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Analytic Interpolation and Borel Summability
ofthe(£|Φ N | : 4 ) 2 Models
I. Finite Volume Approximation

C. Billionnet and P. Renouard

Centre de Physique Theorique, Ecole Polytechnique, F-91128 Palaiseau Cedex, France

Abstract. Analytic interpolation in the variable ί/N of — I Φ J V I J models is

constructed at finite volume approximation. We prove Borel summability of
the Taylor series at 1/JV = O of their Schwinger functions. We also give an
extension of the domain of analyticity in the coupling constant.

Introduction

We study an analytic interpolation and the asymptotic behaviour of a family of
vector quantum fields, self-coupled with a quartic interaction, in a two dimen-
sional space-time. So we carry on the study of the "^ expansion" for the family of
(AT \ΦN\'Λ)I models, initiated by Kupiainen [2].

More precisely, for each integer JV, we start with the Schwinger functions of a
vector field ΦN, with N components, submitted to the ^\ΦN\'Λ interaction; their
(momentum and volume cut-off) approximations have a representation which
allows us to "complexify" the parameter N.

In this paper, we obtain, as limits of these, analytic functions of two complex
variables λ,z, which continue (in λ) and interpolate (in z~^) the given Schwinger
functions without ultra-violet cut-off. (The removal of the volume cut-off using the
Glimm-Jaffe-Spencer cluster expansion if \λ\ is sufficiently small does not seem to
entail any essential difficulty.) We show that these analytic functions have an
indefinitely derivable (in an angle) continuation to points of the form (λ, z = 0), if \λ\
is sufficiently small, and that their Taylor series at these points are Borel
summable.

This property improves the relation between the "^ expansion" (known to be
asymptotic [2]) and the function itself. It allows the construction of convergent
approximations which depends only on the beginning of the series; these are
"explicit" (as sums of Feynman graphs). Moreover it allows us to characterize the
constructed interpolation among all analytic functions which coincide at z= -̂,
(JVeN) with the given Schwinger functions.
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Besides, we obtain an extension of the previously known analyticity domain in
the coupling constant λ of the Schwinger functions themselves. In particular, for
each θ arbitrarily close to π, this domain contains a sector (Ae(C; |ArgΛ|<0,
W <re) *° which extends the Borel summability of the Taylor series at zero (i.e. the
"perturbation series"). However we note that, certainly, the constructed analyticity
domain is unnecessarily restricted by technicalities.

1. Analytic Interpolation

In this chapter, we first recall, in order to fix notations, the definition of the
generating functionals of Schwinger functions of the "finite volume" approxima-
tion of -fi~\ΦN\'Λ models in two dimensional space-time (1.1). Then we introduce, for
their "ultraviolet cut-off regularizations (1.2), an integral representation (1.3)
which allows the construction of an analytic interpolation (1.4), the limit of which
(Theorem I, Sect. 1.5) gives the expected continuation. Sections 1.6-1.10 are
devoted to the proof of Theorem I.

1.1. Description of the Model

Let £ be a two dimensional euclidean space, 9 the real topological vector
space 9(E, R) of indefinitely differentiable, fast decreasing functions, 9' its dual
space, 91 the σ-algebra over 9' generated by the linear functions

and m > 0 being fixed, μmeJίι (9\ $ί) the gaussian measure whose Fourier
transform is

ί (1.1.1)

where Σm= — Δ+m2, and ( , ) 2 is the scalar product in L2(E).
For each integer JV^l, ΦN:9N^L1 (^/N,2I®N,μ®N) denotes the canonical

process, [that is, if f={fj)1<j<Ne9N, ΦN{ί) is the (class modulo μ®N of the)
function

J = l

If g is a real function, defined on E, such that ι

(1.1.2)
E4

is the function defined by

»ί\ΦNnβ) expd'Φ f̂))] = Ig, \ Σ K 7/11 Π fiJfj)'
\ U=l J I2j=l

1 g is the Fourier transform of g, specified by g(p)= J e i(p>x) g(x)dx, {peE)
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It is well known2 that, if g^O,

exV(-\ΦN\ Λ(g))e f] Uψ>'», μ®N). (1.1.4)
1 ^ p < oo

One supposes g satisfies (1.1.2), O ^ g ^ l and ReA^O, and one defines

μ T ^ί)) exp(- £ |ΦN|:4fo))], f e ^ , (1.1.5)

and if3

Sf (f)= Z V t g ( ί ) . (1.1.6)
N>λ>9 Z l .

Then, for λ^O,Si_ . is the generating functional of the Schwinger functions of
λ N '9

the —|ΦJVΓ 4 model with "volume cut-off g.

1.2. Ultraviolet Cut-off Regularίzations

If l^j^N, let ΦjΛ :Sf-+L\SffN,μ®N) be the 7 h component of < V that is, for
feSf, Φ$(f) = ΦN(Ijf), where V3\Sf-*Sf™ is defined by

[so that ΦJV(f)= Σ Φ^(fj), if f=ϋ})i S J S W

Given χ e ^ , one sets

Φ&(x) = <ϊTO •-*)) , x e £ , (1.2.1)

[thus Φ&(x)[ω]=ω, χ(x)], and

c, = £fm

N[φωχ(x)2] = (χ, Γ ; x χ ) 2 , (1.2.2)

next,

Φ$Λ(xY2 = ΦWιX(x)2-cx, (1.2.3)

and,

last,

+ 3 c 2 ;

I :4= Σ Φ ^ W ; 4 + 2 Σ Φ ^ W 2 Φ ^ W ; 2 , d.2.5)

2 It follows from Nelson's theorem [3]; see also [1, Theorem 2.1.4]
3 This is true for λ^O (from Jensen's inequality, because E ®N[|Φ/vΓ4(#)] =0), and, by continuity, in a
neighbourhood of the positive real axis



260 C. Billionnet and P. Renouard

SO t h a t

|Φ*,χ(*)P4= ( Σ Φ ^ M : 2 - 2 c J - 2 ( J V + 2)cχ

2. (1.2.6)
V/=l /

Then if [g satisfying (1.1.2)] one sets

\ΦNJ\g)=$\ΦN,χ(χ)lΛg(χ)dχ, (1.2.7)
E

and, if one replaces χ by an approximate unit (χn)πe]N, one knows4 that

\ΦN[Λ(g)=\ϊm\ΦNJΛ(g), in Lp(&"N,μ%N)9 l ^ p < + θ), (1.2.8)
n —• o o

and, if moreover g^O, that5

\ΦN\'Λ(g))= lim

in Lp{^ ,μ^ ) , l ^ p < + oo. (1.2.9)

Thus, if one sets

one has

/.3. An Integral Representation

Now let veJί1^', 9ί) be the gaussian measure with Fourier transform

i2 (1.3.1)

let also ρ be a real number, g a C^-function6 on E with compact support, such that
O^gf^l, and ω = ( ω J . ) l s ^ Λ ί e ^ " i V . From (1.2.6) and (1.2.7), one has7

(1.3.2)

4 See [1, Lemma 2.1.6]
5 This follows from (1.1.4) and (1.2.8), using DuhammeΓs formula

6 This regularity condition is only needed to avoid inessential complications: with slight modifi-
cations one can assume, in all that follows, that g is only measurable, bounded, and vanishes outside a
compact set
7 A representation of this form is introduced in [2, Sect. 4]
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Then, substituting (1.3.2) in (1.2.10), one obtains from Fubini's theorem (the
integrant is a bounded function),

Zί | , g 2 , χ ( f ) = J

•I
•μm(dωj)\v(dσ). (1.3.3)

For σe9", let AgJyσ)€2Γ1{2teJ)8 be the real, self-adjoint operator, defined by

(1.3.4)

one has,

$ (σ,l(ω*χ)2-Cχ]g>e«°> f>μm{dω)

βJ (1.3.5)

Thus, for any real t such that (/ +1Ag χ(σ)) > 0,

f exp(- ^<σ, [(ω*χ)2-cχ]

= [det2(/ + tAg>χ(σ))T m e x p ( - i ( ^ 7, [/ + ί A , » ] " X 7 ) ^ ) . (1.3.6)

