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Abstract. It is known that a large class of smooth solutions of CPn models can
be constructed starting from holomorphic maps of an algebraic curve into
complex projective spaces. Here we apply results from algebraic geometry to
describe the energy spectrum and the parameter spaces for such models.

1. Introduction

Harmonic maps theory has been recently applied to a well known problem of
mathematical physics, namely the CPn models. These have been quite extensively
studied in the physical literature not because of direct physical applications, which
seem limited in number and perspective, but in that they exhibit interesting
phenomena common to Yang-Mills theories both at the classical and at the
quantum level [1, 2].

One of these coincidences has to do with the semi-classical domain of the
theories, whereby the properties of classical solutions of the elliptic form of the
field equations are examined. From the physical point of view, the interest in such
"pseudoparticle" solutions of classical field equations was first pointed out by
Polyakov in connection with the infrared problem in the quantum theory of Yang-
Mills fields. The SU(2)-instanton solutions were first found by Belavin et al. [3] for
Yang-Mills equations. Shortly afterwards, the same type of reasoning was applied
by Belavin and Polyakov [4] to the standard SO(3)-invariant σ-model. This was
subsequently generalized by Eichenherr [5] to SU(n+l)-invariant σ-models,
which were christened CP"-models by DΆdda et al. [2].

From the mathematical point of view, it was immediately clear that both
these generalizations, as well as the original σ-model, could be considered as
particular examples of harmonic problems. An extensive mathematical literature
exists on this topic [6] from which we shall recall below some definitions and
results. One of the basic outcomes of these developments is that classical solutions
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of CP"-models are given by or can be constructed from holomorphic maps
φ : C^CP" of a complex curve C into the complex projective space. Now, when C
is compact, such maps are algebraic objects.

This fact seems to show another similarity with Yang-Mills fields, whose
instantons are as well algebraic geometric objects on CP3 [7]. Motivated by this
further coincidence, we examine in this paper the problem of studying the energy
spectrum and the space of moduli of CPn classical solutions by algebraic
geometrical tools, the main ones being deep results of the so-called Brill-Noether
theory [17, 19-21, 23, 24]. As we shall see, this will lead to a rather complete
classification of finite energy solutions subject to the standard boundary con-
ditions and to a detailed description of their parameter spaces. Less complete, but
still interesting results will be also derived for the CPn models with generalized
boundary conditions. Some of these results for instantons on S2 have been already
published as short letters [8, 9]. Here we shall concentrate on the mathematical
aspects of the problem, while a more extended version of this paper, containing an
introductory account both from the physical and the mathematical point of view,
will be published elsewhere [10].

2. Results from Harmonic Maps Theory

In this section we shall briefly recall some of the results of harmonic maps theory,
which we shall need in the following. For a general review on harmonic maps the
reader is referred to the already quoted paper by Eells and Lemaire [6].

By a P model1, we mean a field φ\C^P\ where C is an algebraic curve
(i.e. a real 2-dimensional orientable compact C°° surface with a fixed conformal
class of metrics). Classical solutions are extremals of the energy integral

E(φ)= ~ I [Λ(£z, £) + Λ(L ξ WzΛdz,
z c

where h is the Fubini-Study metric on Pr and ξ = ξ(z, z) is a local representation of
φ. From the physical point of view one is interested in finite energy smooth
extremals of the functional above.

One should further note that usually C is taken to be the Riemann sphere,
which arises as the one-point compactification of the Euclidean 2-space R2, thanks
to the usual boundary condition that the field φ is a constant at infinity [4].
However one can envisage more general boundary and periodicity conditions
[8, 10] which lead to the extension of the study of Pr models over an arbitrary
algebraic curve C.

