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. . A . .
Abstract, Analytic interpolation in the variable 1/N of (NIcDN]"‘) models is
2

constructed at finite volume approximation. We prove Borel summability of
the Taylor series at 1/N=0 of their Schwinger functions. We also give an
extension of the domain of analyticity in the coupling constant.

Introduction

We study an analytic interpolation and the asymptotic behaviour of a family of
vector quantum fields, self-coupled with a quartic interaction, in a two dimen-
sional space-time. So we carry on the study of the “} expansion” for the family of
(% |@y'*), models, initiated by Kupiainen [2].

More precisely, for each integer N, we start with the Schwinger functions of a
vector field @, with N components, submitted to the #|®y['* interaction; their
(momentum and volume cut-off) approximations have a representation which
allows us to “complexify” the parameter N.

In this paper, we obtain, as limits of these, analytic functions of two complex
variables 4, z, which continue (in 1) and interpolate (in z~%) the given Schwinger
functions without ultra-violet cut-off. (The removal of the volume cut-off using the
Glimm-Jaffe-Spencer cluster expansion if |4] is sufficiently small does not seem to
entail any essential difficulty.) We show that these analytic functions have an
indefinitely derivable (in an angle) continuation to points of the form (4, z=0), if ||
is sufficiently small, and that their Taylor series at these points are Borel
summable.

This property improves the relation between the “} expansion” (known to be
asymptotic [2]) and the function itself. It allows the construction of convergent
approximations which depends only on the beginning of the series; these are
“explicit” (as sums of Feynman graphs). Moreover it allows us to characterize the
constructed interpolation among all analytic functions which coincide at z= %,
(NelN) with the given Schwinger functions.
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Besides, we obtain an extension of the previously known analyticity domain in
the coupling constant 4 of the Schwinger functions themselves. In particular, for
each 0 arbitrarily close to 7, this domain contains a sector (AeC; |Argl| <0,
|| <rg} to which extends the Borel summability of the Taylor series at zero (i.e. the
“perturbation series”). However we note that, certainly, the constructed analyticity
domain is unnecessarily restricted by technicalities.

1. Analytic Interpolation

In this chapter, we first recall, in order to fix notations, the definition of the
generating functionals of Schwinger functions of the “finite volume” approxima-
tion of #-|®,|** models in two dimensional space-time (1.1). Then we introduce, for
their “ultraviolet cut-off” regularizations (1.2), an integral representation (1.3)
which allows the construction of an analytic interpolation (1.4), the limit of which
(Theorem I, Sect.1.5) gives the expected continuation. Sections 1.6-1.10 are
devoted to the proof of Theorem I.

1.1. Description of the Model

Let E be a two dimensional euclidean space, & the real topological vector
space L(E,R) of indefinitely differentiable, fast decreasing functions, &’ its dual
space, U the g-algebra over & generated by the linear functions

o—w, >, (we¥), fe&,

and m>0 being fixed, p,e#' (¥, A) the gaussian measure whose Fourier
transform is

(f)= fe'<“’ Pudo)y=exp(=5£.2,' 1)), feZ, (LL1L)

where 2,,= — A+m?, and (-,*), is the scalar product in L*(E).

For each integer N1, @y : V- L (N, AN, u®V) denotes the canonical
process, [that is, if f=(f});;<y€F", Dy(f) is the (class modulo u3N of the)
function

N
o—<o,f)= .Zl <wjafj>s (wz(wj)xgjgNey'N)]-

4

If g is a real function, defined on E, such that®
dp.
M (g=0n)"% | -2 <+, (1.1.2)

E4 (;§1p) j=1|lez+1

D[ *(g)e LYY, u®V) is the function defined by

N 2 N
Bl @ o= (o) ¥ 57| | 110
vi=(f), <j=n€SN. (1.1.3)

1 g is the Fourier transform of g, specified by g(p)= [ e™‘»* g(x)dx, (pe E)
E
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It is well known? that, if g=0,

exp(— Dy *g)e () LAL™ ulh). (1.1.4)

1<
One supposes g satisfies (1.1.2), 0=g =<1 and Re1=0, and one defines
ZNfl,g(ﬂ =E, e~ [exp(i®y(f) exp(— %@y *(9)], fes™, (L.1.5)
and if>

0 — 7%
2, 0=Z8, 00,
St JUES=Es (1.1.6)

Then, for 120, Sf . is the generating functional of the Schwinger functions of
b

A .
the N |®y'* model with “volume cut-off” g.

1.2. Ultraviolet Cut-off Regularizations

If 1SN, let Y : F—>LYFN, u®%) be the “j'® component of ®y,” that is, for
fe, ®(f)=dy({, f), where I,: ¥ —F" is defined by

S i k=],
= {0, it k), 17
N .
so that @(f)= z SY(f), if £=(f); <;ene S|
Given ye &, one sets
PP ()=PQ((- —x)), xeE, (12.1)
[thus &Y (x)[©]=wx(x)], and
¢, =ESNDP,(x)*1= (1 Zp " 1) (1.2.2)
next,
()2 = 0,07 ¢, (123)
and,
ngx(x)“‘ = QDE\{L((X)‘t - 601@5\1"{)1()‘)2 + 3C§ > (1.24)
last,
N
Oy, = Y B,004+2 T 007, (129)
j=1 15i<jsN

2 It follows from Nelson’s theorem [3]; see also [1, Theorem 2.1.4]
3 Thisis true for A=0 (from Jensen’s inequality, because E @N[ltb,\,]:“(g)] =0), and, by continuity, in a
neighbourhood of the positive real axis !
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so that
N

2
Dy ()= ( Y DY (x)*— ZCX) —2(N+2)c;. (1.2.6)

=1

Then if [g satisfying (1.1.2)] one sets

1Dy, [4(g)= [ Dy, () *g(x)dx, (1.2.7)
E
and, if one replaces y by an approximate unit (x,),.x, one knows* that

|Oy[4g)= lim [®y, [“(g), in LASNup"), 1sp<+o0, (128

n— oo

and, if moreover g =0, that®

exp(—|Py[*(9)) = lim exp(—|®y ,[*(g)),

in LASNpp"), 1=p<+oo. (1.2.9)
Thus, if one sets
ﬁ [ .
Z1 ;.0 xD=Egn[®Vexp (= 10y, [*g)], feI™, (1.2.10)
one has
%
Z—Ilv,}.,g )= 31_{2 Z;, 2,9, xn ). (1.2.11)

1.3. An Integral Representation

Now let ve #(¥, ) be the gaussian measure with Fourier transform

Wf)=exp(=31f13), feT; (L.3.1)
let also g be a real number, g a C*-function® on E with compact support, such that
0=g=1,and 0=(0), . ;.. From (1.2.6) and (1.2.7), one has’

exp(— §y 1Py 1 *(g*) @]

:exp(NT”ﬁcxugnz)jexp(—§—< (z 3,0 [01-2¢,) )| o)

(1.32)
4  See [1, Lemma 2.1.6]
5  This follows from (1.1.4) and (1.2.8), using Duhammel’s formula

exp(—|Dy[*(g) — exp(— Py ,I*(9)

1
=12y, [4(9) D5 *(9)) [ exp(—ulDy[*(9)) exp(— (1 — )|y, *(9))du
0

6 This regularity condition is only needed to avoid inessential complications: with slight modifi-
cations one can assume, in all that follows, that g is only measurable, bounded, and vanishes outside a
compact set

7 A representation of this form is introduced in [2, Sect. 4]
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Then, substituting (1.3.2) in (1.2.10), one obtains from Fubini’s theorem (the
integrant is a bounded function),

zi, 2 g )= Iexp(chxllgllz>exp( V—cx<6,9>)

N 2
1__[ (exp (%]—\;cx ”9”2) | exp (iw; £;3) eXp( ——= <0, [(wx)? x]g>>

2 l/_
-,um(dcoj)) w(do). (1.3.3)
For ce ¥, let A, (0)e TH(H# 18 be the real, self-adjoint operator, defined by