By analytic continuation, (1.3.6) also holds for any complex t such that (/-hRef
• Â  χ(σ)) > 0, provided, in this case, the square root is specified by

[det2(/ + ίA)]«sexp(α £ [Iog(l + t4)-t<y\, (ImίΦ0,αeC),
\ /ceN /

with
|Imlog(l + ίξ) |<π, VξeIR, (1.3.7)

where (ξk)ke]N is the sequence of proper values (each repeated according to its own
multiplicity) oϊA = A*e&~2.
Then, inserting (1.3.6) in (1.3.3), one obtains

N' I

. (1.3.8)

8 Jfx stands for the Sobolev space J^\E) with norm \\ψ\\^i = \\Σ~ίl2ψ\\2, and ^p, ( p ^ 1), is the ideal
of operators ^ such that l^p1 is trace class
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ί.4. Construction of an Analytic Interpolation

Now one constructs an analytic continuation of (1.3.8) with the help of the
following lemma:

For <2>0, let Dα be the domain9 of all (ρ,C)e(C2 such that

and

ρ£Φθ and | A r g ρ ζ | φ | , (1.4.1)

4|cosArgρς|

if

|ρ | 2 {||cos Arg ζ2\ + Arccos( — sin| Arg ρ£|) |sin Arg (2 |} <a,

if

(1.4.2)

then

Lemma. Suppose

[det2(7 + iρζAg>χ

ί£l, and let a<4πm2 if pe 1, , then
[ a [

", v), and

'clWgVX V(ρ,C)eDα (1.4.3)

(the left hand side of (1.4.3) is defined by (1.3.7);.
Proof First, for (ρ,ζ)eΌa, one has

Indeed, one shows elementarily, that if |Argw|φπ, then

and if moreover |Imlog(l + w)|<π,

|Im{log(l + w)-w}|^|Argu| M 2 , [|Argw|<π],

which entails (1.4.4), according to (1.4.2). Therefore

(where || || g- is the Hilbert-Schmidt norm). But

9 Some graphic representations of this domain are shown in appendix

(1.4.4)

(1.4.5)

(1.4.6)

(1.4.7)

(1.4.8)

(1.4.9)
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where Bg^βΓ^L1) is the real, positive, self adjoint operator defined by

E), (1.4.10)

\Bgχ is trace class because if Cgχ\L2{E)^L2(E2) is given by

Cg,M
xvx2)= $Σ-1/2χ(xί-y)Σ-ll2χ(χ 2-y)g(y)ψ(y)dy, Cg>χ is obviously of Hil-

E

bert-Schmidt class and BgtX = C*tXCgtX = \CgJ
2l

Then, if Gm denotes the kernel of Σ'1 (namely Σ~1f = Gm*f), one has

Gm*χ*χ||?,

(if HgflL^lJIχlL^l) . (1.4.11)

Thus if a<4πm2 and l ^ p < — — , then {I-paBgJ>0, thus from (1.4.9),

exp(^pα||A ll^-JeL 1^", v), and moreover,

, { p g J

= [det (7 + pail - paBgJ " 1 BgJ] m

gexp^pαllCί-pαB^]-1!! ll^ll^,). d 4.12)

But, from (1.4.11),

\ (1.4.13)

and, as Bgχ^0,

\\BgJrι=ττBβtX = c2

χ\\g\\2

2, (1.4.14)

then (1.4.3) follows from (1.4.8), (1.4.12), (1.4.13) and (1.4.14). D
Then, for ( ρ , C ) e D ( W ) , XeN, and f=(fj)lέjύKe^κ, one sets

Z*χβ 2,z(f)= ί

Π % e > » ] - ^ ^ ' / ^ O v(dσ). (1.4.15)
J = l

[The integral in the right hand side of (1.4.15) is well defined from Lemma 1.4 and
Holder's inequality, because on the one hand, if (ρ, ζ)eD ( 4 π m 2 ) , there exists a <4πmz

such that (ρ, ζ)eDα and, on the other hand,

e;ρζ< , β > e η L\9",v)
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and

because, as A^ χ(σ)is self-adjoint, one has \\[I + ίρζAg>χ(σ)~]~1\\ ^ |cos ArgρζΓ 1

besides, this integral defines actually a function of ρ2 and C2, because v = v.]
Functions (1.4.15) are obviously analytic in (ρ, ζ)eD ( 4 π m 2 ) and, for ρeIR,

ζ= —=, and K^N, (JVeN+), they coincide with functions (1.3.8) in which the/.
]/N

(a<4πm2,ε>0), (1.4.16)

are nonvanishing only for K values of the index j .
If, besides, °U denotes the family of domains

2β > , = (ρ,0eD β ;

then, from (1.4.8) and Lebesgue's theorem, for any UeW, each function (1.4.15) has

a continuous continuation to the closure ϋ of U; we use the same symbol to

denote the function (1.4.15) and its continuation to D (4π m2 }s [j tj. For all ζe<C,

o n e h a s ( ( U ) e D (

+

W ) a n d ϋ 6 *

J = l

1 0and, if ρeC is such that 1 0 feO)eD(

+

4πwj2),

7 = 1

/ 2 \ Ί - l / 2 JK

= d e t 2 ( I + ^ B \ \ Π expί-K/^Σ- 1 /^). (1.4.18)

The function

is thus nonvanishing on D (4π m 2 )\D ( 4 π m 2 ) and, consequently, the meromorphic
functions defined on D ( 4 π m 2 ) by

(1.4.19)

have, under the above conditions, a continuous continuation to D(4πm2), which one
is constant (and independent of g and χ) over D(tπm2)\D(4πm2) especially, if

10 This condition is particularly true for all ρeIR, and also if |ρ | 2 <8πm2. Under this assumption, the
integral in Eq. (1.4.18) is well defined (from Lebesgue's theorem); this, according to (1.4.9), implies that

2
Q \

7 + Re — Ba J > 0 , and9, X

-1/2

det 2 / + —B)\ is then defined following (1.3.7)
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(ρ,0)eD (tπ m 2 ),
K K

so.ή,β2,β = Π ^P(-lifpΣ~ %)2) = Π βJfj) (1-4-20)
8 j=ί j=ί

is the generating functional of a free field.

ί.5. Removing the Ultraviolet Cut-off

One now obtains the expected analytic continuation of functions (1.1.5) and (1.1.6)
as limit of functions (1.4.15) and (1.4.19) where one substitutes a suitable
approximate unit to χ; more precisely, we want to show

Theorem I. Let χqe^, (^eN) be an approximate unit such that11, for any qelN, χq

has compact support and Halloo = 1 > for any compact set KcE, there exists
such that χq\κ=h \/q^qκ; then, for any (ρ,ζ)eΌ^πm2), the sequence

converges and its limit

Z^^lunZ^Jf) (1.5.1)
o q ~* oo o

is independent of the chosen approximate unit; moreover, for any Uetf/, (defined by
(1.4.16)), the convergence is uniform for {ρ9ζ) in any bounded subset of U.

As convergence is, in particular, uniform on any compact set of D ( 4 π m 2 ) ,
functions

(ρ,0^Zi^ (f)

are holomorphic; for any Ue^iί they are continuous on ΰ and, from (1.2.11), they
continue functions (1.1.5).

One notes that, for ζ2——, (JVeN + ) one so obtains an extension of the

previously known analyticity domain 1 2 of functions

This extended domain contains especially the region13

u «%*>.
where z l ^ l / l e C Re/ lΓ 1 ;^" 1 } on the other hand, if |Arg/ί|^π —ε, one has from
(1A17),

lim Zϊ 2 = 1,

11 A little more work allows less restrictive assumptions

12 One already knows that these functions are analytic in the half-plane ReA>0, see (1.1.5)
13 Nevanlinna-SokaΓs theorem [5] allows us to obtain Borel summability in this region (see
Theorem II below), however we can obtain uniform bounds only for | # | < π — ε
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thus the "normalized" functions

π N TV

are holomorphic in a region of the form

\J μeC;|Argλ|<π-ε,O<|Λ|<rβ}.
0<ε<π

Theorem I is an easy consequence of the following lemma: let

let also ke 9> be a function such that 0 ̂  fc(p) ̂  1, VpeE fc(p) = 1 if |p| ̂  1 k(p) = 0 if
| p | ^ 2 ; for κ > 0 let feκ(x) = κ2k(κx), (xeE), then one has

Lemma. Let κo>0 and κn = κoe
n, (neN), then for any (ρ,ζ)eΌ^_πm2), the sequence

ζi,^-,g*,KkKn new

converges, uniformly with respect to heW* and, for any Ue%, uniformly on any
bounded subset of U.

