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Abstract. We consider analytic vacuum and electrovacuum spacetimes which
contain a compact null hypersurface ruled by closed null generators. We prove
that each such spacetime has a non-trivial Killing symmetry. We distinguish
two classes of null surfaces, degenerate and non-degenerate ones, characterized
by the zero or non-zero value of a constant analogous to the "surface gravity"
of stationary black holes. We show that the non-degenerate null surfaces are
always Cauchy horizons across which the Killing fields change from spacelike
(in the globally hyperbolic regions) to timelike (in the acausal, analytic
extensions).

For the special case of a null surface diffeomorphic to T3 we characterize
the degenerate vacuum solutions completely. These consist of an infinite
dimensional family of "plane wave" spacetimes which are entirely foliated by
compact null surfaces. Previous work by one of us has shown that, when one
dimensional Killing symmetries are allowed, then infinite dimensional families
of non-degenerate, vacuum solutions exist. We recall these results for the case
of Cauchy horizons diffeomorphic to T3 and prove the generality of the
previously constructed non-degenerate solutions.

We briefly discuss the possibility of removing the assumptions of closed
generators and analyticity and proving an appropriate generalization of our
main results. Such a generalization would provide strong support for the
cosmic censorship conjecture by showing that causality violating, cosmological
solutions of Einstein's equations are essentially an artefact of symmetry.

I. Introduction

As is well known, there exist vacuum solutions of Einstein's equations such as the
Taub-NUT solutions which contain smooth, compact Cauchy horizons. These
horizons separate globally hyperbolic regions (e.g., Taub space) from causality
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violating regions which contain closed timelike lines (e.g., NUT or Newman-Unti-
Tamburino space). The two parameter family of Taub solutions are all spacially
homogeneous and thus very special, but one can construct infinite parameter
families of inhomogeneous vacuum spacetimes with qualitatively similar proper-
ties [1, 2]. In [2] for example, we showed how to construct an infinite dimensional
family of vacuum spacetimes which each have a compact Cauchy horizon
diffeomorphic to T3 with closed null generators and which in general have only a
single Killing vector field. One can extend this construction to obtain an infinite
parameter generalization of the Taub-NUT solutions for which the Cauchy
horizons are all diffeomorphic to S3 and are always Killing horizons with closed
generators [3]. Each of these solutions has a single Killing vector field which is
space-like in the globally hyperbolic region, null on the horizon (and thus tangent
to its null generators) and timelike in the causality violating extension (where its
orbits become closed timelike curves). These families of extendible spacetimes with
one Killing field are rather large, having (roughly speaking) half the dimension of
the space of all solutions of the same symmetry type.

The existence of such large families of Taub-NUT-like solutions suggests the
danger of a counter-example to the strong cosmic censorship conjecture [4]. Can
one remove the symmetry restriction and construct still larger families of
extendible, causality violating spacetimes? Do there exist open sets of such
spacetimes within the space of all vacuum solutions? If so, then cosmic censorship
is false.

The purpose of this paper is to show that the assumption of a Killing symmetry
was crucial to constructing solutions of the type described above. More precisely,
we shall show that analytic, vacuum (or electrovacuum) spacetimes with compact
null surfaces ruled (in a local product bundle fashion) by closed null orbits
necessarily have a Killing symmetry. The Killing field implied by the theorem is
always tangent to the generators of the compact null surface in question. In the
non-degenerate case (a term we shall define properly in Sect. Ill) the null surface is
always a Cauchy horizon and the Killing field is always spacelike in the globally
hyperbolic region and timelike in the extension. In the degenerate case the null
surface need not be a Cauchy horizon at all. In Sect. IV we shall exhibit an infinite
dimensional family of degenerate solutions on T3 x R which each have a compact
null surface through every event.

The assumption of analyticity is probably not crucial to the main argument
but is used here to simplify the analysis. More important is the topological
constraint that the generators of the null surfaces form closed orbits (with a local,
but not necessarily global, product bundle structure). However, we believe that
even this condition may be removable and that only compactness of the null
surfaces (and satisfaction of the field equations) is essential. We shall return to this
question briefly in the concluding section.

The plan of this paper is as follows. In Sect. II we describe more precisely the
family of spacetimes we propose to study and introduce convenient coordinate
charts on neighborhoods of their compact null surfaces. In Sect. Ill we prove our
main theorem on the existence of Killing symmetries. In Sect. IV we discuss the
degenerate solutions for the special case of null surfaces diffeomorphic to T3 and
characterize these solutions completely. We also show that the non-degenerate
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solutions on T3 x R are precisely those constructed (in the sense of convergent
power series) explicitly in [2]. Finally, in Sect. V we discuss some possible
generalizations of our result and their potential relevance to the cosmic censorship
conjecture.

II. Mathematical Preliminaries

A. Geometrical Assumptions

Let (4}V=M x R, where M is a compact three manifold (without boundary) and let
g be a Lorentz metric on (4}V. We want to consider such spacetimes which are time
orientable and which have compact null embedded hypersurfaces diffeomorphic to
M with closed (null geodesic) generators. More precisely, we want to consider null
hypersurfaces which have a local product bundle structure in the following sense.
If N is such a hypersurface and y is a closed null generator of N, then there exists
an open set UyC

(4}V containing y such that
(i) Uyr\N is diffeomorphic to By x S1 for some two-manifold Bγ and some

diffeomorphίsm φγ: UynN-+By x S1, and
(ii) there is a smooth, surjective map πy:Byx S1-+By such that, for any pεBr

By x S1 ̂ By x πy

 1(p) and the fiber π~ 1(p) is diffeomorphic (via φ~ *) to a closed
null generator lying in UynN.

In other words, φ~l embeds n~1(p) as a closed submanifold of UynN
coinciding with a null generator of N for each pεBy.

We shall refer to submanifolds of the type Uyr^N as elementary regions of N.
By definition, each elementary region is a product bundle with fibers diffeomor-
phic to S1 and coinciding with null generators of N. By compactness, N can be
covered by a finite number of such elementary regions.

These assumptions imply that if we introduce coordinates {xα,x3} on By x S1

such that {xα} = {x1, x2} are constant along the fibers and such that x3 is a periodic
coordinate on the circle (with, say, period 2π), then we can use these (via φy) as
coordinates for UyπN with the property that the {xα} are constant along the null
generators of Uyr^N. Note that we do not require that the x3 coordinate be geared
to any particular parametrization of the null generators lying in UynN. Ultimately
we shall find that there is a "natural" parameterization of these generators defined
by the action of a Killing field on N. We shall then be able to "glue" the elementary
regions together in such a way as to regard TV as a principal U(l) bundle over a
suitable quotient manifold. A priori, however, no such preferred U(l) action on TV
is assumed to exist.