A, (=2, (ix(og-(xxw)), weH", (1.3.4)
one has,
J oL@ = ¢ Jg>e' P (de)

= =0, (xZ 1)l f)
= —(En AL Nl f),  VfES. (13.5)
Thus, for any real ¢ such that (I+tA, (g))>0,

J oxp( ~ 5 <o 052~ 10D} o)
=[det,(I+tA, (o)) Pexp(=3(Z, " L LI+tA, (0)]17 2, N)e). (1.3.6)

By analytic continuation, (1.3.6) also holds for any complex ¢ such that (I + Ret
A, (0))>0, provided, in this case, the square root is specified by

[det,(I+tA)]*=exp (cx > [log(1+t£k)—t£k]), (Imt=+0,0eC),

keN
with
Imlog(1+t&)|<m, VEeR, (1.3.7)

where (£,),. 1s the sequence of proper values (each repeated according to its own
multiplicity) of A=A%*eT,.
Then, inserting (1.3.6) in (1.3.3), one obtains

2
Zla2 (f) jexp(iﬁcxllgHZ)exp( ]/NCX<G’9>)

-[exp< %Nz"cx Hg“2> det, <I+l ‘/ﬁAg X(G))
N 1 A -t
.jl;llexp(-——z-( m [1+ll/ﬁ gx(O')

8 ' stands for the Sobolev space #*(E) with norm |[y[| o1 = || Z,, *?vll,, and 7, (p= 1), is the ideal
of operators A4 such that |4|? is trace class

NIZ

st L)f) v(do). (1.3.8)
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1.4. Construction of an Analytic Interpolation

Now one constructs an analytic continuation of (1.3.8) with the help of the
following lemma:
For a>0, let D, be the domain® of all (g,{)e C* such that

o(+0 and |Argoll+ 7, (14.1)
and
1— A

lol? {—A—l—lg—%—r———;ggza |cos Arg {?|+ Arc cos(—sin|Arg o{|)- |sin Arg C2|} <a

if Rel?=0,

241 2 . . (1.4.2)
lo|*{$|cos Arg (?| + Arccos(—sin|Arg o{])- |sin Arg {?|} <a,

if Rel?=0,
then

4 2
Lemma. Suppose gl <1, |il,=<1, and let a<dmnm?; if pe[l,%[, then

1
207

[detz(l +iglA, )} e LYY, v), and

-1
ety (1+igcA, )1 557, <exp (3 1= 2] e2lglE). ve.DeD, (143

(the left hand side of (1.4.3) is defined by (1.3.7)).
Proof. First, for (g,{)eD,, one has

Re{ e [log(1+zQCC)—lQ(:£]} <= 52 VéeR. (1.4.4)
Indeed, one shows elementarily, that if |Argu|# =, then
Re{log(1 +u)—u} <3ul?, (1.4.5)
—|sin Arg u
—Re{log(1 —_— T 1.4.6
elog(1-+i) 1) < BB, (146)

and if moreover |[Imlog(l+u)| <=,
|Im {log (1 +u)—u}| <|Argul-jul®, [|Argul<n], (1.4.7)
which entails (1.4.4), according to (1.4.2). Therefore

L a
|[det, (I +iolA, )] 22| <exp (-2~ tlAg’xHirz), . (1.4.8)

(where || |5, is the Hilbert-Schmidt norm). But

E[|A, |5, e 1={TrB, ,— (£ B, /) }%(f), VfeZ,
(1.4.9)

9  Some graphic representations of this domain are shown in appendix
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where B, ,€7,(L?) is the real, positive, self adjoint operator defined by

B, w=g-(Z. ' 1*1)*+(g-w), weLXE), (1.4.10)

g:x

B is trace class because if C,,:L*E)-L*E? is given by
Cy (x4, x,)= }; 2 P, = 9 20 P u(xs = )g(y)w(y)dy, C, , is obviously of Hil-
bert-Schmidt class and B, ,=C} C, =IC, ||

Then, if G,, denotes the kernel of X! (namely X' f=G,x*f), one has
1B, I = lgls I, 702 = g2 I Guxixx 3

SlglZ IS 1GI5= (f lgle=LlZl,=1. (L411)

4m?

4 2
Thus if a<d4mm® and 1<p<

, then (I—paB, )>0, thus from (1.4.9),
exp(3palA, ,lI,)e L'(<*,v), and moreover,
a _
Ev[exp<p§ HAg’XHifZ)} =[det(I—paB, )]~ '"*
=[det(I+pa[I—paB, 1 'B, )]"*
<exp(3pallI—paB,, 1 1B, l5). (1412)

But, from (1.4.11),

-1
\[I-paB, 1| <(1— palB, I)"* = (1— 4;’:‘”2) L (1413)

and, as B, , 20,
1B, 7, =TrB,,=c,ligl3, (1.4.14)

then (1.4.3) follows from (1.4.8), (1.4.12), (1.4.13) and (1.4.14). O
Then, for (¢,{)e D42, KeN, and f=(f)); ;< x€ F*, one sets

2% 2, (0= | expo*C’ellgl)expliole, (r.6))
)
_1
fexp(—3¢*Ce2 g3 det, (I +iglA, (0)] 27

K
T exp(=3(2, ;U +iolA, (o)1 "2, ) Wdo).  (1.4.15)
j=1
[The integral in the right hand side of (1.4.15) is wéll defined from Lemma 1.4 and
Holder’s inequality, because on the one hand, if (¢, )€ D 4, there exists a < 4mm?
such that (g, {)eD, and, on the other hand,

it m Lq(y/7 v)

15gq<w
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and
exp(—3(2, ST +ielA, 172, ) p)ELZ(S", )

because, as A, (o) is self-adjoint, one has |[I+iglA, (0)]™ '] <|cos Argel|™*;
besides, this integral defines actually a function of ¢? and {?, because v=1.]
Functions (1.4.15) are obviously analytic in (o,{)€D,,,: and, for gelR,

1
C: T
VN
are nonvanishing only for K values of the index j.
If, besides, % denotes the family of domains

and K< N, (NeIN,), they coincide with functions (1.3.8) in which the f;

U,.= {(0, 0eD,; g

——IArggCl‘ >8}, (a<4mm?,e>0), (1.4.16)

then, from (1.4.8) and Lebesgue’s theorem, for any Ue %, each function (1.4.15) has
a continuous continuation to the closure U of U; we use the same symbol to
denote the function (1.4.15) and its continuation to D, = U U. For all {eC,
one has (0,{)e D, and

IE[ d FURZRD2 (1.4.17)

KZOgZ

and, if peC is such that '° (g, O)ED(MMZ),

25 . 0= el lglDexp(~1elA, ()]3)

K
1:1 —3(f 2, f))v(do)

:[det2 <I+ ?B"”‘)}_ . lK_[ exp(—3(f> 2, /). (1.4.18)

The function
ZCZ Q ’ Zgz Q !]2,)((0)

is thus nonvanishing on D(4,,,,,2)\D(4,m,2) and, consequently, the meromorphic
functions defined on D, by

ﬁz
Zzi’_gzx(f)
Z >

ng 2%

Sh e, (D= (fe X, KeN), (1.4.19)
,—8—;!7:)(

have, under the above conditions, a continuous continuation to D(j.,,,», which one
is constant (and independent of g and yx) over D, ,2\Dymme; especially, if

10 This condition is particularly true for all gelR, and also if |o|? <8nm?. Under this assumption, the
integral in Eq. (1.4.18) is well defined (from Lebesgue’s theorem); this, according to (1.4.9), implies that

2 2 -1/2
(1 + Re% ‘B, Z) >0, and |det, (1 +%°B, X)} is then defined following (1.3.7)
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(Q> 0) € D(ttnml)’
K K

Sﬁf%Z,gz,x(ﬂ=l_[ exp(—4(f» 20, ' 1)) H (1.4.20)

is the generating functional of a free field.