First we deduce Theorem I from this lemma as follows: one notes that the
Dirac measure δ belongs to W and that, if (χq)qeNis an approximate unit satisfying
the assumptions of the theorem, one has χqeiΓ, VgeN, and

lim Z£ t£tg2 κ (f)=Z£ f_ tg2tX®, V ^ G N , (1.5.2)

because Xq*kKn = χq for sufficiently large n. Then, given some ε > 0, one first chooses
n o e N such that

lim i
«->• oo

(f) (1.5.3)

and then such that χg*/cKn =feKn, Vq^.q0: then one has

^ ( (1) (1.5.4)

As the choice of n0 and qQ can be done independently of (ρ, ζ) in each bounded
subset of U, (UeW), this proves the theorem. •

ί.6. Introduction of Auxiliary Variables

Now one reduces the proof of Lemma 1.5 to that of Proposition 1.6 below, which is
given in Sect. 1.7-1.10.

Suppose the function ke£f and the sequence {κn)neh] are chosen according to
the assumptions of Lemma 1.5; for any sequence t=(tj)ί<j< + o0ε[0, l ] N + , vanish-
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ing outside some finite set of values of the index j , one sets

+ 00

fc(I) = feΪC0+ Σ tj(kκ —kκ._^), (1.6.1)
j = i J J

(so that, /cκo = fc(0) and, for n ̂  1, feKn = fc(ln), where ln is the characteristic function of

On the other hand, let (^w)neN, (^0 = 0, /„ > 0 if rc > 0), be a given sequence of
integers (to be determined later) one sets

and, for te [0,1],

[0, if i>j,

(Jo(ί));=0, Vi€N+; (J/ί)), = | ί , if i=j, if

U, if \ύi<j,

Last D: = —, then if one supposes provisionally that the function
dt

is sufficiently derivable, one has, from Taylor's formula14

x—l T—i -ί c , , x y>

(1.6.2)

&(Jjtt))'dt. (1.6.3)

If now one admits the

Proposition. The function ££ defined by (1.6.2) is indefinitely derivable. For any ε>0,
n<\, there exist constants b>0, c>0, independent15 ofheiΓ and of(ρ,ζ) in any

; j S n e N " " j l + 1 , (^o = ^) '

(1.6.4)

bounded set ofϋ9 (Ue<%), such that for alljtO, n^j, q = (
and ίe[0,1], one has

the end of the proof is standard moreover, the actual value [2 in the present case]

of the exponent of the factor ]Γ q. I! in the right hand side of (1.6.4) is irrelevant,

so we want to conclude under the assumption

Y[Df Σ ί « > ΠK-!) (1.6.5)

14 For = 0, one has q0 = So = 0 one agrees that Dq

0° is the identity and that <f0 J (1 - tf° ιdt = \
o

15 These constants are also independent of m^m o >0
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(where s > 0 is arbitrary), which generalizes (1.6.4): first one chooses ξ>0,
IK \ξ °°

arbitrarily small, and sets 0Li = (\-e~ξy1\^-L\i (i^l), so that16 Y αΓ1 = l,
\ " o / £=i

therefore

Σ ^ ί = Π ^ ΐ α Γ ' feelN> ^ o = ^ ) (1.6.6)

Inserting (1.6.6) in (1.6.5) one sees that for any ηx <η, there exists cλ > 0 such that

(1.6.7)

(1.6.8)

Then, from (1.6.3),

j = 0 qeSy ί = j

Now one chooses the sequence (^) ί e N : one sets

= - o o ,

and

One checks that

fexpί-V / s , if

|exp(-ϋ,.ήf), if 0 ^
(1.6.9)

Therefore,

7=0 βe ĵ

g Σ^p(bκ)~S-ev

o \ e
"

( Σ e x P (^} - 7 ̂ / 5)) Π ( - ^-)) exp ( - vn)

- ^ - A ίif and κn = κoe
n). (1.6.10)

16 Recall that Kj = κoe
j, ( eN)

17 E denotes the entire part; one assumes, for simplicity, κ0 is chosen sufficiently large, so that v^s,
Vi ^ 1 last, conventionaly, + oo 0 = 0
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1.7. Computation of the Derivatives of 2£

To compute the derivatives of 3£ one uses the following "integration by parts"
formula:
Let F be an 2I-measurable function on 9" and let ge9, one assumes there exists
p> 1 such that for any a in a real neighbourhood of 0 one has F( + ag)eLp(<9p\ v),
then

- ± a
2\\g\\2 -a(σ,gy)v(dσ) = J F(σ)v(dσ). (1.7.1)112

9' 9'

One assumes moreover that, for v-almost all σe^' the function a\->F(σ + ag) is
derivable in some neighbourhood of 0, and that the functions \F( +ag)\ and

— F( + ag) are dominated by some fixed positive function in Lp{£f\ v). Then if
da

d
one sets d F(σ) =

da α = 0

i, one obtains

J <σ,g}F(σ)v(dσ)= J δgF(σ)v(dσ) (1.7.2)
9" 9'

by derivation of (1.7.1) under the integral sign.
Coming back to function J 9, we shorten notations by writing, from (1.6.2) and

(1.4.15) where one substitutes h^k{t) for χ

£?(£)— ί exρ(^ρ2ζ"2c(χ)21|^IIf -hί̂ Cc(X)<CCΓ56r>)̂ (X,cr)v(ί̂ cr), (1.7.3)
9'

and one checks recursively the formula

[ (Dk + iQζ{Dkc)dgγ* 7(t σ) v(dσ), (1.7.4)
-k = j J

(where the derivations (Dk + iρζ(Dkc)dg) are mutually commutative). Indeed, ifX

denotes any of the functions \γ\(Dk + iρζ(Dkc)dg) Y, one justifies easily derivations

under the integral sign by estimates mainly coming from (1.4.8), and one obtains

M • - - - -
9'

9'

2ζ2c{L)\\g\\2•{{Dkcit))ίρ2^(t)\\g\\22 + iρζ<σ,{

= J QXp(^ρ2ζ2c(t)2\\g\\2-\-iρζc(t)<\σ,gy)
9'

• {iρζ(Dtc(ί))δ/(t σ) + D^{t_ σ)} v(dσ), (1.7.5)
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where the second equality comes from (1.7.2) applied to the function

F(σ) = eiρζ<x{t)<σ>d>X(t,σ). D

ί.8. Explicit Expression of the Derivatives of 3£

To compute the right hand side of (1.7.4), it seems useful to introduce c(£, w)eC,
A(ί, u σ)e ^ ( J f 1 ) , where t, u, e [0,1]N + are sequences which vanish outside a finite
set, by

1 ) 2 , (1.8.1)

, (σe&")9 (1.8.2)

[one has c(ί, u) = c{u,t) and A(ί,w;σ) = A(u,£;σ)*], and to set1 8

1

Y 0 ( ί ' M ' σ ) = [e xP(-2^2C2c(ί,M)2 | |g|l2) ^ t 2 ( / + iρCA(ί,w;σ))] 2 ζ 2 , (1.8.3)

and,

x

7(£,u;σ)== 70(ί,w;σ) f| exp( — ^(Σ~1fp[I-\-iρζA(l,u;σ)']~ίΣ~1fj)M,ι), (1.8.4)

so that, frpm (1.7.3), (1.6.2), (1.4.15), (1.2.2), and (1.3.4), one has

Y(t;σ)=Ϋ(t,tiσ). (1.8.5)
Besides, one notes D\=—, D'\=-—, (/eN+), and one sets1 9

Ot OU

(1.8.6)

(here D'o and DQ denotes conventionally the identity). Then, for r^eN+j (1 ^j^n\
one has from (1.8.5),

J = l

= Π {(D^ + iρζc^ Y(Lt;σ), (1.8.7)

where one notes that the derivations (Df

r + iρζcir>0)dg), ( r ^ l ) , and (D^-\-iρζc{0's)dgl
(5^1), are mutually commutative.