Several examples may help to clarify the range of possibilities covered by the
above assumptions. The simplest case is that in which N and its null generators
form a global product bundle, i.e., N is diffeomorphic to B x S1 for some compact
two manifold B and there exists a smooth projection π:N^B whose fibers
coincide (as closed submanifolds ^S1) with the null generators of N. Examples of
this type were constructed in [1,2] for the special case JV«T 3 «T 2 x S1. More
generally, one can consider non-trivial circle bundles which only locally have the
product structure discussed above. For example, the horizons of the Taub-NUT
solutions are diffeomorphic to S3 and their null generators coincide with the fibers
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of a Hopf fibration π:S3->S2. As we mentioned earlier, one can construct an
infinite parameter family of vacuum spacetimes with this topologically non-trivial
horizon structure [3].

If {xα,x3} are coordinates defined on an elementary region Uγr\N of the type
described above, then there are many ways to extend these to coordinates
{ί,xα,x3} on a neighborhood UγπRx(UγπN) of Uyr\N such that t/yn7V
corresponds to the level surface t = 0 and such that the (locally defined) vector field

d
— 3- has closed integral curves on Uγ. A particularly convenient choice for such a

construction is defined in the following subsection.
Since JV is compact, one can cover a full neighborhood of JV in (4)F with a finite

number of such developments of elementary regions in N. In any such local
coordinate chart the Lorentz metric g has the properties that

(2.1)
0 ( 3Uo*0, 0=1,2,

and that gab\t = 0 is positive definite. The first two conditions ensure that JV is null
d

and that —-3 is tangent to its generators, whereas the last two conditions are
ex N

needed for the non-degeneracy and Lorentz signature of g. Our basic analyticity
assumption is that

(iii) g is analytic in a family of charts of the type described above which cover a
neighborhood of N in (4)F. If Maxwell fields are considered, then the field tensor
F = Fμv dxμ Λ dxv is also analytic.

B. Coordinate Conditions

Given an elementary region in TV we wish to construct new coordinates on a
neighborhood of this region which simplify the form of the metric. We shall follow
a procedure somewhat analogous to the construction of gaussian normal coor-
dinates but adapted to the null character of N. Define a null vector field k\N

throughout the elementary region by the algebraic conditions

*tt"<α-o=o,

It is straightforward to solve these equations explicitly and show that k\N is
analytic, nowhere zero and everywhere transversal to the elementary region
(having |̂ί = 0 nowhere zero). Now for each point p in the elementary region,
construct the unique, affinely parametrized, null geodesic through p with the initial
conditions (p,k(p)). Define coordinates on a neighborhood of the elementary
region by the requirements that the "spacial" coordinates {x3',xα/} are constant
along the null geodesies so constructed and that the "time" coordinate t' vanishes
on N and coincides with the affine parameter time along each of the transversal
null geodesies.
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In such a coordinate system the metric takes on the simplified form

g = 2dt' dx3' + φ(dx3')2 4- 2βa dxa' dx3' + μab dxa' dxb', (2.3)

where μab is positive definite near ί' = 0, and where

0|f, = 0=j8J f, = 0=0. (2.4)

Because of their similarity to gaussian normal coordinates, we shall refer to such
systems as gaussian null coordinates.

An alternative construction which leads to the same metric form (and also
demonstrates analyticity of the coordinate transformation) is to regard the
coordinate conditions

_ dxa dxβ

dxa dxβ

gt'*' = ί = Wdx*9Λβ9 ( }

dx* dxβ

ta' dt' dxa' aβ'

as an evolutionary system for the new coordinate functions {tf,x3\xa'}(t,x3,xa).
dxa> I dxa dxμ>

One solves Eqs. (2.5) algebraically for the time derivatives -—- using ——- —ΊΓct \ oxμ oxp

dxa dxμ'\
= δΛ

β, etc., to define -—^ in terms of —— and proves the local existence of analytic
(JX OX I

solutions of the resulting system by means of the Cauchy-Kowalewski theorem,
taking

(2.6)

as initial conditions.
Somewhat more generally one can take the alternative initial conditions

ί/(0,x3,x f l)-0,

X3\0,x3,xa) = h(x3,xa), (2.7)

where det
δx"

φO, —-7Γ- φO, and where x3'(Q,x3,xa) = h(x3,xa) is a new periodic
oxό

coordinate function (with period 2π) on each null generator xa = constant i.e., -
\ <

is non-vanishing and periodic in x3 for each xa and /z(x3 + 2π, xα) = /z(x3,xα) + 2π I.



392 V. Moncrief and J. Isenberg

These more general initial conditions allow us to change the labeling of the null
generators and to change the parameterization of each null generator inde-
pendently in an essentially arbitrary (analytic) fashion.

One should keep in mind that gaussian null coordinates are geometrically less
"natural" than gaussian normal coordinates since they are non-trivially geared to
the choice of coordinates in the initial surface. Thus, for example, a change of
initial conditions from the form (2.6) to the form (2.7) will, in general, change the
family of transversal null geodesies along which the {x 3 \x a } are constant and
change the "time" function t' defined by the construction.

C. Field Equations

We present here, for subsequent reference, the Einstein-Maxwell equations
expressed in a gaussian null coordinate chart {ί,x3,xfl}. The metric has the form

g = 2dtdx3 + φ(dx*}2 + 2βa dx° dx3 + μab dxa dxb , (2.8)

where φ and βa vanish at the null surface f = 0, and where μab is [for each fixed
(ί, x3)] a Riemannian two-metric near t = Q. We shall follow the sign conventions
of Misner et al. [5] and, in addition, choose units such that G = c= 1.

The components of the Ricci tensor are given by

— λπab. _|_ 1 ..ac. bd
— 2μ μab}tt^r4μ μ

2 P ^ab, f 3 ~*~ 4 ̂  ^ /^flfc, ί^cd, 3 '

-*- ΛΛ \ I , n.\Γ7 I ^ nr \ {?.\Γ7 I *• cd

, 3 - "V 33 + Wα6, 3^.
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U \Γμ(- L f c > 3 4 2 > ( 2 )

/ μ L \ z

ί μd

α, t( - 2μbdt 3 + 2 < 2> % + ((/>- ̂ )//M§ f)} , (2.9)

where /^αb is the inverse of μab, β
a = μabβb,

 (2}Rab is the Ricci tensor of μab and (2)Fα

represents covariant differentiation with respect to this metric. In applying the
operator (2)Pα, one treats φ,φ t,φ 3 as scalars, βa, βa f, βa 3 as covariant vectors and

t*ab> Vab,t> μab,3
 as second rank tensors respectively [e.g. (2}^b(βa>t) = 8b(βait)

-(2)ΓabβCίt>
 where (2)Γbc are the Christoffel symbols of μab]. Finally, μ = det(μj.