It is known that smooth maps φ : C-+Pr fall into disjoint homotopy classes,
labelled by their degree deg(φ), or "topological charge" as it is called in the
physical literature. Accordingly, we have to search for extremals of the energy
functional in any given homotopy class. A well known result of Lichnerowicz's
[11] applies here, telling us that in any given homotopy class holomorphic or
anti-holomorphic maps (if any) give absolute minima of the functional E. This

1 Hereinafter we shall simply denote by Pr the complex projective r-dimensional space
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follows from the fact that in any homotopy class (see e.g. [12])

£(</>) ̂ |

equality holding if and only if φ is (anti)-holomorphic. These absolute minima will
be called instanton solutions.

Of course, the inequality above does not imply that there are no other local
extremals for E. It is known that

i) any classical solution φ : C-^P1 from a curve C of genus g with |deg((/>)| ̂ g is
(anti)-holomorphic [12]. In particular if C is the Riemann sphere P1, then 0 = 0
and any classical solution φ P1-^1 is (anti)-holomorphic.

ii) For the general case φ : C->Pr, besides instantons, there are as well
non-(anti)-holomorphic classical solutions [13]. It turns out that for |deg(0)|
^r(g— l)/(r+ 1), these are saddle points for the energy functional [13].

We see then that in the general case, in any admissible homotopy class, there
are solutions of minimum energy (instantons) and higher energy solutions, which
will be called excitations. These were first found by Din and Zakrzewski [14] and
Glaser and Stora [15] in the case 0 = 0. Their existence was subsequently
rigorously proved for any genus by Eells and Wood [13]. Even more, the last
authors proved a general classification theorem, according to which there is a
one-to-one correspondence between isotropic and full harmonic maps φ :C— »Pr

and pairs (/ fc), where /: C-»Pr is a holomorphic map and k is an integer 0 ̂  fc ̂  r.
We recall that by a full map it is meant a map whose image is not contained in any
proper projective subspace of Pr. We refer to Eells and Wood [13] for the
definition of the isotropy condition and for the proof of the theorem above. They
further show that, when C is the Riemann sphere, any harmonic map is isotropic
and hence can be constructed from a pair (/, fe).

The most important point for our concern is to recall here how a holomorphic
map generates solutions which are not holomorphic. By using homogeneous
coordinates on Pr, any full holomorphic map /: C-»Pr can be locally lifted to a
vector- valued function v : C-»Cr+ *; in other terms, f(z) is the line through Oe(Cr+ 1

and v(z) = (v0(z\ ...,vr(z)). Let now v(l)(z) = — ̂ v(z) denote the iih order derivative of

v(z). For any i, v(l) is still a vector- valued function v(l) : C— »(Cr+1 locally defined on
UCC. From these data, one can construct a map which associates to ZE U the
linear span of the v(ί)'s in Cr+1. Let Gr(fe+l,r+l) be the Grassmannian of
/c+1-planes in (C1"1"1. The kth associated curve of /is a map fk : C-»Gr(/c+l,r+ 1),
which is locally defined by letting fk(z) be the fe+1 -plane in C r+1 spanned by
v(z),v(1)(z), ...,v(/c)(z). We refer to [16] in order to realize that fk is well defined, in
that it does not vanish identically and is independent of the choice of the local
representation of / by v(z). Finally we note that /0 =/ and that it is convenient to
put /_ 1 equal to the zero map. Associated curves to anti-holomorphic maps can
be obviously defined in the same way.

Now let //z)1 be the orthogonal complement of fk(z) with respect to the
standard hermitian metric of (Cr+ 1. The (anti-holomorphic) map /: C-+Pr given by
/(z)=/f._1(z)1 is called the polar curve o f / [Recall that
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Now for any k, 0:gk^r, we can define a (nonholomorphic) map φfc : C-+Pr by

To explain this definition, we note that fk_ ^(z) is a /c-plane in Cr+ l,fr_k_ x(z) is an
(r — k)-plane in fl7+1. Their direct sum is an r-plane in (Cr+1 whose orthogonal
complement is a line in 07+1, i.e. a point in Pr.