To make explicit the right hand side of (1.8.7), one introduces the following
notations:

(1.8.8)

18 As [/ + iρζA{t, u σ)] is invertible if t = u, so it is in some neighbourhood (depending a priori of all
parameters) of the diagonal

19 One notes that c and A are affϊne functions of tj and «,•(/ = !)> s 0 t n a t t n e i f OΏty nonvashing
derivatives are those given by (1.8.6)
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Next,

271

£ = fc+l

ju, » ^ S ι ) ? ( f e <• „ ) ?

i=k+2

and,

"A(rί'Si),
I j=k i=k+ί

(1.8.9)

(1.8.10)

Last, α = {fl;.GlN+ 'ΛSjSn^ and b = {ftJ eN+ l^ j^n 2 } being given, one denotes
by Sfe

9(α,£), (fc^2), the set of fc^^φNxN l ^ ' ^ } , satisfying the
conditions:
(So, i)- the set of nonvanishing (r^ <f<k, [respectively (s^ ̂  J , is a permutation

o f («j)i ĵ̂ ni» [respectively (ft̂ i ^ Π 2 ] .

(So,u)- ^i+0 or 5kφ0 and for all ie{l, ...,/c-1}, either ŝ φO or r i + 1 φ 0 ;

3f(α,a, (n^ί9k = {kq^2;ί^q^n}\ the set of {(r(g),5(g)) = {(r^,sί)

l^iSkq}; l^qSn}, satisfying

(Sn,i)- the set of nonvanishing (r^)J|f|^, [respectively(s g ))ll ffe

nj is a per-

mutation of (aj)^^, [respectively(bj.)^^,,,].

{Sn,ii)- for each qe{l,...9n}9 ^ = 4^ = 0, and for each ie{l, ...,fcβ-l}, either
^ φ O o r r j ^ Φ O ;

Iffefe), (n^O, /c={(/cg)0<g<π; feo^0, /cn^0, /c^2 if l ^ ^ n - 1 } ) , the set of
{(r<«>, s(ί)) = {(rίβ), ̂ ) 6 M xN 1 ̂ i ύ kq} 0g<? ̂  n}, satisfying

(Tπ,0- the set of nonvanishing (rίβ))?i?f*π

β, [respectively (sίβ))?l?|fcj is a per-

mutation of (flj)!^-^^, [respectively (bβ^j^J.

(Tn9iΐ)- r f + O and ̂  = 0, (ί^q^n); s^ + 0 and s^ = 0, 0 ^ ^ ^ n - l ) ; for each
qe{0, ...,n} and each IG{1, ...,/c^-1}, e i t h e r ^ φ 0 or r $ x φ0.

With the above notations, one has

Lemma, Let α = {α/eN+ l ^ ^ n i ) and b = {bj
i) One has

Π (D;

1 M1+M2

(1.8.11)
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Mo(fii)= Σ ^ Σ T r f H M A < " ">[, (1-8.12)

and, for n^l,

{r{q)s{q)) Σ e 6 ( k ) ( ί j b )

T H Π ([/ + Φ C A ] - 1 . " Π " A ( r ' t ) ) ) [ (1.8.13)

ii) IfψeJtf'1, one has

lj=l k=l

ni + n 2 + 1

with

®j&b)= Σ (-»cOβ"0** Σ
^0,kn^0 ( r ( g ) , s<β))0 g g g n 6ϊ | j ί ) (β, fc)

φ,"Π"A(C'sΓ Π ([ί + ieCAΓ1- " f l " ^ ' ^ ) ^ ) (1.8.15)
7 0 = 1 ί = l \ 7 g = l

Proo/. One shows (1.8.11) and (1.8.14) recursively.

1. First (1.8.11) holds if nx + n2 = \. Indeed from (1.8.3),

y 9 , (1.8.16)

but, from (1.8.2) and (1.8.8), one has dgA(t,u;σ) = A^°\t,u)e^'ι{3e1), [if C(u)ψ
= Σ-ll2(g-(h*k(u)*ψ)), (ψeJf1), one has C{u)e^2(^1) with

Γ < o o > * l , and,

(1.8.17)

Inserting (1.8.17) in (1.8.16), one obtains

(1.8.18)

which is exactly (1.8.11) for ^ = 0 , «2 = 1.
For nί = 1, n2 = 0, one shows in an analogous way that

= - | - T r { ( A ( 0 0)A ( j 0 ) - c υ 0)A[° 0>) -[1 + iβCA]-1}. (1.8.19)
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Next, if X is a derivable function with values in S~ι(^ι\ from the obvious
equality [7 + iρζA] ~1 = / — iρζA[/ 4- iρζA] ~ \ one has

]

(1.8.20)
and,

~ \D'p)} - iρζ{ίl + iρζA]
1(A(0 ΛA<0 0 »-c < 0 ΛA[β

0

]

 0»)[/ + JρCA]-1X}.
(1.8.21)

from which one deduces immediately (1.8.14) in the cases nι = l, n2 = 0:

, [/ + iρζA] ~ V) # , = -iρζ(φ, Au 0 )[/ + iρζA] " ιψ)^

\A^ °>A« °> - c" 0 )A^ °>)[/ + iρζA] - V ) # .
(1.8.22)

and nι =0, n2 — \:

{D] + iρζc(0 »δg)(ψ, [I + iρζA] ~ιψ)^ = - iρζ(ψ, [/ + iρζA] " 1 A<0' Λψ)^

2. If n o w j ^ ^ . e N ; l^j^^} and αeN + , for ie{l,...,fc} one denotes byj^(α) the
sequence defined by

'•,H = ί α ' if

f ί ϊ ' .
J lrj5 if j φ i .

Then one has obivously (recursively with respect to fc),
k k i

K Π "A ( Γ ^^= X " Π "A ( r ί ( β ) J ' s ^, (1.8.24)
7 = 1 {i; ΓΪ = 0} .7=1

and
k k

K Π "& r j t S j ) = Σ " Π "A (^ s t (^>, (1.8.25)
7 = 1 { i ; s ί = 0 } j = l

as also the analogous formulas where one substitutes "JcJ" to " Π " ^ follows
particularly that

k
1 "Π"A ( r ! ( β>' ̂ >, if ri=0, (1.8.26)
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likewise

J = l J = l

; 1 , if sk = 0. (1.8.27)

Then, if b o e N + , one computes (D^ + zρζc^ ^ S p U ^ f e ) , [see (1.8.12) and
(1.8.13)], by systematic use of (1.8.21) and then of (1.8.27), using the cyclicity
property of the trace: one writes20

(D';o + ίρζc^Mdg)\ Σ Kb,b) = Σ Kia,b K), (1.8.28)
|M = 0 n ̂  0

where U'ή(g,b b0) is defined as the sum of all terms of the obtained expansion in
which the resolvant [7 + ίρζ£] ~x appears exactly n times. In the same way one
defines ^(a,b;b0) substituting %n [see (1.8.15)] to Un, next U'n(a,b;a0\
931,(5, έ ; α 0 ) substituting D'ao to D^, c(α°>0) for c(0'&o), and using (1.8.20) instead
of (1.8.26).
3. From the equality

7=1 7=1 ί=fc+l
fc- 1 π

- " [ ^ " A ( ^ s ^ c ( r k + 1 ' S k ) A [ ; f S k + l ) " Π "
j=1 i=k+2 (1.8.29)

established recursively from (1.8.9), one deduces recursively

^"Π"A ( o ' S j ) = Σ ίίtl'^irj'Sj)'^]'Sk)'ίitl^^iruSi^ (1.8.30)
7 = 1 k=l j=l ί=k+ί

and, for n ̂  2,

{ β Ή " A ( Γ J f S 4 = Σ T r ί A [ ^ S k ) u Π''A ( r ( k + J ) | M ' S ( / c + J ) | n ) }, (1.8.31)
7 = 1 J / c = l I 7 = 1 J