When Maxwell fields are included, the field tensor, F = Fμv dxμ A dxv, satisfies

f [μv ;Tl = 0, (2.10)

and

<4> 17̂  = 0, (2.11)

where

μ yμ yμ
bcFtc + β"F,3 + μ"bF3a + β"βbFat + μbcβaFca)-]fb,

yμ
+

> ί -
yμ yμ

cFc3 + μ-̂ F,, + μac(β"βd - φ)Fa + β"F3t + βaβcFtc)\t

3

(2.12)

Finally, since the Maxwell stress energy tensor has zero trace, Einstein's
equations become

(2.13)
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where

Tίfe = 2Ft3Fbt + 2FtaFbeμ°*

8πΓ33 = 2F3βF3χ*- f 0FμvF"v - 4F3βF3fJ8« + 2(F3ί)
2 (β βa - φ),

-2F3tFbaβ*-2F,aFbtβ«-

%πTab = 2Fa,Fbt + 2Fb3Fat + 2FatFbt(βcβc -φ)- 2FatFbcβ
c

— 2FbtFacβ
c + 2FacFbdμ

cd — \ μabFμvF
μv, (2.14)

in which

77 c v t v _ _ 2 ( F \2 i 417 17 βa-\-Λp p uab — 4F F ubcβa

ΓμvΓ ~ ZVΓί3/ ^*Γt3rtaP ' ^Γ3bΓta^ ^ΓabΓtc^ P

+ FabFcdμ
acμbd - 2FtaFtbβ«βb + 2FtaFtbμ

ab(βcβc - φ). (2.15)

III. Existence of a Killing Symmetry

In this section we prove our main result: that analytic vacuum (and elec-
trovacuum) spacetimes with compact null hypersurfaces of the type defined in
Sect. II always have a Killing symmetry. We shall be led to distinguish two
subclasses of such compact null surfaces, non-degenerate and degenerate surfaces.
The non-degenerate hypersurfaces are always Cauchy horizons which separate
globally hyperbolic open submanifolds of spacetime from their causality violating,
analytic extensions. The degenerate null hypersurfaces, on the other hand, need
not be Cauchy horizons at all. We shall characterize the degenerate solutions
completely for the special case (4)F^T3 x R when we return to this question in
Sect. IV.

To simplify the statement of the proof we shall discuss the vacuum case by
itself. We shall then describe the slight modifications that are needed to encompass
the electrovacuum case.

A. Local Arguments

A key step in the argument will entail a change of coordinates within an (arbitrary)
elementary region of N and the construction of a new (gaussian null) coordinate
system on a neighborhood of that elementary region. We shall distinguish the new
(gaussian null) coordinates and metric functions from the old by a supercript
"prime" ('). Thus we shall write (t'5 x

3',xα/), φf,βf

a>μf

ab, etc. for the transformed
quantities. Furthermore, we shall (wherever convenient) designate the restriction
of a function to the null hypersurface t = t' = 0 by an overhead "nought" (°) writing,
for example, μab, φ ί? etc., for μab\t=0 and φ J f = 0 .

We first note that the Einstein equation #33 = 0 restricts to

+ -μacμbdμ μ ]| = (3.1)
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where μ = det(μab). This is essentially Raychaudhuri's equation for the null
generators of N. Since μab must be smooth on each null generator, we may apply
the maximum principle [6] to Eq. (3.1) (regarded as an elliptic equation on S1 for

In |/μ) to prove that μ 3 =0 and thus, again from Eq. (3.1) that μab 3 = 0. Thus in
any gaussian null coordinate system on any elementary region of N, μab is constant
along the null generators.

Now restrict the equation R3b = 0 to ί = 0 and use the fact that μab 3 =0 to
derive the equation

Integrate this equation with respect to x3 and appeal to the smoothness of βb t to
show that

, (3.3)
OX

2π

and thus that J dx3φ t is constant on an elementary region. Let us designate this
o

constant by 2πk so that
2π

J dx3φ^t = 2πk = constant (3.4)

throughout the given elementary region. We shall find later that k does not vary
from one elementary region to another.

We now show that one can introduce new coordinates on an elementary region
and corresponding new gaussian null coordinates on a neighborhood of this
region such that the transformed quantity φ t, is constant throughout the
elementary region and has the value k defined above. To accomplish this consider
a coordinate transformation of the form

x - / z x , x , ^

xfl = xα,

and construct, as described in Sect. IIB, the associated new gaussian null
coordinates (£',x3',xα/) on a neighborhood of the original elementary region. In
general, this neighborhood will be different from that covered by the original
gaussian null coordinates (ί, x3, xα) though, of course, the two neighborhoods will
have the same intersection with N (at t = t' = 0). By writing out the transformation
equations, one can evaluate the quantity φt,\t, = Q in terms of the original metric
functions and the (as yet unspecified) transformation function h. The result is:

d ίdh\ ( d h \ o ί d h
tdx3/ ' \dx

dh
which is a Riccati equation for the function

Equation (3.6) can be derived in a slightly different way which illuminates its
geometrical significance. Recall that the acceleration a of a parameterized curve,
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defined in any coordinate chart by

obeys the covariance relation

dxμ'
α*'= —α«. (3.8)

In any gaussίan null coordinate system (ί,x3, x"), a curve satisfying ί(λ) = 0, x"(A)
= constant has an acceleration given by

a' = a" = 0, (3.9)

The covariance relation (3.8) therefore leads, for a transformation of the type
considered, to

iV

dx3 dλ2 2 \dλ

Substituting the transformation x3 — /z(x3,xα) into this equation leads directly to
the Riccati equation £3.6).

We wish to set φ't, = k = constant and show that Eq. (3.6) has an analytic

solution u= —3 which defines a new periodic coordinate function x3 throughout

dh
the elementary region. We therefore set φ't, = k, u= -^ and rewrite Eq. (3.6) as

|«2=0, (3.11)

and recall that the value of k is given by Eq. (3.4).
We can solve Eq. (3.11) explicitly but we must distinguish the two cases, k = Q

(the degenerate case) and /cΦO (the non-degenerate case). First consider the non-
degenerate case and assume for definiteness that /c>0.

Defining

(3.12)
\ o /

and recalling Eq. (3.4), we see that

(0,xα) = l, (3.13)

where we regard φ /x3, xa) as a periodic function of x3 (with period 2π) defined for
all x3eR.

We claim that the appropriate solution of Eq. (3.11) is given by
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k ~2π

j dy(p(y
0

1 ., —— e

2 δ ,
In

k d x 3 i n

~2π

ί

,X°))

π/c

X3

-ί
0

<ty(p(3>,Xβ))

l-e"πk

dy(p(y,xa))

X1

1 Π ΛΊ 711 \1 (A y\\-'\\

0

(3.14)

To justify this we verify directly that

(i) iφc3, xα) = ——-̂ — is an analytic, nowhere vanishing solution of Eq. (3.11)

for all x3eR,

(ii) ——-̂ — is periodic in x3 with period 2π and has the integral property

h(x3 + 2π, xα) — /ι(x3, xα) — 2π.
The proof of (ί) is facilitated by noting that the quantity

f dy(p(y,xa))

1-e -πk

satisfies, by virtue of Eq. (3.13),

(3.15)

a) = e~πkD(x\xa), (3.16)

Vx 3 eR and thus never vanishes for all x3eR (since clearly D(x3,xα)>0,
Vx3E(-oo,2π]).