1.5. Removing the Ultraviolet Cut-off

One now obtains the expected analytic continuation of functions (1.1.5) and (1.1.6)
as limit of functions (1.4.15) and (1.4.19) where one substitutes a suitable
approximate unit to y; more precisely, we want to show

Theorem L. Let y,€ &, (q€N) be an approximate unit such that'', for any qeN, %,

has compact support and || ||, <1; for any compact set K CE, there exists qxeN
such that 3,x=1, Vg2 qy; then, for any (0, 0)eD 2y, the sequence
(Z§Z g_’gz (f))qe]N

converges and its limit

42 e gz(f)—- hm Z ’xq(f) (1.5.1)
is independent of the chosen approximate unit; moreover, for any Ue %, (defined by
(1.4.16) ), the convergence is uniform for (9,{) in any bounded subset of U.

As convergence is, in particular, uniform on any compact set of D2,
functions

@025 ¢ 0

are holomorphic; for any Ue % they are continuous on U and, from (1.2.11), they
continue functions (1.1.5).

1 . .
One notes that, for CZ:N’ (NelN,) one so obtains an extension of the
previously known analyticity domain*? of functions

M-»Z%MZ(D.

This extended domain contains especially the region??

i0
U e' A(nml) ’

<9<

[SIE]

_72£
where 4,={AeC;ReA™ ! >r~1}; on the other hand, if |ArgA| < n— ¢, one has from
(1.4.17),

. 0
lim Z1 , =1,
-0 §*9

11 A little more work allows less restrictive assumptions

12 One already knows that these functions are analytic in the half-plane Rel >0, see (1.1.5)

13 Nevanlinna-Sokal’s theorem [5] allows us to obtain Borel summability in this region (see
Theorem II below), however we can obtain uniform bounds only for |6j<n—¢
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thus the “normalized” functions
244 _ % 0
pest, (0=21, w2t
¥ N >

are holomorphic in a region of the form
U {AeC;lArgd|<n—e,0<|A|<r,}.

0<e<m
Theorem I is an easy consequence of the following lemma: let
W ={he ¥ ;he C*(E), Al , <1},
let also ke & be a function such that 0<k(p)< 1, Vpe E; k(p)=1if |p| £ 1; k(p) =0 if
Ip|=2; for k>0 let k(x)=K?k(kx), (xe E), then one has

Lemma. Let ;>0 and x,=1x,e", (neN), then for any (9, ()e D&nmz), the sequence
%
(Zgz,‘-’s_z’gz’h*k’c"(ﬂ)ne]N

converges, uniformly with respect to he #" and, for any U€%, uniformly on any
bounded subset of U.

First we deduce Theorem I from this lemma as follows: one notes that the
Dirac measure 6 belongs to %" and that, if (y,),.n is an approximate unit satisfying
the assumptions of the theorem, one has y,e#", VqgeN, and

”lgg z5 € g ook = z; ,xq(i), VgeN, (1.5.2)
because y,.k, =7, for sufflclently large n. Then, given some ¢ >0, one first chooses
ny,eN such that
lim Z gz o (f) Z gz oo f)I Yhe W, (1.5.3)

H— 00

and then g,€NN such that y,.k, =k, , Vg=q,: then one has

n— oo

hmZCze D~ Z gz (i)‘

,}L‘gz & 52,5,k (f) Zgz 9 92, 6.k, (f)‘ (1.5.4)
IZC2 2 g2, ek (f) hm Zc2 e yz,xq*kkn(f)‘ Se, VYq2gq,.

As the cho_ice of n, and g, can be done independently of (g, () in each bounded
subset of U, (Ue%), this proves the theorem. []

1.6. Introduction of Auxiliary Variables

Now one reduces the proof of Lemma 1.5 to that of Proposition 1.6 below, which is
given in Sect. 1.7-1.10.

Suppose the function ke & and the sequence (x,),q are chosen according to
the assumptions of Lemma 1.5; for any sequence t=(t;); < ;< + »€ [0, 1IN+, vanish-
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ing outside some finite set of values of the index j, one sets
+ oo
ky=ke,+ 21 tilke, = ke, ) (1.6.1)

(so that, k, =k, and, for nz1, k, =k, where 1, is the characteristic function of
{1, ...n} CN.,).
On the other hand, let (£,),q» (£o=0, £,>0 if n>0), be a given sequence of
integers (to be determined later); one sets
(9@;={g=(‘1i)jgi§n5N”_jH sq;=0,0=q;</;ifj<i=n}, (05j=n),
and, for te[0, 1],
0, if i>j,
(Jo®);=0, VieN,; (@)=t if i=j if jelN,
1, if 1=i<y,

0
Last Dj:@t’
J

Z= Z () (1.6.2)

gzh )

is sufficiently derivable, one has, from Taylor s formula®*

1

7)=3, 3. -
T @)

If now one admits the

(f) (1= 1 [ﬂ D%] J(0)-d (1.6.3)

Proposition. The function & defined by (1.6.2) is indefinitely derivable. For any ¢>0,
n<4%, there exist constants b>0, ¢>0, independent™ of he W and of (0,{) in any
bounded set of U, (Ue %), such that for all j20,n2j, 4=(q;);<;<,€N""7"1, (g, =0),
and te[0, 1], one has

n

<exp(bx£)[(2 )}ﬁ[}(cx, L) (1.6.4)

ﬁ D"‘}&“’(J ®)

the end of the proof is standard ; moreover, the actual value [2 in the present case]

£

so we want to conclude under the assumption

of the exponent of the factor in the right hand side of (1.6.4) is irrelevant,

o

200 S exp(b)

(Z")'J ﬁ.(“"f—d‘”‘“, (1.6.5)

1
14 For j=0, one has g,=¢,=0; one agrees that D¥ is the identity and that ¢, [ (1—#)°~*dt=1
[

15 These constants are also independent of m=my,>0
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(where s>0 is arbitrary), which generalizes (1.6.4): first one chooses £>0,

Y o
arbitrarily small, and sets ai=(1—e‘5)“1(x—;<;—l), (i=1), so that'® > o '=1,

i=1
therefore

(Z qi)! <[la'e®, (€N, q,=0). (1.6.6)
i=j i=j
Inserting (1.6.6) in (1.6.5) one sees that for any n, <, there exists ¢, >0 such that

n

<exp(bks) n AP e Ky ) T M (1.6.7)

[H D"‘]Qf(] (1)

J

Then, from (1.6.3),

‘3’(1n)—3"(1n_1)

<2 2, exp( brce)ﬂ(q, Plegki ) ™. (1.6.8)
j=0 geé; i=j
qn*O

Now one chooses the sequence (£;),,: One sets

(cyri— )" =exp(2v), (i21), vy=—00,
and

£,=E["P71],  (i20)."

One checks that

exp(— ie"'/s), if g=¢,
e

exp(—2v,9) <
(q!)exp(—2vg)= exp(—vgq), if 0=q<¢, iz0).

(1.6.9)

Therefore,

20)-20, s ¥ %, 00 I1 (" exp(~20g)

qe

qn*

I\
'M"

3 ._1 ‘n—1
(bK — v]/S) ( eXp(—Uiqi))' Z exp(_vnqn)
i=j+1

gn=1

Jj 0

!

gMeXp(—"z—ln), (if e<g—1 and Kn=1c0e">. O (1.6.10)
S

MB

IIA

exp (brc - e”1/3)> ]:—01 ( 2 viri)) -exp(—v,)

0

W\

16 Recall that ;=k,e/, (jeN)
17 E denotes the entire part; one assumes, for simplicity, k, is chosen sufficiently large, so that v, 25,
Viz1; last, conventionaly, + c0-0=0
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1.7. Computation of the Derivatives of &

To compute the derivatives of 2 one uses the following “integration by parts”
formula:

Let F be an A-measurable function on &’ and let ge ¥, one assumes there exists
p>1 such that for any « in a real neighbourhood of 0 one has F(- +ag)e LS, v),
then

jF(o-i—ocg)exp(—— a?|gll3—adla, g>)(da)= j F(o)v(do). (L.7.1)
One assumes moreover that, for v-almost all 0% the function a+F(o+ag) is
derivable in some neighbourhood of 0, and that the functions [F(- +oag)| and
d
—F(-
‘ 7, P +ag)

are dominated by some fixed positive function in L?(¥”,v). Then if

F(o + ag), one obtains
a=0

| <o,9>F(0)W(do)= | 0,F(c)W(do) (1.7.2)
& &

one sets J, F(a)=£

by derivation of (1.7.1) under the integral sign.
Coming back to function &, we shorten notations by writing, from (1.6.2) and
(1.4.15) where one substitutes h_k,, for x

