Proposition 4.1 d(w)— o0 as w—13/16 and by Proposition 2.1 d(w) is
monotone decreasing function of w. Therefore the graph of d(w) looks like

dlw)

3116 1
Fig. 4.1
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Now it is easy to see that d(w) is strictly convex for w close to 13/16 and by
Theorem 3.1 these standing waves are orbitally stable.

Remark 4.2. This particular example was studied numerically by Anderson [1]
where he showed that for w? close to 13/16 there are stable standing waves and
that for w close to 1 they are unstable and this is precisely what we show in [6].

Acknowledgement. I would like to thank Professor Walter Strauss for his helpful remarks.
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