The periodicity of
dh(x3,xa)

dx3 = u(x\xa) follows from (3.13) and (3.16), which

give

a) ^2 p(x\xa)

,xα) kD(x3>,xa)
(3.17)

To complete the proof of (ii), in view of the periodicity of u, it suffices to note that

h(2π,xa)-h(0,xa}=--ln
k

-i-
These results show that any transformation of the form

(3.18)

(3.19)
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where g(xa) is analytic defines an analytic change of coordinates on the elementary
region for which x3' is a new periodic coordinate (with period 2π) along the null
generators. Furthermore, by construction, the new gaussian null coordinate
system generated by this new chart on the elementary region leads to the desired
condition φ't, = k — constant. The above argument was given for /c>0, but the
same solution applies equally well for k < 0. In fact, these two cases are essentially
equivalent since a coordinate transformation of the type f-» — t, x3-> — x3, xα— »xα

preserves the gaussian null form of the metric but changes the sign of φ >r

For the degenerate case we set k = 0 in Eq. (3.11) and solve directly to get

3 dh(x3,x") 2πp(x3,x°)
u(x3,x°)= =ϊ-π - , (3.20)

where p(x3,xa) is defined by Eq. (3.12) as before. It is straightforward to verify that
this solution has all the properties (i)-(ii) given above for the non-degenerate case.
Thus, any coordinate transformation of the form

(3 21)

generates a new gaussian null coordinate system for which φ't, = Q on the
elementary region.

Some insight into the significance of the new coordinate x3' can be gained by
studying the geodesic equations for the null generators of N. Recalling Eqs. (3.9)
we see that they now reduce to

2 y kίdxy2

 Λ , λ0 (3 22)

where λ is an affine parameter. Solving this explicitly we get, for /cΦO,

(3.23)
2 dλ

and, for fc = 0,

. (124)

Thus in the non-degenerate case the null generators are complete in only one
direction, whereas in the degenerate case they are complete in both directions.

d
Note also that when φ't, = k>0(k<0) the closed integral curves of ^— ̂  become

closed timelike curves for small negative (positive) values of t', since gyy = φ' is
negative in that region. This accords with a result on compact Cauchy horizons
given by Hawking and Ellis [7].
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Returning to the main stream of the argument we now have, in the new
gaussian null coordinates, μf

ab^=^ (since this holds in any such coordinate
system) ($'f, = fc = constant and thus, from the analogue of Eq. (3.2) in the new
coordinate system, βb t,y = 0. Henceforth, to simplify the notation, we shall delete
the primes on the new coordinates and metric functions.

With this notational change we now consider the equation Rab = 0 restricted to
the null surface t = Q and reduced through the use of φ>t = k = constant, μab 3=Q
and βb ί3 =0. The result is

Differentiating this equation with respect to x3 and using the in variance oϊφ t, βa ί?

<9
and μab with respect to —^ we get

0=-(/U,(),33 + ̂ /U,,),3 (3.26)

Integrating explicitly and demanding smoothness on the closed null orbits (or
appealing to the maximum principle) leads to (μab t) 3 = 0.

To summarize, we have now derived the existence of a new gaussian null
coordinate system on a neighborhood of the original elementary region for which
the transformed metric functions satisfy

φίt = k = const, (pΛ > ί) ( 3=0,

Thus all the metric functions and their first time derivatives are independent of x3

on the initial surface t = 0.
We can now proceed inductively to show that all higher time derivatives of the

metric functions φ, βa, μab are independent of x3 at t = 0, and thus that any analytic

solution of the field equations has —3 as a (locally defined) Killing vector field

throughout the gaussian null coordinate region considered.
Assume, as an inductive hypothesis, that φ, βa, μab and all their time derivatives

up through order n (with n^l) are independent of x3 at ί = 0, i.e. that

0 =
ί = 0 / , 3 8t f = 0 / , 3 dtk

= 0 / , 3

(3.28)

for all k such that O^k^n. Differentiate the equation #ί3=0, n—ί times with

in terms ofrespect to ί, and set ί = 0 to derive an expression for [ +ίφ
\dt / t = o

x3-invariant quantities. Differentiate the equation Rtb = Q, n— 1 times with respect
'dn+1 \

in terms of x - i n variantto ί, and set t = 0 to derive an expression for -— 7̂̂  β
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quantities. Now, differentiate the equation Rab = Q, n times with respect to ί, set

t = 0 and use the above results for
3,H

, together with

those of Eq. (3.27) to derive an equation of the form

dn

®=l^Radt" a

t = 0

dn+l

df^ = 0 / , 3

I positive \ φ t

Iconstant/ 2

+ {terms independent of x3} . (3.29)

Differentiate Eq. (3.29) with respect to x3 and apply the maximum principle to the

resulting equation ]
dnl

to show that is independent of

x3. Thus φ, βa, μab and their time derivatives up through order n+l are all
independent of x3 at ί = 0. This completes the inductive argument and shows that
any analytic vacuum solution is independent of x3 in the specially constructed
gaussian null coordinate chart introduced above.

Notice that in the non-degenerate case (φ t = k ή= 0), one can now solve
.
in terms of x3-invariant quantities whereas, in theEq. (3.29) for

vtn
μab

degenerate case, Eq. (3.29) does not determine this quantity. Thus in the non-
degenerate case we can systematically recover the entire power series expansions
for the metric functions from their values and that of their first-time derivatives at
f = 0 whereas, in the degenerate case, we cannot in general do so.

The above argument may be readily generalized to encompass electro vacuum
solutions. To see this one first applies the maximum principle argument to the
equation CR33 — 8πT33)|t = 0 =0 to show that

A*.3=4, = 0. (3.30)

Next, one restricts the Maxwell equation (4}FβF
tβ = 0 to t = 0 and uses (3.30) to

derive F3t 3 = 0. Combining these results with the equation F[αb 3]|f=0 = 0 yields
Fαb)3=Q. In view of these results, we find that T3Jί = 0 = 0 and thus that Eq. (3.2)
holds without modification. We can, therefore, repeat the argument which
transforms the metric to new gaussian null coordinates in which φ t = k = constant
and βb ί 3=0 without disturbing the foregoing results. In the new coordinates we
find immediately that 7^3 | f = 0 = 0. Therefore, differentiating the equation
(Rαb — 8πTαb)\t=0 = Q with respect to x3 leads back, without modification, to
Eq. (3.26) and thus to (μ f l & ί) 3=0. Finally, from the Maxwell equations
(4}VβFαβ\t = 0 = Q and F[α3 ί]|ί = 0 = 0 we derive, after differentiation with respect to x3,

(-«..3 + 2Fc,,33)U = 0 (3-31)

Recalling that φ t = constant and integrating this explicitly (or using the maximum
principle), we get Fc f ( 3=0.