.. (/, if
where one sets i\n = {

\j-n, if

Next, if (r,s)G®ote»έ)» (k^2), one defines on the one hand (ιr,li)e0Q(a,fc) by

^ j = r(i + j-)|fc' i ? j = 5(i + 7 )|fc' ί 1 ^ ' ^ ^ a n d o n e n o t e s t h a t

"H"^<rdfpej>} = Tr/"^"A^'- '^ l , (l^i^fe), (1.8.32)

20 We do not write here explicit expressions for U'ή(a,b b0) and the analogous terms, because of their
excessive length
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and, on the other hand, (r+

9s.+)e&?+1XQ,k), by r^=sk

+

+1=09 rΐ =rj{k,
(2Sjύk-\-1), and s t = sj9 (lύjSk).
Then, from (1.8.31), one has

ί k Λ k ( k+ 1

I 7 = 1 J / = 1 I 7 = 1

k ( k+ί Λ

= Σ Tτ\"U"A^ + ™;tΛ^ή, (1.8.33)
ί = l I 7 = 1 J

and, from (1.8.32) and (1.8.33) one deduces that

%(a,b;bo)=Uo(a,bu{bo}). (1.8.34)

After, if (r,s) = {(rJ.,s</.)e]NxN; l ^ j ^ f e } , and ie{l, ...,k}, one defines (f,J) by

Then, if ^ o e]N + , from (1.8.29) and (1.8.30), one has

= Σ uYl"A^s\ib0)j). (1.8.35)

One notes that if fcsJeS^ί^fe'λ (&^2), one has

and from (1.8.35),

" Γ 7 " A(»"j»sfc(bo)j) . i ( 0 , 0 ) , / Γ ( 0 , b o ) p(0,bo)p) V ' Γ Ί "

7 = 1 7 = 1

fc-1 i ,. , fc-i+1 ,

7 2 = 1

(1.8.36)
ί = l 7 = 1
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from which one deduces

U"n{a,b;bQ)=Un{a,bKj{b0}), (nSϊl). (1.8.37)

For n = l , one uses directly (1.8.36), with d — a, b' = b. For n>l, one applies

successively (1.8.36) to each factor of each term in (1.8.13), using that for each
n n

(riq\siq)) ίύqzne&ΪXa,k) there exists a partition a= Q giq\ b= \J biq\ such that
q=ί q=ί

(riq\ siq))e &£*Xg£q\ U.q)\ 1 ύ q ύ n.\

In the same way, if (r,j)eϊ(

o

fc)(α,έ)5 (k^l), one has

and one deduces from (1.8.35) that

»/ό(fl,fe;feo) = »

Next, if (Ls)e%^kXdM (/c^l), one has

and, from (1.8.35),

+ Σ uYY'^il)J+(1Ί^^^fγ^i2)JV2)) (1.8.39)
i = 2 ji = l j 2 = l

k k + 1 „ , .

Last, if ( r i e ^ ' V i ' ) , (fê l), one has

and, from (1.8.35),

k k
4 t Γf"A ( f " J ' s i ( b o ) j ) A ( 0 ' 0 ) — c(0'bo)d " Γ f " A ( r / ' s /)

j = i β 7 = 1

+ Σ " n " A ( ^ 1 ) > i + ( 1 ) i ( b o ) ' ^ (1.8.40)
ί = l 71 = 1 7 2 = 1

fc fc+1 . .
— V u Γ ί " A ^ ' ^ ^ o ) j )
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and from (1.8.36), (1.8.39) and (1.8.40) one obtains

277

. (1.8.41)

A similar computation of Wn(g, b a0) and 93̂ (α, b a0) achieves the proof. Π

1.9. Estimates

Estimation of the right hand side of (1.8.11) and (1.8.14) relies on the

Lemma. For each f/<l/4, there exists a constant c>0 such that, if g = {aielN+;
l^iύnί},b = {bie¥ί+', 1 ύiύn2}\ eN, jgmin{α,b} ίe[0,l] and pe[l, +ao[,
one has21

i) for any(r9s)e 6fc

o(α,b), (/c^2),

k

ΐ = l

ii) /or any (r,s)e6f(α,fe), (fe^2),

TrrΠ"A(r"
£ = 1 ieauft

ieq KJ b

iii) /or any ( r , ^ ^ , . ^ (fc^l), αn^

(1.9.1)

(1.9.2)

(1.9.3)

(1-9.4)

iv) /or any fesJeS^te^), (fĉ  1), and

, ^ IIVIIΛ-IP

ieaub

ieavb

Proof. F o r each n e N , one denotes by !FnQL\£f\v) the "n-particles space," one
recalls that #"nC p | U{£f\ v), and that, from Nelson's "hypercontractivity"
estimate i ^ < + oo ^

k / 2 0 ^ , ( l ^ p < + oo). (1.9.6)

One notes that functions T r r Ή " ^ S ι ) \ > T r f Ή " ^ s ύ \ a n d \Ψ>"Yl"A(ri'SiV
I £ = 1 J ί £ = 1 J \ £ = 1 / ^ r 1

*USi)

i=ί

andbelong to 0 #„, and that
n = 0

2k

0 #„, so one needs only estimate the ZΛnorm of each of them.

ί = l

belong to

21 See definition of Jft), above (1.6.3), and definitions preceding Lemma 1.8. On the other hand, aub
denotes the disjoint union of the two families of indices
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Now, for £ E [ 0 , 1 ] N + , vanishing outside a finite set, one sets F^ = Σ ω

and, F ^ D ^ , (ieN + ).22 Next K^\y1,x,y2) = F§(yί-x)g(x)F$(x-y2\
(χ>yvy2eE> JJeN); and, on the other hand, if PeSβ(ek) is a partition of
ek={l, ...,/c}, one denotes by υP:ek^P the mapping defined by ίeΌP(i\ ^i
then one has 2 3

= Σ (1.9.7)

and

Tr f'

= Σ

= Σ «f).

(1.9.8)

(1.9.9)

where ^ί(e2k)Cψ(e2k) is the set of all partitions into pairs including no one of the
pairs {z, z + 1}, (1^/^/c—1 and &+l^/^2/c— 1), ̂ 2 ( β 2/c) t n e subset of elements of
Q1(^2fc) which moreover includes neither {l,fc} nor {fc+l,2/c}, and where

A f = ί

), ...,xBp(2k); y2)dy2 ]\dxu, (1.9.10)
ueP

t$J ί

• ί
E2

with

and

= J

= f

ueP

(1.9.11)

' ί.^3' l +i) Π ^ , (1-9.12)
j=2

(1.9.13)

22 See (1.6.1) and (1.6.2)
23 To obtain equalities (1.9.7), (1.9.8), and (1.9.14), [respectively (1.9.9) and (1.9.15)], one

respectively
[ ( „

computes, recursively with respect to k, the integrals Ev T n £ "]^[" A(f"i>Sί

17 ~
EJ(ψ,B- "I7"A(l""SfV

L\ i = i

to some J^,

, where 5 is an arbitrary monomial in A(aj-bj) and A[a

gf
bj\ and PFbelongs
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Next,

and

k

i= 1

= Σ

= Σ

279

(1.9.14)

(1-9.15)

where £>3(e4fe) C ̂ P(β4k) is the set of partitions into pairs which do not include any
one of the pairs { U + l } , (1^/^fc— 1, fc + l ^ ΐ ^ 2 f c - l , 2/c + l ^ i ^ 3 f c - 1 ,
3fc + 1 S i ύ 4fc - 1), and where

(1.9.16)

ί f ί
Ep[E2

(1.9.17)

with

(t 9.18)

One first integrates (1.9.10), (1.9.11), (1.9.16), and (1.9.17), with respect to the

measure Y\ dxu [Fubini's theorem applies obviously because ge£f and F^ey~\ if
ueP

ueP is not a pair of "consecutive" indices, that is, if u is not one of the following
pairs:

in the computation of (1.9.10): {l,/c}or {/c+l,2fc},
in that of (1.9.16): {1,2/c}, {k9k+ί}, {2fc+l,4fc} or {3/c,3/c+l},
and for (1.9.17): {k9k+l} or {3/c,3/c+l},

integration with respect to dxu produces a function of four distinct variables

(yϊH)iϊnϊ4, namely

Λ ^ 4 ) = Jflf(x)2 Π
£ « = 1

(1.9.19)

If on the contrary u is one of the pairs of "consecutive" indices, integration with
respect to dxu gives a function of only three distinct variables, which, according to
the assumptions on the sequence (r,j\ writes

2

Π (1.9.20)
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2 4Then integration with respect to dy gives

Gu(yl9y2)= ί Gu(y;yvy2)dy = c\g{x)2 \[
E E « = 1

, ((yvy2)eE2).