It can be proved that ψh(z) is harmonic and isotropic [13]. Finally recall that
the energy and the degree of the solutions ιpk constructed above are given by [13]

and
deg(ι/?Λ) - deg(/Λ) - deg(/k_ J .

3. Energy Spectrum of Pr Models

The results recalled in Sect. 2 show that a certain subclass of classical solutions of
Pr models, with generalized boundary conditions, can be represented as holomor-
phic maps into Pr of a certain Riemann surface C. In any case, holomorphic maps
play a central role, either because they represent instanton solutions or because
they provide building blocks from which more general solutions can be con-
structed. Moreover, when C = Pί, these more general solutions exhaust the whole
class of finite energy classical solutions.

Since holomorphic maps from an algebraic curve into projective complex
spaces are themselves algebraic objects, in this section we shall apply known
results from algebraic geometry to study the energy spectrum of Pr models. To
compute E(ψk) and deg(y;k), we need to know the degrees of the curves associated
to / Let dk = deg(/k) obviously dQ = deg(/) = d and d_ 1 = deg(/_ J = 0. The higher
dks are given by the Plϋcker formulas

where βk is the ramification index of fk (for more details, see [16]). Since fr is a
constant map, dr must vanish. Summing the recurrence relations above, one easily
finds that

7 = 0

Plύcker formulas can be explicitly solved. If the conditions d0 = d and dr = 0 are
imposed, we find

Σ(
7 = 0

We have then proved the following

Proposition 3.1. Let ιpk be a full isotropic map (O^k^r), associated to a holomor-
phic map f'.C-+Pr of deg(/) = d. Then the energy and the degree of ψk are
given by
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Remark. The formula above for the degree can be also found in Eells and Wood
[13].

Among the r+1 full isotropic solutions generated by^/ φ0 and ψr are
respectively holomorphic and antiholomorphic. In fact ιp0 =f is the polar of the
polar curve of / and it is not difficult to show that actually /=/, while ιpr =/, being
the polar of /, is antiholomorphic. From the formulas above, we have that E(ψ0)
= deg(/) = deg(v>0) and E(ψr) = deg(fr_1) = — deg(^), so that the energy coincides
with (minus) the degree for (anti)-holomorphic maps, as we already know. Note
that ψQ and ιpr are not homotopic, because deg(tp0) Φ deg(t^>r). Also, f=ψr is not in
general homotopic to/(z) (i.e. to the anti instanton solution associated to /), since

i -l

deg(ψr) Φ — deg(/) and obviously E(ψr) φ £(/). However, if / is such that ]Γ β.

= 2d + 2r(g- 1), ψr is homotopic to J\z) and E(ψr) = E(f). j=°
Let us now come to discuss the energy spectrum. We know that instanton

solutions fall into (disjoint) homotopy classes. These are classified by their degree
or, in physical terms, by their topological charge. For any (admissible) value of the
topological charge, there is only one possible value for the energy, i.e. E(f)
= |deg(/)|. So the energy spectrum of these solutions is in principle known,
provided one knows which values of the topological charge are admissible. We
shall limit ourselves to the holomorphic case, the antiholomorphic one being
obtained by a reversal of orientation. From the Brill-Noether theorem [17], we
have that for a general curve2, it must be

where s is the dimension of the least linear subspace of Pr containing the image of
/ Thus, for a general curve, there are no instantons when d< (0/2) 4-1.

What one would really like to know is the spectrum of the energy of isotropic
solutions at a given degree, that is the energy spectrum of the excited states of a
given instanton solution.

We can answer this question only partially nevertheless, a number of results
can be proved and a qualitative description of the energy spectrum of the excited
states can be given. From Proposition 3.1, it is apparent that E(ιpk) — deg(ι/?fc) is
even, but we do not know if any even number is actually attained. We can however
prove that there are infinitely many excitations at a given degree (larger than a
suitable limit) with arbitrarily high energies. The proof will be given in two steps.
First we state a result which is in itself interesting, since it holds for Pr model over
P1(r^2). Besides, it extends Theorem 8.3 of Eells and Wood [13] which states the
existence of at least one full isotropic solution in each homotopy class.