To summarize, we have shown that, in a suitably chosen gaussian null
coordinate system, the initial data satisfy

= A,M3=0» Φ,t = constant, (3.32)
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and thus are all independent of x3. We can now repeat the inductive argument to
show that all the successive higher time derivatives of the field variables are
independent of x3 at the initial surface t = 0. To see this suppose that, for any n^ 1,
we have, in addition to (3.22),

'dkφ

dtk

= 0 / , 3

0 =

δtk

dtl

= 0 / , 3 dtk

ί = 0 / , 3
(3.33)

= 0 / , 3

for all k and / such that OίΞfcSίn, 0 ^ / ^ n — 1. Taking n—ί time derivatives of the
equations, (Rt3-SπTt3) = 0, (Rta-8πTj = 0, F[ab t] = 0, and F[o3 ,, = 0, and setting

" " ' 'δ"+1 "^ id" v\
(drF*) < a n dί = 0, we find immediately that

dn
t=0 dt ^τβa

1 = 0

df
are all independent of x3. Taking n— 1 time derivatives of the

f = 0

dn

is independent
ί = 0

equation (4}γβF
3β = Q and setting t = 0 then shows that \-^Ft

ofx 3 .
Using these results we next compute the nih time derivative of the equation

(Rab — 8πTαb) = 0, set ί = 0 and differentiate the resultant expression with respect to
dn+1 „ \

drops out by virtue of the invariance resultsx3. The source term
dtndx3Tab

derived above and the fact that the coefficients of the quantity — Ft
\vtn

dn

, which

has not yet been proven invariant, vanish at ί = 0. Therefore, we can repeat the
maximum principle argument given in the vacuum case to show that

gn+l ^
is independent of x3.i + l rab

ί = 0
Finally we compute the nih time derivative of the equation (4)P«Fα/? = 0, use the

nίh time derivative of F[a3 f] = 0 to reexpress n+ί Fα3 , and thus derive, at t = 0, an

equation of the form

-
dtn

f = 0 / , 3

/ positive \
<

yconstant/ dtn

ί = 0

= {quantities independent of x3}. (3.34)

Differentiating this with respect to x3 and applying the maximum principle
'dn .

argument, we find that is independent of x3.

This completes the inductive argument in the Einstein Maxwell case. Note that
if φίt =kή=Q, then all higher order time derivatives are determined in terms of Fμv,
μab, φ v βa t, and μab t. Thus the power series expansions of g and F can be uniquely
recovered from this initial data in the non-degenerate case.
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B. Global Arguments

The above results show that, in each suitably constructed gaussian null coordinate
system (ί,x3,xα), the spacetime metric g and Maxwell field F are invariant with

respect to the (locally defined) vector field -—3. We wish to show that these locally
CJX

defined vector fields patch together naturally to give an analytic (Killing) vector
field on a full neighborhood of the null surface N. Suppose that (ί,x3,xfl) and
(ί, x3, xfl) are any two such coordinate systems whose elementary regions overlap in
some open subset Nn of the null surface N. Then these charts will overlap on some
neighborhood of 7Vn in (4)F, and we wish to show that the two locally defined

d d
Killing fields Y= —^ and 7= —τ coincide on their common domain of definition

dxά dxά

i.e., that their components satisfy the covariance relation Y*=—^Ϋβ I. To

accomplish this we shall show that 7 and 7 coincide when restricted to 7Vn, and
then appeal to the uniqueness of solutions of Killing equations to show that they
coincide throughout their common domain of definition.

By construction the two coordinate systems have .
dx3

some constants k and fe. We may assume that —-3 >0, since otherwise we could

achieve this by the transformation ί-> — ί, x3—» — x3, xfl—»xα. By relating the two
coordinates x3 and x3 to an affine parameter along each null geodesic generator

dx3

lying in JVn, we shall show that k = k and that ^—3 = 1. This in turn will establish

the desired equivalence of Y\N^ and 7|Nn .
Let γ be an affinely parametrized null generator lying in JVn (with affine

parameter λ). Then t(λ) = t(λ) = Q, xa(λ\ and xa(λ) are constant and, from Eq. (3.22),

23

~
d2x 23d2x

(3.35)

If y is complete in only one direction then, since - > 0, fc, and k are either both

positive or both negative. If y is complete in both directions, then k = k = 0.
Consider first the non-degenerate case for which we have the solutions

and the covariance relation

2 Γ fc d*3(0)
)--ln \l--λ

dλ

dλ

(3.36)

dx3

dλ dλ
(3.37)
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Take ——— > 0 for definiteness and let λn be the value of λ after n full circuits
dλ

so that

(3.38)

and allow n to be either positive or negative. Equations (3.36) and (3.38) give

(3.39)

Combining these equations with the covariance relation (3.37) gives, for all integral
nΦO,

dx2 k(l~e — nπk\

(3.40)

However, the left-hand side of this equation is independent of n, whereas the right-
hand side is independent of the initial condition xμ(0), which can be chosen

~
arbitrarily within JVn. Equality is possible only when k — k and

dx'
= 1.

It follows that the two overlapping systems of coordinates are related at
t = t = 0 by a transformation of the form

at ί = ?=0, (3.41)

Φ 0. Using this result to reexpresswhere /%xb) and σ(xα) are analytic and det
dx1

the vector field
Sx 3

in terms of the coordinates (ί,x3,xα), we get
ί = 0

r=0

(3.42)
f = 0

which establishes the equality Y\NrΛ = Ϋ\Nn. A completely analogous argument
applies in the degenerate case k = K = Q.

In their common domain of definition Y and Y both satisfy Killing's equation
and restrict to a common vector field on JVn. It follows ihatX= Ϋ— Y is a Killing
field defined on this domain which vanishes on Nn. However, this implies thatX
vanishes throughout its domain of definition, since the Killing equations

X -\-X — 2^ΓVX =0 (3 43)

determine X uniquely from data X\t = 0 and have only the trivial solution X = 0 if

Let Y now designate the Killing field which has thus been shown to exist on a
neighborhood of N in ((4)F, g). Since the quantity fc, defined originally only locally,
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has now been shown to have a constant value over JV, we can meaningfully speak
of degenerate versus non-degenerate null surfaces. The non-degenerate null
surfaces are always Cauchy horizons as we shall now show.