Z 0= | expGe**e®)’llgl} +iele(®){s,g>)Y(t; 0)¥(do), (1.7.3)
Ea

and one checks recursively the formula

[“ qk}g(_) j, exp(30°Ce(®)*(lgll3 +iele(t)<o, g))

: [ 1] (D, + iQC(ch)ég)“"} Y(t, 0)-v(do), (1.7.4)

k=]
(where the derivations (D, +i0{(D¢)d,) are mutually commutative). Indeed, if X
denotes any of the functions [H (Dk+iQC(ch)6g)} Y, one justifies easily derivations
k
under the integral sign by estimates mainly coming from (1.4.8), and one obtains
D, | exp(30*(*e(t)?llgl3 +iole(t){a, g>)X (t; 0)v(do)
o
= | exp(0®(?e(t)*lgll3 +iole(t)<a, 9>)
P
ADe@)*Ce®)lgl} +iet<a,9>1X(t; 0)+ DX (t; 0)} v(do)
= [ exp(30*Cc(v)?llg13 +iole(){a, g))
P
{i0l(D,e(1))0,X(¢; 0) + DX (L; 0)} Wdo), (1.7.5)
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where the second equality comes from (1.7.2) applied to the function

F(o)= etedaln) <“’9>X(_t, J) . O

1.8. Explicit Expression of the Derivatives of &

To compute the right hand side of (1.7.4), it seems useful to introduce &t u)eC,
At,u;0)e T (A"), where 1, u, €[0, 1IN+ are sequences which vanish outside a finite
set, by

é(L’ u)z(h*k@)’ Zy; 1h*k(g))Z ’ (18'1)
AL us oy =2, (hxkyx(o-g-(hxky,xp),  Vyper', (ces”), (18.2)

[one has &t u)=&u, 1) and A(t,u;0)=A(u,t;0)*], and to set!®

1

Yolt, u; 0) = [exp(—L02(2&(t, u)?||gl|2)- det (I +iglA(t u; 0))] 22, (1.8.3)
and,

K
Y(t,u;0)=Yo(t,u;0)- [] exp(—3(Z,,  f; I +iolAL u;00] 12, f) ), (1.84)
j=1

J

so that, from (1.7.3), (1.6.2), (1.4.15), (1.2.2), and (1.3.4), one has

Y(t;0)=Y(t.1;0). (1.8.5)
0
Besides, one notes Dj=——, Di=—-—, (jeN,), and one sets"°
ot; ou;
&P=Dp'DiE, AUP=DD/A, (j,keN), (1.8.6)

(here D, and Dy denotes conventionally the identity). Then, for r,eN ., (1<j<n),
one has from (1.8.5),

[ . ) D, ,+ iQC(D,Jc)ég)] Y(t;0)

J

=[ (D) +igl&™90,)+ (D}, + i3} | Yt 1;0),  (187)
j=1

where one notes that the derivations (D, +io(&"93,), (r=1), and (D} +i(&'>¥d,),
(s=1), are mutually commutative.

To make explicit the right hand side of (1.8.7), one introduces the following
notations:

AP =A"P(,u; ) =0, A9 L us0), Voed' (1.8.8)

18 As[I+ iQCA(L,y;a)] is invertible if t=u, so it is in some neighbourhood (depending a priori of all
parameters) of the diagonal

19 One notes that & and A are affine functions of t; and ufj=1), so that their only nonvashing
derivatives are those given by (1.8.6)
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Next,
L, (k>n),
n ~ ~
« l"[ ”A(rj, 55) — A(rk,Sk), (k — n) ,
=k
n ~ o n -
A~(rk,Sk),“ H ”A("i,si)_é(rk+1,sk)AE;l]<,Sk+l),“. n ”A(ri,sx), (k<i’l),
i=k+1 i=k+2
(1.8.9)
and,
n ~
. N “H”A(rj SJ)’ (k:n_l)’
“rArss=] I et (1.8.10)
i=k l"[ r, »8)) _ @l Sn)A(rn ,SK) H ”A(ri,si)’ (k<n—1).
ji=k i=k+1

Last, g={a;eIN,;1<j<n;} and b={b,eN,;1<j<n,} being given, one denotes

by S%(a, b) (k=2), the set of (r,5)={(r,s,)eENxIN;1=i=<k}, satisfying the

condltlons

(So,i)— the set of nonvanishing (), <; <4, [respectively (s;); <;<,J, Is a permutation
of (a); <j<n,» [respectively (b)), <;<p,]-

(Sq,i))— r; %0 or s, =0 and for all ie{1,...,k—1}, either s;40 or r;, ; +0;

&¥(g,b), (n21,k={k,22;1=q=n}), the set of {(r?,s?)={(®,s?)eNxN;

1=igk,}; 1Sq=n}, satisfying

(S,,))— the set of nonvanishing (r?){SfZy, |respectively(s{?)]5; | is a per-

mutation of (aj)lé jznp [respectively (b D <j<nl

(S, ii)— for each ge{l,...,n}, r‘f’=s§c‘?=0, and for each ie{l,...,k,—1}, either
s@ 0 or 19, +0;

(g, ), (120, k={(k)o<qen: ko ; , k,20, k,=2 if 1<q<n—1}), the set of
{9, s9)={(+'9, s“”)e]N xIN; 12ik,}; 0=<g=n}, satisfying
(T,,i)- the set of nonvanishing (H?)}S?5}, |respectively (s)72¢5; | is a per-

mutation of (a)); <;<,,, [respectively (b)) < ;<,,]-
(T,,ii)— =0 and r? =0, (1<q<n) s(”’:#O and s =0, 0<g=n—1); for each
qe{0,....n} and each ie{l,. -1}, elther 590 or 19, +0.

With the above notations, one has

Lemma, Let a={a;eN,;1<j<n,} and b={b;eIN,;15j=<n,}.
1) One has

1]1 (D, + il 94, -kl‘[1 (D, +i0l&%93 ) log ¥,
j= .
1 ny tny

; Y Uab), (1.8.11)
n=0
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with

_ (—lQC)k « . 3 A (Fj,Sj)
Uy(a b= Y Tr{ [ 7ACe (1.8.12)
k (r,9e®k (4, b) J

>k j=1
and, for n=1,

1 > kg
Nab=, T (et

(qu-z)lé gsn

n kq .
Y Tr{.]—[ ([I+iQCA]“ Lerr A"}:j”sif”)}. (1.8.13)
(r@,5(D) ;5 g £neSENa, b) q=1

Jg=1

ii) If we #?, one has

[T (D, +iol&» %3, ] (D;J’k—i-iQCé(O’b")ag)} (p, [T +i0lA] ™ 1) 1
j=1 k=1

ny+ny+1

= ) 3,b), (1.8.14)
n=0

with

Bab)= Y (—igly"

ko2 0,ky20 (r(, 5(D)g < g s neTENa, b)
(kqéz)lgqgn— 1

ko . o n . kq .
-(w, “TT?A"S) - 11 ([I+iQCA]" LI A"f;’)’s}:’))-w) . (18.15)
Jjo=1 a=1 jg=1 #1
Proof. One shows (1.8.11) and (1.8.14) recursively.
1. First (1.8.11) holds if n, +n,=1. Indeed from (1.8.3),

(D} +i0(&®70,)log Y,
2
=—%[—E(O’j)éllgll§+Tr{[I+z‘gCA]‘1(A(°’f)A+iQCé‘°’j)A-agA)}], (1.8.16)

but, from (1.8.2) and (1.8.8), one has 0,A(t, u;0)=AG " (t,we T, (#1), [if Cwy
=2, g -(hxky*p), (weA"), one has ClweT,(H") with |Cwll,,=llgl,
Nz I/Zh*k(y)nz, and AES]’O)(L uw)= C()*C(u)], and,