Proposition 3.2. For any \d\^r — 2, there exist full classical solutions φ:P1-^Pr

with dεg(φ) — d and arbitrarily high energy.

Proof. We may limit ourselves to consider solutions of the form ψv with deg(tp0)
= d'^r. For r > 2, we consider the maps ιp0 obtained by projecting the Veronese
map, locally given by z-»(l,z,z2, ...,zd/), onto Pr in such a way that ψ0 can be

2 Cf. the next section for a precise explanation of the meaning of "general"
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locally represented by z-*(l,zl\zi2, ...,zir~\zd>) with 0<i1<...<ir_i<d'. These
maps and their associated curves are ramified at z = 0, oo. According to [16], their
ramification indices are given by βl = il+1—il + ir_l — ir_l_1 — 2, where we put i{ — 0

fc-l

for / ̂  0, and ir = d'. Hence £ β. = df + (ίk — ίr _k) — 2k and deg(t/; J = ir_k— ik. As for
7 = 0

ιpv we have that any value

can be obtained, by a suitable choice of ir_l and zr This shows that we have at
least one isotropic solution of degree \d\^r—2 generated by holomorphic maps of
any degree d'^r. The case r = 2 needs further consideration, since iϊψ0 is taken as
above, deg(φ1) = 0 in any case. We then consider solutions of the form ψ^
generated by holomorphic maps ψ0 : P1-^P2 given locally by z->(l, (z + i)d ~\ zd>),
wi th 1 ̂  i ̂  d' — 1 . In this case β0 = i — 1 , so that deg(φ 1 ) = d' — i — 1 . By considering
these maps together with those generated by t/;0, one has that also in this case any
value of degίφj within the limits given above is possible. As for the energy, we
have in any case that E(ψ J = deg(t/; J + 2df '. Since d' can be arbitrarily high, E can
be arbitrarily large in any homotopy class.

Remark. Incidentally, we note that any value of the energy E = deg(φ1) + 2m, with
m^r is admissible in the case of Pr models over P1 . In fact there exists a solution
of the form ιp1 with that energy and degree.

The results of Proposition 3.2 can be somewhat extended to Pr models over a
general curve C, by considering maps ψk generated by quite special holomorphic
maps. In fact we do not know very much about the ramification properties of
holomorphic maps of C into P% while more can be said about maps which arise by
composition as follows:

C Λ p 1 -4 p'.

Here h is a branched covering of P1, which has degree n — deg(/ι) ̂  [($ + l)/2] -f 1,
where [ ] stands for the integral part.

Let ιp'0 = fQh. It is not difficult to compute the ramification indices β'k of 1//0 and
its associated curves one has

where βk are the ramification indices of / and its associated curves. Accordingly,
the energy and the degree of the isotropic maps ψ'k generated by ψ'0 are

E(ιp'k) = degfai) + n{E(ιpk] - deg(φ,)} + (g - 1) {fc2(l - n) - 2k + 1 - n} - k(k - l)n ,

t/^) -2kng.

We have now the following :

Proposition 3.3. Let d' = nd-2kng, with n^[(gf + l)/2] + l,d^r,0<fc<r. There
exist full isotropic solutions φ : C-*Pr of degree d' and arbitrarily high energy.

Proof. If deg((/>) = rf', there exists in the homotopy class of φ at least one solution of
the form ψ'k generated by ψ'0 = J °h. From Proposition 3.2, we see that one can
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choose / such that E(ψk) is arbitrarily high. The result then follows from the
formula above for the energy E(ψ'k).