Define a real analytic function ζ by

ζ=Y Y = gμvY
μY\ (3.44)

and note that, in any gaussian null coordinate chart,

ζ = g33 = ψ. (3.45)

Since (dμζ)\t=0=(k, 0, 0, 0) and since fcφO, by assumption ζ has no critical points in
some neighborhood of N and has N as a level surface corresponding to the value
( = 0. It follows that the surfaces ζ = constant are, for sufficiently small |£|,
diffeomorphic to N and foliate a neighborhood of N in (4)K One proves this by
introducing a Riemannian metric g on a neighborhood of TV and dragging N along

the flow of Zμ = I — -R -
 v to generate the nearby ζ = constant surfaces.μ

Suppose for definiteness that k>0 and thus, from a straightforward com-
putation, that

,-W.OU-o. 46

(9μv(8μζ)(dvζ))
01

It follows that dμζ is timelike for all sufficiently small £>0 and thus, since

=k>0, for all sufficiently small (>()• In other words, for some constant

C0 >0, the level surfaces ζ = constant G (0, ζ0) are all spacelike.
Introduce ζ as a new time coordinate on the region of ((4)F,g) foliated by the

level surfaces of ζ with values in the range (0, £0), and write the metric as

g = (3)00.(dx1' + N1 dζ) (dxj + Nj dζ) - N2 dζ2 , (3.47)

where (3)gtj is Riemannian on each ζ = constant surface, and where AΓ>0. Let a
and b be any two constants such that a<b and [0,b]C(0,ζ0), and consider the
compact subset of spacetime foliated by the surfaces ( = constants [a,b~]. Let y be
any inextendible timelike curve in this region parameterized by proper time s, so
that

. (,48,ds]

Since (3}gtj is Riemannian and N is bounded (and bounded away from zero) on this

— I is bounded away from zero, and thus that y
ds]

cannot avoid intersecting each surface £ = constant e[0,&] precisely once. Since
this holds for any [α, b] C (0, (0), it follows that the spacetime foliated by the
surfaces ζ = constant e(0,C0) is globally hyperbolic and has these surfaces as
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Cauchy hypersurfaces. Since the surface ζ = 0 lies at the boundary of the globally
hyperbolic region and is null, it is necessarily a Cauchy horizon.

We have thus proven:

Theorem 1. Every analytic vacuum or electrovacuum spacetime ((4)F, g) with a
compact null hypersurface N ruled by closed null generators in the sense of Sect. II
has an analytic Killing field Y defined on some neighborhood of N in (4)F, and Y has
closed integral curves in this neighborhood. Furthermore, Y\N is null and thus tangent
to the generators of N. In the non-degenerate case (characterized by
(dμ(Y Y))\Nή=0) N is a Cauchy horizon, the region ζ=YΎ>0 is, for sufficiently
small ζ, globally hyperbolic and the region ζ<0has (for \ζ\ sufficiently small) closed
timelike curves through every point. If Maxwell fields are present, then the field
tensor F is invariant with respect to Y (i.e., J£YF = Q).

We remark that the closure of the integral curves of Y follows from its

construction locally as the vector field -r-̂ - of a gaussian null coordinate chart.

These closed curves are timelike in the region ζ < 0 since Y Y = ζ is negative in this
region.

One can actually extend the Killing field defined near N to a Killing field
defined on the maximal Cauchy development of the globally hyperbolic region
described above. The techniques for doing this are discussed (for the vacuum case)
by Fischer et al. in [8]. One propagates Y to define a vector field on the maximal
Cauchy development by solving a certain second order, linear hyperbolic equation.
Next one shows that h~^γg satisfies another second order linear hyperbolic
equation and that h vanishes everywhere provided its Cauchy data vanishes. In
our case, the Cauchy data vanishes since h vanishes near N. A similar argument
can be given for the Einstein-Maxwell equations.

It is worth noting that the Killing field Y satisfies the equation

'«( = yαι Π 49}lf = o "» lf = 0 ' \J ̂ y)

which shows that the constant is the analogue, for cosmological Cauchy

horizons, of the surface gravity defined for stationary black hole event horizons

[9].

IV. Degenerate and Non-degenerate Solutions on T3 x R

In this section we specialize the spacetime manifold to (4)F = T3 x R and take {x1}
= {x3, xa} to be periodic coordinates (with period 2π) on the three-torus. As in the

conclusion of the previous section, we find -r-̂  to be a Killing field of ({4}V,g) with
oxό

closed null orbits on the surface t = 0. For this case we shall be able to characterize
the degenerate and non-degenerate vacuum solutions completely. Presumably one
could treat the electrovacuum case with the same techniques but, except for
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displaying a class of degenerate electrovacuum solutions, we shall not pursue that
question here.

It is easy to guess a large family of degenerate solutions on T3 x R. The plane
wave metrics

ds2 = 2dtdx3+μab(t)dxadxb (4.1)

satisfy the vacuum Einstein equations, provided μab(t) satisfies

These are clearly degenerate since φ = g33 vanishes everywhere. One gets a class of
degenerate Einstein-Maxwell solutions by taking Ft3 = Fab = Fa3 = 0, and replacing
Eq. (4.2) by

Rtt = 2FtaFtbμ
ab. (4.3)

In these solutions Fta(t) and the "conformal part" —γ=. of μab(t) may be specified
\]/y

arbitrarily as functions of t with ]/μ then determined by Eqs. (4.2) and (4.3). Since
φ = 0 these solutions have a compact null surface Λ/" r~T3 through every spacetime
event.

In this section we shall prove that every degenerate vacuum solution on T3 x R

with simply periodic null orbits i.e., with null generators tangent to a periodic

coordinate vector field —^ is diffeomorphic to a plane wave solution. Presumably

a similar result holds for the electrovacuum case but we shall not attempt to prove
it.

In general a degenerate solution has, in appropriate coordinates, 0^ = 0 and
Qμv, 3= O The equation Rab = 0 thus reduces to

-20 At}lί=o = °> (4 4)

where we have adopted the notation |α for (2)Fα. Taking the trace of this equation,
integrating over any x 3= constant two-torus and appealing to the Gauss-Bonnet
theorem, we get

/U = o = (2)*J( = o = 0. (4-5)

Thus μab is flat. It follows immediately from the Rt3 =0 equation that φ f f | f = 0 =0.