Tr{AG 1w} =8t wlgl. (1.8.17)
Inserting (1.8.17) in (1.8.16), one obtains
(D) +i0l&® 79 ) log ¥,

2
=— %Tr{[l +iglA] ™! (ACDAC0) O DAy (1.8.18)

which is exactly (1.8.11) for n; =0, n,=1.
For n, =1, n,=0, one shows in an analogous way that

(D} +i0(&% 8 ) Log ¥,

2
. —Qz—Tr ((A©OKG:0 _ghOKO:0) . [14ipfA]" 1}, (1.8.19)
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Next, if X is a derivable function with values in 7 (#’ 1), from the obvious
equality [I+io{A]™'=1—iolA[I+io{A]?, one has
(D +i0l&Y 8 ){X I +iolAT™ 1}
= {(DX)LI +i0lA]™ "} = iol{(X A O — ¢ 90 X)[I +ielA] ™}
—Q*C (X1 +igtA]™ (A DAU-) — &V DA O[T +iglA] ™1}

(1.8.20)
and,
(D] +1gC&® 19 ){[I +iolA]™ X}
={[I+iglA]™ Y (D}X)} —iol{[I +iolA]™ "(A- DX — &95 X)}
OO iQTAY AR O —EOIRGONI +iolAIX)

from which one deduces immediately (1.8.14) in the cases n, =1, n,=0:

(D +iC8% 90 ), [ +i0lA]™ ) i = —i0l(1p, AVO[ T +i0l A1 '1p) .
— 0?0y, [ +iglA]™ YA OAG-O — U ORO N[ 4iglA]™ ') 1.
(1.8.22)
and n, =0, n,=1:

(D} +10L&® 70 )(p, [ +i0l A1~ ) 4 = — igllp, [ +ielA] 1A Mp) .,

— 0?0, [T +iglA] (A PAO O — &0 DA O 1 +iol AT ') 1. (1.8.23)
2. Ifnow r={r,eN;1<j<k} and aeN, for ie {1, ..., k} one denotes by r}(a) the
sequence defined by

a, if j=i,
=10
r, i je#i.
Then one has obivously (recursively with respect to k),
k k
D [[7A o= Y <[] 7ACH@s 50, (1.8.24)
i=1 ri=0) j=1
and
ko koo
DZ“ n ”A(r}-,s}-): Z « n ”A(}’J‘,Si(b)j), (1825)
j=1 {i;si=0} j=1

as also the analogous formulas where one substitutes “Jo[” to “[]”. It follows
particularly that

k
[1+igtA]"! (D:,“ Il ”Aww)

j=1
X k
_« I-I ”A(";(a)j’s")— I.QC[I'FI.QC/&]« LA(0,0) « n n&(r;(a)j»sj)
i=1 =t
~ k N
+ [1+iolA]~ - [[ A @»s) if 7,=0, (1.8.26)
(22igkin=0) j=1
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likewise

k
(DZ “ 17 Ae» s») [I+igtA]™!

ji=1
k
e H ”AA(rJ Sk(b)])_lQC“ 1—[ ”A(r, si(b) ) . A(O O)[I‘i‘lQCA] 1
ji=1 ji=1

k

n y “T1 aa&(r,,si(b)j)[1+iQ§A]" Loif s,=0. (1.8.27)

{(1Sisk—1;5=0} j=1

Then, if byeN,, one computes (D; +ie{&* "0 (a,b), [see (1.8.12) and
(1.8.13)], by systematic use of (1.8.21) and then of (1.8.27), using the cyclicity
property of the trace: one writes?®

(DZO+iQCE‘°’b°’8g)[ Y Ua, l_))}= Y Wia,b;b,) (1.8.28)
n=z0 =20

where U (a,b;b,) is defined as the sum of all terms of the obtained expansion in
which the resolvant [I+io(A]™! appears exactly n times. In the same way one
defines B (g, b; b,) substituting B, [see (1.8.15)] to U, next U (a, b; ay),
B! (g, b; a,) substituting D), to Dy, &> for &%), and using (1.8.20) instead
of (1.8.26).

3. From the equality

n k n
« H n&(rj,sj)= « I‘[ ”1&(”’81)‘“ H ”&(ri,si)
ji=1 j= 1 i=k+1

— “H” A(" s5) . c(rkﬂ sk)A(rk Sk+1) “H” A(h sl) (1 §k§n— 1)’

ji=1 i=k+2

(1.8.29)
established recursively from (1.8.9), one deduces recursively
59«1’[”&(0‘,51)_ z “H”A(n 5S5) . A(rk k) . “H” &(ri,si)’ (1.8.30)
j=1 k=1 j= i=k+1
and, for n=2,
n n n—1
ag Tr{ H r] s,)} Z {A{;}]‘,sk) .4¢.r£saA(r(k+j)|n,S(k+J);n)} , (1831)
- K= j=
if 1<j=n

where one sets  jln=1{" i .
i {, n, if n<j<2n-—-1

Next, if (r s)e 3% (g, b), (k=2), one defines on the one hand (7, %) Sk (g, b) by
Ti=rat e 5= a4 e (1Sj=k), and one notes that

k k
Tr {H A» s»} =Tr {“H”A“%@}, (1<i<k), (1.8.32)

j=1 j=1

20 We do not write here explicit expressions for W;(a,b;b,) and the analogous terms, because of their
excessive length
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and, on the other hand, (r*,s%")e@{*"Y(gb), by ri=s57,=0, r/=ry

(2<j<k+1), and s7 =s,, (1S k).
Then, from (1.8.31), one has

k k k+1
—&0:099 Tr {15[ A5 s;)} +Y Tr {H AP0 L 1)(bo)j)}
i=1

i=1 i=1
k k+1
« s A ((iFY* (5 .
= Z TI‘{ 16[ AN T (97 (kix)(b")’)}, (1.8.33)
i=1 j=1

and, from (1.8.32) and (1.8.33) one deduces that
Wy(a, b bo) = Uy(a, buiby}). (1.834)
After, if (1,5)= {(r)s)€N xN; 1 <j<k}, and i€ {1, ..., k}, one defines (£, §) by

[ 1<j<i ’ Sp 1<j<i
F=10,  j=i+1 . 5= 10, j=i ,
rioy i+25j<k+1 sj—p i+15jSk+1
and (, +( Sv+(q)) , by

L i LA . . i & ; ;
( +(1) +(1) (rjlssjl)a 1::_<—j.1 §la ( +(2) +(2)) (1+127 z+]2)a 1§J2§k“l+1

Then, if byeN,, from (1.8.29) and (1.8.30), one has

k
—l0bo)g « Hn Al

k i k—i+1

Z ,,A(,‘:+(1) g+(1)ub0)“) “H” A(,+(z) ~+(z))

i=1 ji1=1 J2=1
kK k+1 L
Z T A3 10, (1.8.35)
i= j=1

One notes that if (r,s)e (', b), (k=2), one has

(F0.3%0),, ,e@E* @), QSisk-1),
(5,8 bo)e S Va, b Uiby)),  (1i<h),
and from (1.8.35),

k k

“IT Al skbo)) . A(0,0) 4 ( A0:b0) _ §(0,b0)5 )« H Alis)
g
j=1 j=1
- i i . k—i+1
99 FHO) g+ (1 < Py V+ 2) ¢+
Z H A('h()’s ()%(bo)J .cnaA(r ()s (2))
=2 j1= j2=1
k kt+1
Z ﬂ 5846005 , (1.8.36)
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from which one deduces

Wia,b;by)=1U,(a,buiby}), (n=1). (1.8.37)

For n=1, one uses directly (1.8.36), with ¢'=g, b'=>b. For n>1, one applies
successively (1.8.36) to each factor of each term in (1.8.13), using that for each

(' s9) | < <€ g, b) there exists a partition g= | ) ¢, b= () b, such that
- q=1 g=1