Remark. Albeit far less complete than in the case of Pr models over P1, the
proposition above leads to conjecture that the energy spectrum of a general Pr

model is qualitatively similar to that of Proposition 3.2, showing arbitrarily high
energy excitations of any given instanton solution. Our proof, however, holds only
for certain degrees. This is because we restricted ourselves to consider suitable
composite maps, which let the proof be technically easy. To prove a proposition
analogous to 3.2, one would need to classify the possible ramification behaviours
of holomorphic maps φ : C-> Pr and their associated curves, for a general curve C.
Very little seems to be known in this direction.

4. Parameter Spaces for Pr Classical Solutions

The next question we shall ask is, roughly speaking, "how many" classical
solutions of a given degree and satisfying certain boundary conditions do we
expect to exist. In view of the preceding remarks, this question is naturally
translated into the problem of classifying holomorphic maps of a Riemann surface
into a projective space. Fortunately enough, a number of recent and deep results in
algebraic geometry, constituting the so-called Brill-Noether theory, tell us a good
deal about this problem3.

We first recall that isomorphism classes of complex structures on a compact
orientable surface Sg of genus g are parametrized by an irreducible
quasi-projective [18] variety Mg9 whose (complex) dimension is 30 — 3, when g ̂ 2,
and 0 or 1, when 0 = 0,1, respectively [16]. For any point pεMg, we have a
complex structure turning Sg into a curve C, different points corresponding to
inequivalent structures. The variety Mg is classically called the moduli space for
genus g curves it is singular when g^2 and its singularities all arise from curves
with a nontrivial automorphism group. From a "physical" point of view, one may
think of Mg as the variety of inequivalent conformal structures on Sg. When we say
that a certain property is satisfied by a general curve of genus g, we mean that there
is a proper algebraic sub variety Z of Mg such that every curve corresponding to a
point of Mg not in Z satisfies the property.

Next we shall briefly recall how holomorphic maps can be described in
algebraic geometrical terms. Let /: C-^P be a non-constant holomorphic map. If
H stands for the hyperplane line bundle of Pr, / determines a line bundle L =f*(H)
on C of degree d = deg(/), plus r+1 distinguished sections of L, gotten by pulling
back the homogeneous coordinates on Pr these sections never vanish simul-
taneously. Conversely, given a line bundle L of degree d>0 on C and r+1 sections
with no common zeros s0,..., sr of L, we can construct a non-constant map from C
to Pr by setting /(p) = [s0(p), ...,sr(p)]. The sections s0,...9sr span an
(s + l)-dimensional vector subspace V of H°(C, L), i.e. a linear series of degree d and

3 A detailed introduction to the subject will be provided by the forthcoming book [25]. An
introductory review of the results needed in this section is also contained in [10]
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dimension s on C (a gs

d for short) with l^s^r. Clearly, Fis base-point-free, that is,
no point of C is a common zero of all the elements of V. Thus, to give a
non-constant map of degree d from C to Pr is the same as giving a degree d line
bundle on C, a base-point-free gs

d VQH°(C, L) (1 ̂ s^r) and r+1 spanning
vectors for F, up to homothethy. Note that full maps are characterized by s = r.

In the following we shall denote by Gd(C) the space of all g s

d s on C (cf. [22] for
more details); in addition, we let Gd(C) be the open subset consisting of
base-point-free series. We shall also denote by Bd'

r(C) the holomorphic bundle

over Gd(C) whose fibre over FeG^(C) consists of all sets oϊ r+1 spanning vectors
for K up to homothethies. Clearly, Bd'

r(C) parametrizes instanton solutions
/: C-+Pr such that the span /(C) has dimension s. The closure B*d

 r(C) of Bs

d

 r(C) in
the space of all degree d instanton solutions is obtained by relaxing the condition
on the r+1 vectors to be chosen in F to the mere requirement that they do not
have common zereos.