Next we consider the equation
dR ab

dt
= 0 and note that, since •ab

f = 0

t, we '

ab I Λ (1(U

ί = 0
3, ^ t~ab\ 3. A V / (4.ΌJ

ί = 0

This leads to

ί rl Ή

-0, (4.7)
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which shows that βa f t | f = 0 is a conformal Killing field of μab. However, this implies
that (βa tήb)\t=0 — 0, as follows from taking the divergence of the conformal Killing
equation and using the flatness of μab. Thus we now get

(β }\ - —(2}R\Pa,tt\b)\t = 0— \gt *^a

Furthermore, the Rtb = 0 equation reduces to

(4.8)

Contracting this last equation with μabβa w integrating over T2, and appealing to
the covariant constancy of βa w we get

(4.10)

Thus μab t must satisfy this last equation as well as ——-

Using standard elliptic theory, we split hab = μab t uniquely into L2 orthogonal
components

hab = μab.t = h^, + (Valb+Vb]a), (4.11)

where h^b = 0. Substituting this expression into Eq. (4.8) however, we find that hl*b

must be covariantly constant. Therefore, we write

*«>=*£+ rβ|> + V (4 12)
where hc^d = 09 and further split Va=V^ + λ^ where J/Jr|α = 0. Substituting this
expression for hab into Eq. (4.10) leads to ̂  = 0, so that hab reduces to

, (4.13)

with hc^d — 0 and λ arbitrary.
We can remove the "gauge" term 2λ\ab from μab >t by making a coordinate

transformation in the initial (null) surface of the form

x3' = x3-λ(xβ), xa' = xa, (4.14)

and generating (as discussed in Sect. II B) the new gaussian null coordinate system

determined thereby. Since = 1, this transformation will preserve the

explicit symmetry (i.e., give g'μVty= ty and all the results derived above since the
latter hold in any gaussian null coordinate system adapted to the symmetry. To
establish the desired result, we need only evaluate μ^M,|f, = 0 in terms of the original,
unprimed metric quantities. A straightforward calculation gives

We now work in the new coordinate system but, to simplify the notation, delete
the primes on the new coordinates and metric functions.
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Summarizing the above results, we have shown that, after a suitable change of
coordinates,

- - ,<- ,«- a- a,t- « , « > ^^

μab is flat and μαM|c = 0.

Assume as an inductive hypothesis that, for any n ̂  2,

c)n

}t ' dtn

gn-l

μab is flat and μab> f , . . . , -^^ μab are all covaπantly

(4.17)
constant with respect to μab.

Taking n—1 time derivatives of Rt3=Q gives
dn+ίφ

= 0. Taking n—l time

derivatives of Rtb = 0 leads to

r/(")ϊ —(ιιac,ι(n)\ \\
Uab)\c W ^αJlb-Hί-O'

gn+l

where we have adopted the notation β(^+ί} = ^r-q-r/L etc. and used the inductiveb dtn l

hypothesis to simplify the result. In a similar way we get from the nth time
derivative of Rab = 0 the equation

ί , , n , +1. δ" ... }
0=<(β(n+1})lb + (β(

h

n+1)\ +μh —
 (2}R\ , (4.19)

I β ' la a dtn j t = 0

where we have used the inductive hypothesis in various ways, in particular to show
that

^ - d"'1 o
= - = ^T-«eb = 0. (4.20)

Arguing as before we get that

'd"+1

(4.21)
? ί = 0 Ul t = 0

In view of the inductive hypothesis, the latter equation reduces to the condition

that the first variation of (2}Rab about μab in a direction given by ~^μab is zero. As

before, this leads to a splitting

μ(»> = hc

a

c

b -f- 2λab -f V^L -f ^ιr

α, where A^,d = 0, and V^J^ = 0. (4.22)

Contracting Eq. (4.18) with μabβ^+i} and integrating over T2, we get [from
covariant constancy of β("+1\ cf., Eq. (4.21)], that
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(4.23)

Substituting the splitting (4.22) of μ(^ into this last equation leads to V%b = 0, and
thus to

^tn —"ab ' *"*\ab V^ ^ V
Cl f=0

Finally, taking n — 2 time derivatives of Rtt = 0 and using the above, we get

μabhc

a

c

b + 2ί, Jα = constant, (4.25)

where the right-hand side is a complicated expression constructed from
frafrfrab ί' • *ΆαίΓ1 ) Since \^n^ is also constant, this equation implies that

Inconstant and thus that αb is covariantly constant. One can always
δί" ^

satisfy Eq. (4.25) by adjusting (μabhc

a

c

b) appropriately. We have thus shown that

0> (426)

which completes the induction.
Thus every analytic, degenerate vacuum solution on T3 x R is diffeomorphic to

dn \
is covariantly constant with respect toone for which φ = βa = Q and j-^μα

W*
the flat μab for all n>0. Without disturbing the explicit symmetry or the vanishing
of φ and βa, we can perform a coordinate transformation of the form

ί = ί, χ3-x3, xa = fa(xb) (4.27)

to bring μab into a canonical form with constant components. In this gauge
co variant constancy of the time derivatives of μab at t = 0 reduces to the condition

that
dnμa

;Γ»ot
^^ which, for an analytic solution, implies that μab = μab(t).

ab

Thus we have proven :

Theorem 2. Every analytic, degenerate vacuum solution on T3 x R with simply
periodic null generators is diffeomorphic to a plane wave solution. These spacetimes
have compact null hypersurfaces through every event.

To complete the discussion of vacuum solutions on T3 x R, we recall some
results from [2] which demonstrated the existence of a large class of (non-
degenerate) solutions on T3 x R by means of a slightly extended version of the
Cauchy-Kowalewski theorem. The metric form considered there was given by

2=ds2= -

~ ~
— k2t(dx3)2 + — kdx*dt + e2φktβa dxa dx3 + e2φβa dxa dt , (4.28)
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where k is a positive constant, where φ, βa, gab are analytic functions of {£, xα} with

gab positive definite, and where N = y g. Again \x } — {x ,x } are
ί=0

periodic coordinates on T3 (with period 2π) and —3 is a Killing field of gμv.
CJX

Actually, we have slightly generalized the metric form given in [2] by letting
x3->/cx3, where k is a positive constant, since the previous form (with a fixed
period for x3) was unduly restrictive. The coordinates {£, x3, xα} here correspond to
the primed coordinates defined in that paper. Furthermore, the metric functions φ,
βa, gab, and N were there written without the overhead "twiddle" (~). The main
result of [2] was

Theorem3. Any analytic data (φ, βa, #αf,)(0,xc), specified over T2 (with gab a
Riemannian metric) determines a unique, analytic, extendible solution of the vacuum
Einstein equations on some neighborhood of the (compact, null) initial data
hypersurface t — 0. The solution covers a neighborhood of a smooth Cauchy horizon

at t = 0 and has -̂ —3 as a global Killing vector field. This Killing field is spacelike in
ux

the globally hyperbolic region ί>0, null on the horizon and timelike in the acausal
extension ί<0.