(1.9.21)

Once the partial integrations described above have been performed, the
obtained integral is estimated in a standard way2 5 which gives

ueP

ueP

But, (from Young's and Holder's inequalities), one has

E n = l

E l + 2

2 I

I

r
« = 1

Π ^\x1-yn)P<M(yn-x2ydx1dx2 Π ^

{in)

^ 11 Hi^'Ίi:?!..

. (1.9.22)

(1.9.23)

Next, from (1.6.1) and the assumptions made on feKn, (neN), one has H ^ H ^ ^ l ,
and, for any ieN + , H / c ^ . - ^ . J I ^ ^ l and kICi(p)-^ICί_1(p) = Oif|p|^κ; i_1, therefore,
as H/ill^^l, one has

CT=VέdPl

dp \ ^ Ψ~1)l2l m~1/ι 19 24)

and, for I G N + ,

z- i

i - i

(1.9.25)

on the other hand, for j e N and te[0,1],

4π
(1.9.26)

since fc(Jj(t))(p) = 0, if |p| ^ 2^-.

24 One recalls that c denotes the function c(ί) = cΛiiiΛ(£)

25 Each function GM has to be considered as the kernel of some Hilbert-Schmidt operator
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To achieve the proof, one collects the above estimates, using the inequalities26

|Q2(β2fc)|^|Q1(β2fc)|^2 fe/c!, \&3(eJ\^2*k(kl)\ k£\a\ + \k\ + l, [according to any
one of the assumptions on (r,s)], and one dominates the right hand side of (1.9.26)
by an arbitrarily small power of one of the κ f_1 ? (ieavb), [K^eK^^ Vzeαufr,
since, by assumption, j gz]. •

ί.ίO. Proof of Proposition 1.6

One deduces Proposition 1.6 from Lemmas 1.8 and 1.9 as follows: First one
estimates the right hand side of (1.8.11) and (1.8.14) [with the assumption that
|ρ| = Ci> | ί | ^ c 2 , and, according to (1.4.16) |cos ArgρC|" 1 ^c 3 , and, on the other
hand, that t=u = Jft\ with j ^ z , Vz'eαub as in the hypothesis of Lemma 1.9] :

i) One notes that, if &o(a,b)ή^0, one has max {|α|, \b\} ύk^\a\ + \b\, and

1 uw~"={k-\a\)\ (k-\b\)\
Then, from (1.8.12) and (1.9.1), one sees easily that, (if η< 1/4), there exists cf>0

such that

(1.10.1)
iequb

ii) For (r,s)e&^(a,b\ one has

ί k 1 ί k

= Trrγi"A{r»Sί)\-iρζτr^[J + i ρ ζ A ] " 1 " Π"A ( r i ' S i ) ^ 5 (1.10.2)
and l ί = 1 J l ί = 1

1 « i Π
M A ( Γ ί s ' ) J^II[/ + iβCA]-1||||A||5Γ2

but A(ί,i;σ) is self-adjoint. Thus

and therefore

Ί>Sι)

i= 1

, (1.10.3)

(1.10.4)

Tr {A(i, t)[/ + iρζAO,ί)] " x " Π " A(r"Sl)(Lί)
ί = 1

1-!! lfA(LJ

Now | |A | |^ 2 G 0 #,, thus from (1.9.6),
o

^ p . d.10.5)

^ (1.10.6)

26 If X is a finite set, |X| denotes the number of elements of X
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and, from (1.9.23),

σ.10.7)

One estimates the right hand side of (1.10.7) by (1.9.24) and (1.9.26), one inserts
this result as also (1.9.3) in (1.10.5), and one dominates log(l+4/c^/m2) by an
arbitrarily small power of κ^u (ieaub); then from (1.8.13), (1.10.2), (1.9.2) and
(1.10.5), one sees that, if η < 1/4, there exists c '>0 such that

(c'Ki-iΓn> ( u o 8)

[one noted that max {|α|, \b\}^k-l^\g\ + \bl if &tXa,b)*% and that \<Zf(a,b)\

iii) If n > 2, one has

^ r I Π C-̂  + ̂ C A ] " 1 " Π " A(rί?}'s<

U = l \ i o = l

n

Ύ' Π

Ύ- Π (1.10.9)

Thus, from (1.10.4),

Tr { Π ([/ + i - i . " Π " A < ^

^ | c o s A r g ρ C Γ " - f l II II" Π " A ^ ^
q=l iq=l

(1.10.10)

where, for k = (kq)1<q<£n, one set |k |= ^ kq. Then one notes that, if

(r(q\siq\za*ne(S{*X&h), there exists a partition Q= [j aiq\ b= (j biq\ such that
~ - q=ί q=ί

(r{q\siq))e &^\aiq\ biq)), {iύqύ n\ and one estimates the right hand side of (1.10.10)
by (1.9.3), [with {a{q\b{q)) in place of (α,£)]. Next from (1.8.13) and (1.10.9), and
using the inequalities

if , h) * &,

(\k\-n)l

w-1
if rg
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one has, (with η<ί/A and c'>0),

II1Γ in h\\\ < n ( lβ l + l6

283

(1.10.11)
ieα u ί>

iv) In the same way, from (1.8.15) (with n = ϋ), and (1.9.4),

! Π (cVi)
ieaub

^"lY'AW'Φ&i

(|fc|/fco)P

v) At last, iin^\,(r{q\s{q))o<q<neXf{a,b\

fc0 ^ r

ίo = 1 9 -

« Γ T " ^ ^ 0 ) + i ^ 0 )

ί o = l

« - l fc,

•Icos Argρζ|- π II II " f l " Ϊ W - W
9 = 1 i q = l

(1.10.13)

Therefore, from (1.8.15), (1.9.3) and (1.9.5),

1 Π (C^ i P ,1 1 \ 1 — 1 / '

(1.10.14)

Then inserting (1.10.1), (1.10.8), (1.10.11) in (1.8.11) and (1.10.12), (1.10.14) in
(1.8.14), one obtains from (1.8.4),

k = l

Σ II/JI^ Π (Λ,--,) (1-10.15)
ieaub

At last, as the derivations (Dfl. + iρζ(Dα.c)δ^)1<ί<n are mutually commutative,
one has

Then, using

. ί = 1

_ y. V

,L 5 (tt
^ Σ Π

(1.10.16)

(1.10.17)
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one deduces (1.6.4) from (1.7.4), (1.8.7) and the estimates (1.4.3), (1.9.26) and
(1.10.15), according to Holder's inequality. •

2. Borel Summability

We now obtain an estimate (Theorem II, 2.1) of the derivatives of the functions
(λ,z)\->Z*λίg2{f) introduced by (1.5.1), from which in particular one deduces Borel
summability of the Taylor series at zero of functions zH»Z*λ>g2(f), (where λ is fixed
so that \λ\ is sufficiently small), and, as a consequence, a characterization of each
of these among all possible holomorphic interpolations of the corresponding

function — κ>zί 2(f), (ΛΓeN+), [defined by (1.2.10)].
N N* 'β

An analogous result holds for the "normalized" functions (λ, z)^Sfλ g2(f)

2.1. Some Properties of the Analytic Continuation

For each subset Z c C 2 one sets X ( 2 ) = | ( — , C 2 ) ; (ρ,ζ)eX\, one has

TheoremIL For each Uety (defined by (1.4.16)j, the function (λ,z)\-*Z^λ^{i),
defined by (1.5.1), isjndefinitely derivable on the closure U{2) of U{2) and, for any
bounded subset Be U{2\ there exists a constant M>0 such that, for all (λ,z)eB and
all n 1 , n 2 e N ,