With these preliminaries in mind, we now describe Bd'
r(C) using the main

results of the Brill-Noether theory. The existence theorem for special divisors
[19-21] implies that Gd(C) [and hence Bγ(C}~\ is non-empty whenever
ρ(s) = g — (5+1) (g — d + 5)^0. From now on we assume that C is general To
compute the dimension of Bγ(C\ recall that [17] when ρ(s)<0, Gd(C) is empty;
hence Bd'

r(C) is also empty when ρ(s)<0. When ρ(s) = 0,Gd(C) is a discrete set
containing [19-21]

n =

points. Accordingly, Bs

d'
r(C) is the disjoint union of n copies of the homogeneous

space PGl(r)/T, where Γ is the group of all linear transformations fixing
5 + 1 independent vectors. Finally, when ρ(s)>0, Gd(C\ and hence Gs

d(C\ is a
smooth connected complex manifold of dimension ρ(s) [23, 24]; thus Bd

>r(C)
is a smooth connected complex manifold of dimension ρ(s) + dim(PGl(r)/T)

.
Turning to the full space Bd(C) of instanton solutions /: C->Pr, for a general

curve C this is the disjoint union

In particular, we see that Bd(C) has irreducible components of varying dimensions.
However, as we observed, the closure of each component of Bd

>r(C) intersects
B^r(C) for every t<s; thus, with the sole exception of the case when ρ(l) = 0, Bd(C)
is connected.

Note that all the maps parametrized by a fibre of Bs

d

r(C) can be obtained one
from the other by the action of PGl(r) on Pr itself. They are all homotopic and
have the same energy. However, they cannot be obtained one from the other by an
action of the internal symmetry group of the model, which leaves the Lagrangian
invariant and trivially sends solutions into solutions. As we know, this group is the
isometry group SU(r+l)/Zr+1 of the Fubini-Study metric of Pr. Accordingly, we
would like better to parametrize the orbits of the internal symmetry group in the
parameter space Bs

d'
r(C), i.e. to parametrize the instanton solutions up to a
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SU(r + l)/%r+! gauge transformation. To simplify matters, we shall do this only for
full solutions, i.e. for Bd'

r(C). From the discussion above, we have the following

Theorem 4.1. A) The space of full holomorphic Pr-ίnstantons of degree d (up to a
global SU(r+l)/2£r+1 gauge transformation) is the bundle

Λ 7 y V r ΛPGl(ι )/SU(r+l) ~

where Nr

d(C) is the quotient bundle J5J/SU(r+l).

B) Let @ = g — (r + l)(g — d + r). For a general curve C, we then have

i) ifρ<Q9thenN%C) = β ι
ii) if ρ = 0, Nr

d(C) is the disjoint union of

H...O!

(g-d + 2r)\...(g-d + r)Γ'

copies of PGL(r)/SU(r +1)
iii) if ρ>0, Nr

d(C) is a smooth connected manifold of real dimension

dim Nr

d(C) = (r+l)(2d — r+l) — 2rg—l.

Remark. Note that there are special curves for which there are "more" instantons
than stated in B), while A) holds in any case. This depends on the structure of
Gr

d(C). The case of Pr models over P1 has been also discussed in [8].
Besides instantons, for r > 1 there are other maps at which the energy

functional of Pr models is stationary. From Sect. 2, we know that all these maps
give saddle points for the energy, that is there are perturbations which lower their
energy. Hence, at a given admissible degree, we have minimum energy solutions
(i.e. instantons) and possibly higher energy unstable solutions, which are homo-
topic to the instantons and may be thought as their "excitations."

Our knowledge about these excitations for a general Pr model over a curve C is
far from being complete. Indeed we do know something about those, among them,
which are full and isotropic. Recall that, according to Eells and Wood [13], from
any instanton φ0 we can generate r— 1 isotropic solutions ιpk(Q<k<r) which are
neither holomorphic nor antiholomorphic. It is clear that each ψk will depend on
the same parameters as ψ0. However, in general, the tpfc's will not have the same
degree of ψ0 and hence cannot be considered as excited states of ψ0 itself.