(£, sM)e Sf(a?, b'), 1=g<n.
In the same way, if (r,s)e T¥(g, b), (k= 1), one has
(@87 @), ,eTEH DG p),  (1Sish),
(.3 (bo)eT¢ Va, buthy)),  (1Zi<h),
and one deduces from (1.8.35) that
Bi(a,b3b)=By(a,b{by}). (1.8.38)
Next, if (r, 5)e T ¥, b), (k= 1), one has
(057, e TP ), 2SiSh),

(£, 8Hbo)eTOF D, b Ulho)),  (1Sih),

and, from (1.8.35),

k
(A©:-bo) _ é(O,bo)ag)“ n ACss)

i k—it+1 . ;
n Al ¥*“’l(bo),l) “H” AGL@. 85 @) (1.8.39)

j2=1

r_, Sl(bo)_,)

‘kl:_I

lle

Last, if (r,5)e T (g, b), (k=1), one has
(Fro 5@, LeTGHILOQ ), (1Sigk—1),
(£, 5/ (b)) e T 1, b Uiby}),  (1Sik),
and, from (1.8.35),

k k
“H”&(rj,sll((bo)j).A(0,0)_E(O,bo)a “l—-[”&(rjssj)
g
ji=1 ji=1
- i k—it+1 ;
Z H 9A(;+(1) s’”‘)l(bo), ). “l—[” A(,ﬂ(l) sfu)) (1 8.40)
i=1 = j2=1

IIM;;-

H » b0
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and from (1.8.36), (1.8.39) and (1.8.40) one obtains
B(a,b;by)=B,(a,buiby}), (nz1). (1.8.41)

A similar computation of W (g, b;a,) and B)(a,b;a,) achieves the proof. []

1.9. Estimates
Estimation of the right hand side of (1.8.11) and (1.8.14) relies on the

Lemma. For each n<1/4, there exists a constant ¢>0 such that, if a={a;eIN, ;
1Zisn}, b={b,elN ; 1=i<n,}; jeN, jSmin{g, b}; te[0,1] and pe[l, + oo,
one has*!

i) for any (r,s)€ So(a. b), (k=2),

k
Tr { [ A9 (0),J j(z))}

i=1

=p"2N? IT (erim )75 (1.9.1)

ieaub

ii) for any (r,s)€ SP(a, b), (k=2),

| Ii“ﬂ”A“‘ W0, T O 7, 1, =p 2R [T (e )7, (1.9.3)

ieaub

<Pk [T (eriy) ™", (1.9.2)

p ieaub

Tr {“ﬁ”&“ns»(.f 0.7 j(z))}

i=1

and

iii) for any (r,s)e T(a, b), (k= 1), and pe #*,

SlwlZ:p 2k DY T (exiy) ™5 (1.9.4)

ieaub

H(w [17 A (1), (z))w)

#ip

iv) for any @,ﬁ)ei‘l"”"(g, b), (k=1), and pe A,

k ~
I I<TT A = (0, T Oyl seall, S Il P2 (kDY TT e )77 (1.9.5)
i=1

ieaub

Proof. For each nelN, one denotes by #,CL*(¥,v) the “n-particles space,” one
recalls that %, C ﬂ LP(¥",v), and that, from Nelson’s “hypercontractivity”

. 1<p<+
estimate =ps e .

Iwl,<p"? Wi, @ (1<p<+ o). (1.9.6)

1

=0
k k .
One notes that functions Tr{ e S')} { H Al s')} and ( “H”A(""S"w)
= l=2 w1
and
T2

k ~
belong to @ . and that » RCos)

‘41_[97A(r1 . Si)

i=1

belong to
i=1 #1

2k

@ #,, so one needs only estimate the L2-norm of each of them.

n=0

21 See definition of J (1), above (1.6.3), and definitions preceding Lemma 1.8. On the other hand, aub
denotes the disjoint union of the two families of indices
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Now, for te[0, 1]N+, vanishing outside a finite set, one sets F{)) =X

and, F{)= Dng’, (ieN,).?? Next
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l/zh*k(,),

K&y, x,y,)= F(”(yl—X)g(X)F‘”(x V)

(x,y1,,€E, i,jelN); and, on the other hand, if Pe‘B(ek) is a partition of

ek = {15
then one has?3

‘|
‘|

i=1

and

i=1

k
e fre i

k
(w, “> ”A""’S"(L,L)w)
i=1

k
Tr {“ 15[ » A(Vi:si)(_t,_t)}

., k}, one denotes by vp:e,—P the mapping defined by ievp(i), Viee,:

21

= 3 180, (19.7)
PeQi(ezr)
2
}= Y1), (1.9.8)
E PeRQi(ezr)

27

= Y 180, (1.9.9)
J PeQa(eax)

where Q,(e,,) C P(e,,) is the set of all partitions into pairs including no one of the
pairs {i,i+1}, 1=Si<k—1and k+1=5i<2k—1), Q,(e,,) the subset of elements of
Q,(e,,) which moreover includes neither {1,k} nor {k+1,2k}, and where

IgP=|

EP|E

‘IH §(yza op+ 1)~ Xop(2k)s V2 dh]
E

9= “2 ELPP) () HEN Y5 X p1y o

EP (E

§(EY2p)(vy)- HY

IH(fr’“S)(yl > Xop(1y -

HE )y Xop(k+ 1)+ Xop(2k) 3 Va) (2P0 (y)dysdy,

s Xy p(k) » Y1)dy1

[1dx,.

ueP

(1.9.10)

Xopg > V2)" (Zrln/zll’)(h)dhd)’z

ndxu ,

E2 ueP
(1.9.11)
with
k k
HEI () 3%5 0 X5 Vi 1) = EI [T K"y, i i) T1 dy;,  (1.9.12)
koli=1 j=2
and
H(lr,g)(yl;xp-~~yxk;yk+1) 5 HK(Sk e !+1)(yl’xl’yl+1) l_[ dyj 1913)

Ek-1i=

22 See (1.6.1) and (1.6.2)
23 To obtain equalities (1.9.7), (1.9.8),

computes, recursively with respect to k, the integrals Ev[Tr{B~“]—[”A""‘”}-W
i=1

and (1.9.14), [respectively (1.9.9) and (1.9.15)], one
k

R [respective]y

koL N -
E, [(w, B-“IT" A(’“S"’w) . Wﬂ where B is an arbitrary monomial in A“**? and A{%*?, and W belongs
‘#l

1=1
to some %,
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Next,
k 4
[ » Keusi(y, ) } = ) 150, (1.9.14)
i= T PeQi(esx)
and
k N 4
Ev|: « n 5 A(rt,S;)(L’L).w } — Z ]%’is,)(i) , (1.9.15)
i=1 1 PeQi(ear)

where Qj(e,,) C Pley,) is the set of partitions into pairs which do not include any
one of the pairs {i,i+1}, (1Sisk—1, k+1=5iS2k—1, 2k+1<i=3k—1,
3k+1=i=<4k—1), and where

3£'f> [f Hg’-S)(yl;xDp(l)’ e xop(zk);h)dh

ifz yz 5 X p(2k+ 1) ""xvp(4k);y2)dy2]' l_[ dx,, (1.9.16)
ueP
1Y) = §P f EaPW) ) HY 015 X p1y - Xopiai s V2)* (o 20) (v,)dy dy,
EI (0P W) (13) HY (V33 Xk s 19 - Xopaty s Vo) (CL20) va)dysdy,| T dx,,
ueP
(1.9.17)
with
H(z'r’g)(y1 5 X1, "'7x2k;y2)
= [HEX D, 5%, o0 X s DHE D Xy 15000 X V2)AY - (t.9.18)
E

One first integrates (1.9.10), (1.9.11), (1.9.16), and (1.9.17), with respect to the

measure ]—1 dx, [Fubini’s theorem applies obviously because ge.# and Fj)e 7 if
ue
ue P is not a pair of “consecutive” indices, that is, if u is not one of the following

pairs:

in the computation of (1.9.10): {1, k} or {k-+1, 2k},

in that of (1.9.16): {1, 2k}, {k,k+1}, {2k +1, 4k} or {3k,3k+1},

and for (1.9.17): {k,k+1} or {3k,3k+1},
integration with respect to dx, produces a function of four distinct variables
()1 <nsa> namely