It follows27 in particular that, if |/ ί |< |m 2 , one has 2 8

00

Zftλtg2(f) =(λz)~1 j e~x/λz^λ(λ~1x)dx, (ReAz>0), (2.1.2)
o

(the integral converges absolutely), where &λ is the Borel transform of the function
zh+Zf λ g2(f), that is the holomorphic function which continues

oo Λln / fin \
ι ) . (2.1.3)

27 See [5]
28 In this case, there exists UeW such that {z,λ)eU{2) for all zeC such that ReAz^O. In fact, the
analyticity domain of the functions z\->Zf λ g2{f) contains an angle strictly larger than the half-plane
{zeC; ReΛz>0}, (especially, if |Arg/l|^π/2'and \λ\Sm2/2, it is the cut plane {zφO;|ArgAz|φπ}), and
Borel summability extends to this angle. Besides this property allows us to make use of the obvious
generalizations [4, p. 268] of the Borel transformation which use the entire functions &{f(u)

£ wn ίdn + \ } θ\
= 1J ; — Z Q ^ g2(ί)l with ae 1,— if the domain of analyticity contains an angle of mQΆ-

sure θ>π
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This property allows a characterization of functions (1.5.1) among all possible
analytic interpolations of the functions (1.3.8): for each Λe]0,fm2[, the unique
function F, holomorphic in some disc Ar = {ze(£;RQz~1>r~1}, which has an

n - 1

asymptotic expansion F(z)= Σ akz
k + Rn{z), (weN), with, for some M > 0 ,

k=0

\Rn(z)\SMn+1nl\z\\ VzeJ,, VneN, and such that F\ — ) =zt^g2(f), VNeN, (N>r%

satisfies F(z)=Z*^g2(f),

N
t

Indeed, first, the existence of the asymptotic

F{n\0)
expansion implies that F is indefinitely derivable at z=0 and that an= —.

Next, one sees recursively from Taylor's formula that the successive derivatives

F("}(0) are completely determined by the values of F on the sequence I z = — JVeN,

} dn . ^ N

N>r\, therefore F(n\0) = -r—Z*
d

— Z$fλtg2(f), (weN). Last, Borel summability implies the

equality of the two functions. The holomorphic function (λ,z)\->Zf λ g2{f) is thus

determined on a subset sufficiently large to characterize it.
Analogous properties hold for functions (1.4.19): if one adds to the

assumptions of Theorem II the condition | Z ^ A & 2 | ^ ε , one obtains, (from the
Leibnitz formula),

dni dn2

λnί dz"2 z (n19n2eΊtf). (2.1.4)

Especially, if one supposes as above \λ\ <fm 2, the function z^Z°z>λ>g2 is continuous
on {ze(C;Re/lz^0} and nonvanishing at zero, since from (1.4.18),

gyV\ (2.1.5)

where Bge3Γ2{L2) is the real, self adjoint operator, defined by 2 9

Bgψ = g'(Gl*{g"ψ)), (ψeL2;Gm is the kernel of I"1). (2.1.6)

Therefore, there exists r > 0 such that the function z\~>l/Z^λ>g2 is bounded on
Jr(A) = {zεC;Re(λz)" 1 >r" 1 } , and from (2.1.4), one deduces that

SZx,e2® = (terx] e~xjλz^λ{λ-ιx)dx, (zeΔr(λ))> (2.1.7)
o

where s4λ is the Borel transform of z\->S^^g2(f). Here also, this property
characterizes the functions (λ,z)t-*S*λig2{f) among all possible analytic interpo-
lations of (1.1.6).

29 Bg is the limit in ^2{L2) of the sequence of operators defined by (1.4.10) where one substitutes a unit
step to χ. One has \\Bg\\ ^l/4πm 2, (if M ^ l ) , therefore (J + 4ReΛ ^ ) > 0 and the right hand side of
(2.1.5) is well defined according to (1.3.7)
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2.2. Reduction of the Proof of Theorem II

With the notations of Sect. 1.6, for (ρ, C)eD ( 4 π m 2 ), one sets

(nun2eN). (2.2.1)

Then Theorem II follows from

Proposition. For any Ue%, each function (of(ρ,ζ)eU) &{nuH2)(t)has a continuous
continuation to 0, and, for any bounded subset BCU and any ε > 0, η< 1/4, there
exist constants M x > 0 , b>0, c>0, such that

L*M Π ( ^ - i ) " W l , (2.2.2)
= j I -I i = J

for all (ρ,ζ)εB, (n1,n2)eN2, n^j^O, <l = ((li)j<i<nεltin~j+1, (go = 0)> ί^[0,1].
Indeed, from the existence of the continuation to ϋ of eachJ?("1>n2)(ί), one first

deduces that the function Jf ( 0 '0 )(ί) is indefinitely derivable on V and that the
equality (2.2.1) extends to ϋ. Then, (as in 1.6), one deduces from (2.2.2) that, for
each (n 1 ,n 2 )eN 2 , the sequence (i2f(ni'"2)(ln))neN converges uniformly for (ρ, ζ)eB. It
follows that It oi 2(f)= lim ^ ( O ' O ) (1Λ (from Theorem I), is indefinitely derivable

with respect to (ρ, ζ)eϋ and satisfies

^ ahfϊ1 + n2(n, \n2 ! ) 3 / 2 , V(ρ, ζ)e B, (2.2.3)

where α > 0 is a constant independent of (nvn2)eN2. Then (2.1.1) follows, because

if ψ is an even, (ψ(ζ) = ψ( — ζ)\ indefinitely derivable function, and if Ψ(z) = ψ(]/z~),

one has, (recursively on fe),

o (̂ — 1) •

from which one deduces

|^ f e )(z)| ^ -—j sup \ψ{2k\uγ~z)\, (2.2.5)

and especially,

\Ψ(k)\^a(40CM2

ί)
k(kl)1 + 2a, if |ψ w | gαM f c

1 (^ ! ) 1 + α , (α^O). (2.2.6)

2.3. Computation of^{nuH2)and its Derivatives

The computation of the left hand side of (2.2.2) relies on the "integration by parts"
formula (1.7.2): one shows, with the help of (1.4.8), that derivations under the
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integral sign are allowed, and one obtains, [with the notation (1.7.3)],

k = j

βQ ) \eζ i { 2 3 Λ )

— + iζcdX I—- + iρcdg\ and (Dk + iρζ(Dkc)dg) are mutually

OQ I \cζ I (d \

commutative, to compute the derivatives of Y one applies derivations — + ίζcdg ]

d x ^and h iρcda to the right hand side of (1.8.11) and (1.8.14), (with u=ί), as also to
\dζ 7

the function log Y itself.
First one has, (with A[g] = dgA)9

^ + iCca β j logy o=-|Tr{; + ;ρCA]-1(A2-cA[β])}, (2.3.2)

and, for n ^ l ,

3 £ • ^ — J logy o = ^ n + 2 (π+l) ! logdet n + 2 (/ + iρCA)

+ i Σ (-1)*" Hfc-1)ίίiβ)1"1"2 (A + iec
4 = 1 V ; (2.3.3)

(proof by induction on n). One can then achieve the computation using the
Leibnitz formula, equalities (1.8.30), (1.8.31) and

= Σ Σ «S(«)fo + ίβCAr lΠT/(ρ,O[/ + iρCA]-1)), (2.3.4)
fceN ue&(ek) I ; = i J

k^n^2k \u\ = n-k

(as also the analogous formula obtained by exchange of ρ and ζ), where ^(^k) is the
set of subsets of efc = {l,...,fe},

? Γ' ("e^», (23.5)
, if jφu

and where the integers ak

n(u) satisfy

γ\\
Σ o*(u) = - ^ 7L (fe^π^2/c), (2.3.6)

\u\ = n~k
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[indeed, one shows easily that the family βk = Y oAu), (w,fcelN, k<n<2k),

\u\=n-k

satisfies the recurrency relation βk = kβkZ[ + {2k-n- l)βk_ 1? with β°0 = 1, (βk

0=0, if

fc>0), which implies (2.3.6)1

2.4. Bounds on the Integrant

Next one h a s 3 0

Lemma. For all nv rc2e]N, one has

(2.4.1)
| | 2 \ nι + n2

and

^ nί In2! I cos ArgρCI {Hi +"2

m

(2.4.2)