As for the parameter spaces of full isotropic solutions, we have that they
coincide with the parameter spaces of the holomorphic maps from which isotropic
maps are generated. In principle, the question is answered by Proposition 4.1, with
minor modifications concerning the notion of "effective" parameters. However,
such information is of little use, since one would like to know the parameter space
of solutions with a given degree and energy. It should be clear by now that we
cannot answer this question in full generality, because we do not know which
energy values are admissible for excitations of a given degree. Nor do we know
how many isotropic solutions generated by different holomorphic maps have the
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same energy and degree. Once again, to solve these questions, one needs to study
in full detail the ramification properties of holomorphic maps of C into Pr. Finally,
if C is not P1 or a torus, there may be excitations which are not isotropic. About
these last solutions nothing is known.

7. Concluding Remarks

Let us summarise the results obtained above. There are two classes of solutions of
Pr-models subjected to generalized boundary conditions, namely

i) (anti) instantons, i.e. minima of the energy,
ii) unstable excitations, i.e. saddle points of the energy.
All the instanton solutions can be in principle constructed as

(anti)holomorphic maps /: C—»Pr, where C is a Riemann surface which depends
on the chosen conditions. Moreover, which is more important, much is known
about the space of their parameters so that one might deal with such solutions,
without needing an explicit form for their functional dependence.

As for the unstable solutions, our knowledge is far less complete. However,
a) for the standard nonlinear σ-model with the usual boundary conditions, we

know that there are no unstable solutions at all. So (anti)instantons represent the
general classical solution,

b) for Pr models with the usual boundary conditions (i.e. C^P1), all the
unstable solutions are given by isotropic maps. Those, together with instantons
give the general classical solution for Pr models over P1,

c) for the general Pr model, isotropic maps represent a subclass of unstable
solutions.
All the classical solutions above fall into disjoint homotopy classes, labelled by
their degree d.

When standard boundary conditions are considered, for any d we have the
lowest energy state of the field, given by an instanton or an anti-instanton
(according to the sign of d) if d<r, these solutions cannot be full. Besides, if r> 1,
there are infinite excitations of the same degree, with an energy spectrum
extending to infinity. However, only certain values of the energy are allowed for
excitations of a given degree.

The pattern is qualitatively the same in the case of generalized boundary
conditions. We have again instantons and excitations in any admissible homotopy
class, with an energy spectrum bounded from below, but possibly extending to
infinity. From the quantitative point of view, however, our results are far from
being complete.

As an example of application, we shall briefly discuss the P2 model over P1,
referring to [9] for a more detailed treatment. Given a d-instanton ιp0 of degree d,
we can construct two other solutions ψί and ι/?2, of which ψ2 = ψ0 is the
anti-instanton polar to ψQ. So, basically, we have only one kind of classical
solutions which are not holomorphic or anti-holomorphic, namely those of the
form ψi = (ΨQ@ΨQ)'L which may be considered in some sense as "composite" states
of the instanton ψ0 and its polar anti-instanton. The topological and energetic
properties of this composite state can be easily investigated.
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First of all, note that the energy and the degree of ψ0 and of ίp1 depend on the
degree and on the ramification of ιp0. From the results of Sect. 3 one finds

E(ψ0) = d + m; deg(φ0) = - (d + m) ,

) = — m ,

where m = d — 2~β0.
The formulas above are quite suggestive. If ψί is considered as a product of

some suitable interaction of the d-instanton ψ0 with the J + m-anti-instanton φ0,
we see that the instanton number, as well as the energy is conserved. The d
instantons are annihilated by d anti-instantons, and the leftover is an excited state
of an m anti-instanton, the energy gap with respect to the lowest energy state
compatible with instanton number being exactly that implied by energy
conservation.
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