4
G ((V)i<nza j g(x)*- n F“(’?))(x——yn)-dx, ((yn)1§n§4€E4)' (1.9.19)

T E n=1

If on the contrary u is one of the pairs of “consecutive” indices, integration with
respect to dx, gives a function of only three distinct variables, which, according to
the assumptions on the sequence (r,s), writes

2
G y;y1,7,)= [ 9(x)* FO(x—y)*- [] F%(x—y,)-dx. (1.9.20)
E

n=1
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Then integration with respect to dy gives

~ 2 (e
G, y)= [ G sy y)dy=c[g(x)? [] F&(x—y,)-dx, ((y;.y,)€E?).
E E n=1

(1.9.21)
Once the partial integrations described above have been perforrrfed the

obtained integral is estimated in a standard way?> which gives

HERI= 111G,

115 Il(z'r:}%” = |lw”4fl 1—1[) 1G5, (P€Q1(62k)),
EFAP l:[)HGqu, I w5 1_[ 1G M., (PeQsleyy).  (1.9.22)

But, (from Young’s and Hélder’s inequalities), one has

]

[ g(x)? HF(’")x y,)-dx

T

EE
1
= Elj”g(xﬂzg(xz)z U1 F“")(xl—yn)F(‘”’(y,,—xz)‘dx dx, l—[ dy,
T L
SUg? 13| T F&«Fll - <2r) =2 Vlgls TT IF™) %
n=1

0

I (1.9.23)
n=1 -1
Next, from (1.6.1) and the assumptions made on k, , (n€lN), one has [|IA<(D|l
and, for any ieIN,, Hk

l,<tandk, (p)—k,,_ (p)=0iflp|<r,_,, therefore,
as ]lhn <1, one has

d -1 _ _
“F(O)“ 21 = (fm) ! =(7T(l— 1))(1 D2y, 1/1, (1924)
and, for ielN,

IFQI 51 =

1—-1
dp 20 _ _
=l (m@j;c,qmz—wn—z)”“m) S(m(l— 1) (o)

(1.9.25)
on the other hand, for jeIN and te[0, 1],

* dp 1

0=Ze(J ()= 2m) 2 = —log(1+4x/m?),  (1.9.26
(J () =(27) mgjzk,.(lplermz) 1, o8l im?),  (1.9.26)

since k; )(p) =0, if [p| =2k,

24 One recalls that ¢ denotes the function e(t)=¢,

25 Each function G, has to be considered as the kernel of some Hilbert-Schmidt operator
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To achieve the proof, one collects the above estimates, using the inequalities?®
19,2 SID, (e S 2K, 1Q4(e,)| S2(k1)%, k=gl +1bl+ 1, [according to any
one of the assumptions on (r, s)], and one dominates the right hand side of (1.9.26)
by an arbitrarily small power of one of the x;_,, (ieaub), [x;=ex;_, Vieaub,
since, by assumption, j<i]. [

1.10. Proof of Proposition 1.6

One deduces Proposition 1.6 from Lemmas 1.8 and 1.9 as follows: First one
estimates the right hand side of (1.8.11) and (1.8.14) [with the assumption that
lol< ¢y, 1S c,, and, according to (1.4.16) |cos Argol|™ ' =<c,, and, on the other
hand, that t=u=J (1), with j<i, VieguUb as in the hypothesis of Lemma 1.9]:

i) One notes that, if S%(a,b)=*0, one has max-{|al,|b} <k <|d|+|b|, and
k! k!
Sk a’b < . S4(|t}l+lé|). I_C_ll+ b 1
(SO BI= G g Gy =7
Then, from (1.8.12) and (1.9.1), one sees easily that, (if # < 1/4), there exists ¢' >0
such that

o@D, = p" 02 (al + 12T [T (€rim )" (1.10.1)

iegud

ii) For (r,5)e ©{"(a, b), one has

k
Tr {[1 +iglA1 <" A(”’s"}

i=1

k k
=Tr {“ 11 A('“S"’} —iol Tr {A[I +iolAT 1™ A""’s")}, (1.10.2)

and =1 i=1
Tr {A[Higz:A]*l “117 A‘”’S"’} ST+ il AT A || TT 7 A=), (1.10.3)
i=1 i=1 T2

but A(t,£; o) is self-adjoint. Thus

I +ietA(,1;0)] | Slcos Argol| ™!, Yoed”, (1.104)
and therefore

k
Tr {A(L, DU +iolA ]~ =[] A, L)}
i=1 p
k
<lcos Argol|™ - | A D o, s 1y || “TT7 AL 1) g, (110.5)
i=1 T2 k
N 2
Now [|A[lZ e P #,, thus from (1.9.6),
"0 - k+1 1/2 .
I AL 7, s 1)p = (TP> E[IA@oII5, I, (1.10.6)

26 If X is a finite set, |X| denotes the number of elements of X
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and, from (1.9.23),
E[IA@ OIS, 1S e@* g5 +2 2~ lglE I FQ 15 - (1.10.7)

One estimates the right hand side of (1.10.7) by (1.9.24) and (1.9.26), one inserts
this result as also (1.9.3) in (1.10.5), and one dominates log(1+4x?/m?) by an
arbitrarily small power of k;_;, (iegub); then from (1.8.13), (1.10.2), (1.9.2) and
(1.10.5), one sees that, if n < 1/4, there exists ¢’ >0 such that

I, (@, DI, S pI D2 F 2 (g + )T T (¢repm )™, (1.10.8)
ieaub
[one noted that max {lal, [b]} Sk —1=la| +bl, if (¢, b)*0, and that |S{"(a, b)|
<4060 1|+ b)) ]
iii) If n>2, one has

n . kq
Tr{ I ([1 +iglA] <[] A‘*f;’”s‘fz’))H
= ig=1
kg
« n 2 A(;}(qq),sgz))
ig=1
kq -
< n 2 A('?‘f,q)'si(:))

ig=1

n

ST +iglAT~ " TT

q=1

Tn
n

<L +ielAT ™ T

q=1

(1.10.9)

T2

Thus, from (1.10.4),

n kq -
e (]l (+igtAg.) - [] Ao )

14“1

p

=lcos Argel|™" ﬂ ([ ]_[ » A, t)llyzillﬂp, (1.10.10)

q=1 ig=1

where, for k=(k);<,<,» one set |kl= ) k, Then one notes that, if

q=1 n n

(19,89, <, <€ ©¥(g, b), there exists a partition U @ p= U b?, such that
(9, s9)e SF(g?, h), (1 < g <n), and one estimates the right hand 51de of (1.10.10)
by (1.9.3), [with (a9, b"“) in place of (g, b)]. Next from (1.8.13) and (1.10.9), and
using the inequalities

max {|gl, |bl,n} <|k|—n<la|+1bl, if S¥(g,b)+0,

(Ikl—=n)! (|’_<] MY el i, (lal+1B))!,

(k)
|S (Q’b)lé(lkl—n_m')! (kl—n—|B)! =

Hl_<=(kq)1§q§n;kq;2,uc|s > kq=v}

~ (7 s osaleen,
-
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one has, (with n<1/4 and ¢'>0),
(@b, <pt (gl +18)11% TT (¢'im )7, (nZ2). (1.10.11)

ieaubd

) In the same way, from (1.8.15) (with n=0), and (1.9.4)

1Bo(a b, < )20 p1 020l + 6D T2 [T (o)™ (1.10.12)
ieaub
v) At last, if n21, ¢9,59)0 ., <,€ TP (g, b),
n - kg
ll(u), ” A(r(U) (0))(_ t) H ([1+IQCA]_1 “1_[” A(n(‘lq)’s‘(:))(_l;,_g)) w)
io=1 q= ig=1 #lp
ko
< “ ” “H” A(m(( ) it s rko 0+1)(- t) lp”%‘“(lkl/ko)p
io=1
n—1
|COS ArgQCI”" l—[ ” “ “nw A(mn s(q))(_ t)|l.9-z”(|k|/kq)p
q=1 ig=1
il “H” A(';L“),si(:))(!_,L)'wnﬂl“([H/k,.)p' (1.10.13)
in=1
Therefore, from (1.8.15), (1.9.3) and (1.9.5),
1B, b, < 9l ple Ol )12 [T (€ri )™, (121).
ieaub
(1.10.14)

Then inserting (1.10.1), (1.10.8), (1.10.11) in (1.8.11) and (1.10.12), (1.10.14)

(1.8.14), one obtains from (1.8.4),
p T OE(lal + BD1I* TT ("5 )",

I
(1+ > ufnf) I

At last, as the derivations (D,,+i0{(D,,c)d,), <;<, are mutually commutative

b]

la| ~
ﬂ (D), +i(&*90,)- H1 (D}, +10C& 98 ) log Y(J (1), J (t))

14

(1.10.15)

one has .