Proof. 1) First, from (2.3.4), (2.3.5), (2.3.6) and (1.10.4), one has

n-k
IcosArgρCI -(/c+l)

k<n<2k

(2.4.3)

Next one applies l — + ίζcdg\ to the right hand side of (2.3.4). Then, using (2.4.3)

where one exchanges ρ and ζ, and that the only nonvanishing derivatives of the ΊJ
satisfy

d
dρ'

{ρ2cAt3l} (2.4.4)

—
{-iρA + ζρ2A[Λ

(2.4.5)
30 In what follows, we select (for simplicity) quite rough estimates
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one has, from the Leibnitz formula

ni/d V2

dξ+lecd

Σ

289

fe21

Π
Π ^i

from which one deduces

\2k2-n2

(2.4.6)

r + " 2 . (2.4.7)

2.i) In the case nι ^ 1 one computes the derivatives of log Yo by differentiating
the right hand side of (2.3.2). First, if nί = 1, n2 = 0, one has

\dρ ' 7

and, if n1=2, π 2=0,

J l o g y 0 (2.4.8)

-^IcosArgρCΓ |C|)2c||A [ 9 ] | |^2)
3. (2.4.9)

Next, in the other cases, (n1 ^ 3 or π t ^ 1, n2 = 1)> o n e estimates the nonvanishing

derivatives of — (A2 — cA[g]) by

(2.4.10)
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and, according to (2.4.7), one deduces, from the Leibnitz formula,

'd _ \ » V 3 .

or (2.4.11)

iί) If nί =0, one estimates the right hand side of (2.3.3). From the inequality
[easily deduced from (1.4.5), (1.4.6) and (1.4.7)]

iog(i+«)+
(_υ\k

<-:n+\

and from ||A|| iΓn+2^||A||^-2, (n^O), one deduces

yn+2
-logdetn + 2(/ + ^ n ! 2 " + ^

Next, from (1.10.4),

and last from (2.4.3) one obtains

Therefore, from the Leibnitz formula,

'd -l\k

wί k

Σ ^— π -

(2.4.12)

• Mβl"* 2 IIA| |Jζ 2 . (14.13)

(2.4.14)

r + 1 . (2.4.15)

n + k-l

because
fc-1

; Σ qj = n\\=\n , Λ ||. Thus

fe+2

k = l

n-fc
— + iρcθ,,) Tr {A*[J + ί

(2.4.16)

(2.4.17)
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then, joining (2.4.13), (2.4.14), (2.4.17), one has from (2.3.3),

γ
7 + iρcθJ logY0

291

(2.4.18)

3) From (1.8.2) (with h = δ, u = t\ one has

(2.4.19)

(because H f c ^ l ^ l , by assumption). On the other hand A[0](ί)^O, thus, from
(1.8.17),

l (2.4.20)

Then one verifies (2.4.1) and (2.4.2), inserting respectively (2.4.19) in (2.4.7), and
(2.4.19), (2.4.20) in (2.4.8), (2.4.9), (2.4.11) and (2.4.18). •

2.5. Lp-Estimates

Now, supposing Ue<W9 [see (1.4.16)], and BeΌ a bounded subset, are given, one
has

Lemma. For any η<ί/4, there exist constants M o > 0 , c1>0 such that for all
n^n^neN, αι eN+, (l^i^n), eN, j ^ m i n ^ ) ^ ^ , , (/ = 0 if n = 0), ίe[0,l] and
(ρ,ζ)eB9 one has

(2.5.1)

+ °°[ and ~ = 1
V Pi Pi

Indeed, for n = 0, (2.5.1) simply follows from (2.4.1) and (2.4.2).

( k ~ \
Next one computes flfl" "[]"A ( r ί ' S i )) by iterating (1.8.30); one deduces

\ i = 1 /
k Λ\

"fI"A ( r i ' S l ) thanks to (1.8.31); then, with the assumptions of Lem-
i = l J/



292 C. Billionnet and P. Renouard

ma 1.9, and adapting elementarily the proof of this lemma3 1, one estimates the
norms of the derivatives of functions in the left hand side of inequalities (1.9.1)-
(1.9.5): so one verifies that each one of these can be generalized by
- applying dn

g to the function of the left hand side,
- multiplying the right hand side by n\, and substituting there a new constant

(independent of n\ to c,
so, for example, (1.9.3) is generalized by

; Π 2 | f c ! ) 1 / 2 Π ( ^ - i Γ " . (2.5.2)
ί— 1 ίeaub

Then one applies derivations \-— + iζcda) and I — + ΐρcδ_ to functions (1.8.3) and
\dρ 7 \dζ 7

(1.8.15), and, according to the estimates of 1.10, one verifies (2.5.1) using, on the one
hand (2.4.1), and on the other hand (2.5.2) and the four analogous inequalities
described above, to estimate the various factors. •

2.6. Proof of Proposition 2.2

Then Proposition 2.2 comes from inequality (2.5.1) as follows: First, if Wj denotes a
set with Πj elements, (/=1,2), and β̂ = ̂ u w 1 u w 2 ) the set of partitions of the
disjoint union of eM={l, ...,n} witling and w2, one has

with

r / d \ lMnWl' / d \l«πw2|i

liueuπen '"" "- β W 7 \dζ 7 J ( 1 6 2 )

Next, p e [ l , + oo[ being fixed, for each Pe^β and ueP, one sets

2«
(2.6.3)

1 1 \ - 1 1 1
a n d p ( P , u ) = ( — -H ; , so that V— - = -, and thus, from Holder's

inequality

"" sΠll^(«)Hp(P.U) (2.6.4)
p ueP

31 Modified in that way, the proof introduces, except the "kernels" (1.9.19) and (1.9.21), only those

/ k ~ \
which are associated with factors of the form A[^'I2) in the expansion of dj("]^["A ( r"S l )j, namely

2 V i = l /

\g(x)2 Π Fiin){x-yn)dx, which are estimated by (1.9.23), (1.9.24) and (1.9.25). One notes that it is not
E n=ί

possible to deduce simply the result from (1.9.3) and (1.9.5) and Holder's inequality, because factors of
h

the form "f|" A(ri>Si) do not necessarily satisfy the assumptions of the lemma
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Then one estimates ||X(u)||p(P u) by (2.5.1) where one gives to p1 and p2 the values

defined by (2.6.3): one obtains (with suitable constants M'o, c\\

Y\X(μ)
ueP

Σ M ! • (2-6.5)
ueP

But one has

(2.6.6)

where Π2 denotes the orthogonal projection on the "two particles space"

&2eL2{?",v). Thus, from (1.9.6),

(2.6.7)

(2.6.8)

Moreover, from (1.4.9) and (1.4.14),

and, on the other hand,

dp

Then, inserting (2.6.7), (2.6.8) and (2.6.9) in (2.6.5),

3

= 3 3 \\g\\t

2 5 π 3 m 2 '

i= 1

Psί|3

Last, for any ε>0, one has

.2ε

ueP

(2.6.9)

! (2.6.10)

,ε(l+c)2

(2.6.11)
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[one used inequalities ξk ^ eξk!, and ξk ^ (2ε) 2 (fc ! ) i y V ξ 2 , (ξ > 0, /ceN, ε > 0)], and
on the other hand,

(2.6.12)
usP

(proof by induction), thus finally

Σ

(«!)2 Π (c'Kβ.-i) (2.6.13)

from which one deduces (2.2.2), using (2.3.1), (2.6.1), the estimates (1.4.3), (1.9.26),
and Holder's inequality.

Appendix

We describe the domain defined by (z1 / 2, (8/l)1 / 2)eD ( 4 π m 2 ), [see (1.4)].

A.I. Boundary of the Domain in the Plane of the Complex Variable λ/m2:

Argz = 0 Argz = τc/360 Arg z = π/6

Argz=π/2 Arg z = 7Γ

Fig. 1
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A.2. Admissible values of |A|/m2 lie below the graph of the following functions of
Aτgzλ:

Iλl/π

1

2/3

1

0

Argλ=0

Arg λ : i t

Fig. 2

One sees that, for |Argzl|^π/2, all λ's such that \λ\/m2<2/3 are allowed (see
Sect. 2.1, footnote 28).
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