We wish to prove that every non-degenerate solution is obtained by this
construction. To do this we need only transform the metric form (4.28) to gaussian
null coordinates with a transformation generated by

x3Ί =x3

which will preserve the explicit symmetry of the metric. A straightforward
computation gives

(4.30)

where φ', β'a, μ'ab represent the usual gaussian null coordinate functions in the
primed coordinate system. Since φ, βa, and gab may be specified arbitrarily at t = 0
as may the positive constant fe, ifs clear from Eq. (4.30) that we may achieve any
allowed initial values of the functions φ't,, β'a t,, and μ'ab. However, for a non-
degenerate solution the initial value of μ'ab >t, is determined from the Einstein
equation Rab = 0 and all higher time derivatives of the metric functions φf, β'a, and
μ'ab are determined from successive differentiations of the field equations as shown
by the proof of Theorem 1. Therefore, we see that every non-degenerate solution
(with fe>0) is diffeomorphic to one constructed according to Theorem 3. The
corresponding solutions with /c<0 may be generated by the transformation
t'-^-t', x3'^-x3', xa'-^xa'. Thus we have:

Theorem 4. Every non-degenerate vacuum solution on T3 x R with simply periodic
null generators is diffeomorphic to one constructed according to Theorem 3.
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It follows as a corollary to Theorems 3 and 4 that the power series expressions
constructed for φ', β'a, and μ'ab in the proof of Theorem 1 necessarily converge. The
reason is that for each allowed choice of free initial data φ't, ( = positive constant),
β'a t,, and μ'ab, there exists a corresponding choice [via Eq. (4.30)] of analytic data

(φ, βa, gab) for a solution determined according to Theorem 3. Transforming this
solution back to gaussian null coordinates by the appropriate analytic diffeomor-
phism, we must recover the original formal (but now necessarily convergent) series
since these expressions were uniquely determined by the field equations. We thus
get

Corollary 5. For any constant φ t = k φ 0 and any analytic one-form βa t and
Rίemannίan metric μab defined over T2, the formal power series expressions for
(φ, βa, μab) constructed in the proof of Theorem 1 are always convergent to a vacuum
solution of Einstein's equation in some neighborhood of the initial surface.

It is worth remarking that the correspondence given by Eq. (4.30) is not unique
since the coordinate system employed in [2] is less rigid than the gaussian null one
used here.

V. Conclusion

The most artificial hypothesis we have made is that the generators of the compact
null surfaces considered all be closed curves. We believe, however, that one should
be able to eliminate this assumption and still prove the existence of a Killing
symmetry in the (compact, analytic) electrovacuum case. A key first step in the
needed generalization has already been provided by Hawking and Ellis [10], who
show that the null generators of a compact, Cauchy horizon always have zero

expansion. This corresponds to our result that (j//ΐ) 3=0, and leads, via
Raychaudhuri's equation, to the vanishing of the shear of the generators (μαb 3 = 0
in our case). The acceleration and rotation of these curves already vanish by virtue
of their being the normal, geodesic generators of a null hypersurface.

These remarks suggest the intuitive picture of a congruence of "parallel" rays in
the null surface N which must "almost close" because of the compactness of N and
which locally have all the differential properties of the closed generators con-
sidered in this paper. We expect that continuity considerations should allow us to
extend the arguments given here to such almost closed congruences. The main step
one will have to generalize is the construction of the "surface gravity" constant fe.
The induction arguments (except for the use of the maximum principle) are
essentially local and should follow the same pattern given here for the closed orbit
case.

Analyticity is another artificial assumption, though a very convenient one. We
would conjecture, however, that non-degenerate, non-analytic solutions with
compact null surfaces of the (closed orbit) type considered here must also have
symmetries and that the null surfaces must always be Killing horizons as in the
analytic case. One might try to prove this by taking a completion (in say, a Sobolev
topology) of the analytic, globally hyperbolic spacetimes considered here and
showing that the non-analytic solutions in the completion also have non-singular
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Cauchy horizons at their future boundaries. Even if this procedure works,
however, it should not be expected to produce acausal extensions of the type
described here for the analytic case. The reason is that, for metrics with a Killing
symmetry which changes type from spacelike to timelike across a null surface N,
Einstein's evolution equations change type from hyperbolic to elliptic, degenerat-
ing to a parabolic system on N. Thus one expects from standard elliptic regularity
theorems that only the analytic solutions are extendible across their horizons
unless the symmetries are broken at the horizons. This symmetry breaking would
presumably be possible since uniqueness of the evolution is lost in crossing a
Cauchy horizon.

The main question though is not what happens beyond the horizon but rather
whether the existence of a horizon implies the existence of a symmetry in the
globally hyperbolic region. This, we conjecture, should still be true in the non-
analytic case.

The reader has undoubtedly noticed that the main arguments of this paper are
"global" only along the null generators of N and are essentially local in the
transversal directions. Thus we were able to prove the existence of a symmetry on
some neighborhood of an (arbitrarily small) elementary region of N and only later
did we patch the local symmetries together to prove the existence of a Killing field
on a full neighborhood of N. This remark suggests the possibility of a significant
extension of our results.

Suppose that ((4)F,0) is an analytic, vacuum spacetime but that (4)F is no
longer necessarily a product. Let (M x R, g\M x R) be a globally hyperbolic, open
submanifold of ((4)F,#), and suppose that there exists an elementary region in
((4)F, g) which lies at the boundary of (M x R, g\M x R). The picture we have in mind
is that there might not exist a compact null surface N in ((4)F, g) because of the
occurrence of curvature singularities along a portion of the boundary of the
globally hyperbolic, open submanifold. Arguing as in this paper, we can construct
a (gaussian null) neighborhood of the elementary region and prove the existence of
a Killing field on this neighborhood. However, we can now appeal to analyticity
and "propagate" this vector field to get a solution of Killing's equations
throughout ((4)F,#).

At first glance we seem to have vastly increased the set of analytic, vacuum
spacetimes which are forced to have Killing symmetries by virtue of having three-
dimensional submanifolds of closed null geodesies (no longer necessarily com-
pact). There is, however, another logical possibility which we believe to be more
likely - that all such analytic spacetimes necessarily have a compact null surface N
which contains the given elementary region. In other words, the elementary region
can always be "completed" to yield a non-singular compact null surface in ((4)F, g).
This conjecture (which is certainly false in the C°° case) is suggested by the study of
examples (certain Gowdy models [11]) which we shall not review here. If true, it
represents a certain rigidity property of analytic (electro-) vacuum spacetimes.

Even though the corresponding rigidity conjecture is false for C°° spacetimes
[12], its validity for analytic spacetimes would apparently help one to show that
non-analytic, globally hyperbolic spacetimes which have partially non-singular
boundaries to their maximal Cauchy developments (containing, for example,
elementary regions as mentioned above) are, in a suitable sense, always unstable.
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The reasoning would entail an argument that such "locally extendable" spacetimes
could be approximated arbitrarily closely only by those analytic spacetimes which
are inextendible (even locally) beyond their maximal Cauchy developments.

We believe that the conjectures mentioned above, unlike most speculation
concerning the cosmic censorship conjecture, are directly amenable to analytical
attack. It seems to us that a proof of these conjectures would provide strong
support for the cosmic censorship idea by showing that causality violating,
cosmological solutions of Einstein's equations are (at least in the electrovacuum
case) essentially an artefact of symmetry.
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