[H (D, + iQC(Dazc)ag)} Y

i=1
=Y Y [I ( [To,, +iQC(Damc)6g)] log Y). (1.10.16)
peB(en) ueP \liyeu
Then, using
( 11 (D, + iQC(Daluc)ag)} log Y)

cP \liycu p

, (1.10.17)

]log Y

[1®,_ +ielD,, )0,

iusu

PeP(en)
=
(n/|ul)p

> ]

PeP(e,) ueP

|
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one deduces (1.6.4) from (1.7.4), (1.8.7) and the estimates (1.4.3), (1.9.26) and
(1.10.15), according to Holder’s inequality. [

2. Borel Summability

We now obtain an estimate (TheoremII, 2.1) of the derivatives of the functions
(4, z)\—>Z* 5, 42(f) introduced by (1.5.1), from which in partlcular one deduces Borel
summablhty of the Taylor series at zero of functions zr—»Zz 1.02(), (Where Ais fixed
so that |4] is sufficiently small), and, as a consequence, a characterization of each
of these among all possible holomorphic interpolations of the corresponding

1
function —HZ?A L), (NeN,), [defined by (1.2.10)].

An analogous result holds for the “normalized” functions (4, z)r—»SZ g2
_ZfA,gz(ﬂ/Zz,l,gZ'

2.1. Some Properties of the Analytic Continuation

2
For each subset X CC? one sets X(2)={(Q§, Cz)§ (o, C)EX}, one has

TheoremIl. For each Ue% (defined by (1.4.16)), the function (4, z)HZlesﬁ(f),
defined by (1.5.1), is_indefinitely derivable on the closure U® of U® and, for any
bounded subset BC U™, there exists a constant M >0 such that, for all (A, z)e B and
all ny,n,eN,

o o
—__7*
oxm oz TPA

(ﬂ‘éM"‘*”l“-(nl In, 1)2. (2.1.1)

It follows?” in particular that, if |A] <2m?, one has?®
Z¥, s =02 [e =B, X)dx, (Redz>0), 2.12)
0

(the integral converges absolutely), where 4, is the Borel transform of the function
z—Z5, o(f), that is the holomorphic function which continues

n an
Bi(u)= Zo(u,)z(a,,zo“z(ﬂ) (Jul<M™1). (2.1.3)

27 See [5]

28 In this case, there exists Ue such that (2, )e UD for all zeC such that Redz>0. In fact, the
analyticity domain of the functions z—Z¥ 7. g2(f) contains an angle strictly larger than the half-plane
{zeC; ReAz>0}, (especially, if |ArgA| <n/2 and |4 £m?/2, it is the cut plane {z+0;|Argiz|+n}), and
Borel summability extends to this angle. Besides this property allows us to make use of the obvious
generalizations [4, p.268] of the Borel transformation which use the entire functions #{(u)

0 un a"

= L et (az" 0.2 5’“)) with e
sure >7

0
1,—| if the domain of analyticity contains an angle of mea-
T
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This property allows a characterization of functions (1.5.1) among all possible
analytic interpolations of the functions (1.3.8): for each 1€]0,3m?[, the unique

function F, holomorphic in some disc 4,={zeC;Rez™'>r"!}, which has an
n—1

asymptotic expansion F(z)= Z a,z"+R,(z), (neN), with, for some M >0,
k=0

IR (2)|SM" *n!|z|",Vze A,, VneN, and such that F(]%) =z% 2.020, YNEN, (N >7),
Sk

satisfies F(z)=ZZ w0, Vzed,. |Indeed, first, the existence of the asymptotic
' F(n)(o)

expansion implies that F is indefinitely derivable at z=0 and that a,= T

Next, one sees recursively from Taylor’s formula that the successive derivatives
, y

1
F™(0) are completely determined by the values of F on the sequence {z = N; NeN,

0
N >r}, therefore F™(0)= P
z

Z Oﬁ’ 1,421, (n€IN). Last, Borel summability implies the

equality of the two functions.| The holomorphic function (4, z)—Z}, (D) is thus

determined on a subset sufficiently large to characterize it.

Analogous properties hold for functions (1.4.19): if one adds to the
assumptions of Theorem II the condition |Z° 12|28 one obtains, (from the
Leibnitz formula),

anl anz

a}vm a na Szﬁl gz(f)

MR In, )2, (ny,n,eN). (2.1.4
2 1 2

Especially, if one supposes as above |A] <3m?, the function z+-Z , 42 18 continuous

on {zeC;ReAz=0} and nonvanishing at zero, since from (1.4.18),
25,302 =[dety(I+44B)] 712, (2.1.5)

where B e 7 T,(L?) is the real, self adjoint operator, defined by?°

Bp=g-(Gr#(g-v)), (weL?;G,, is the kernel of X ). (2.1.6)

Therefore, there exists r>0 such that the function z+1/Z , 42 1s bounded on
A(A)={zeC;Re(Az)"*>r" '}, and from (2.1.4), one deduces that

S¥ . o(H=(A2)7" Oj? e ol (A7 x)dx, (ze4,4), (2.1.7)

where ./, is the Borel transform of z—S}, D). Here also, this property
characterizes the functions (4,2z)~S¥, .(f) among all possible analytic interpo-
lations of (1.1.6).

29 B, is the limit in 7, 5(L?) of the sequence of operators defined by (1.4.10) where one substitutes a unit
step to x. One has HBgII <1/4mm?, (if |g||, £ 1), therefore (I+4 Re/l-Bg)>0 and the right hand side of
(2.1.5) is well defined according to (1.3.7)
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2.2. Reduction of the Proof of Theorem 11
With the notations of Sect. 1.6, for (g, {)€D4,2), One sets
¢ om0 o
Zoerm ()= _— Og™ o™ Ziz 59k ®,  (ny,n,eN). (22.1)
Then Theorem II follows from
Proposition. For any Ue%, each function (of (¢,{))eU) & (:12) (4) has a continuous

continuation to U, and, for any bounded subset BCU and any £>0, n<1/4, there
exist constants M| >0, b>0, ¢>0, such that

[11[ D?i]ﬂi(m,nz)(.]j(t))l

h
SM (0 In, 1) e K > qi) !

2 n
[T (e )7, (222)
i=j

for all (.)€ B, (n,,n,)eN%, n2j20, q=(4);<,2,6N""*", (g, =0), te[0,1].
Indeed, from the existence of the continuation to U of each Fmm(g), one first

deduces that the function Z* 9(¢) is indefinitely derivable on U and that the
equality (2.2.1) extends to U. Then, (as in 1.6), one deduces from (2.2.2) that, for
each (n,,n,)eN?, the sequence (Z""X(1,)),oy converges uniformly for (g, {)e B. It
follows that Z e (0= 1im Z%(1,), (from Theorem]), is indefinitely derivable

g’ n—oo
with respect to (g, {)e U and satisfies

anl o 02 ny+ny

o 3 B L 0| SAME R, Ve DB, (223)

where a>0 is a constant independent of (n,,n,)eIN?. Then (2.1.1) follows, because

if y is an even, (P({) =y(—{)), indefinitely derivable function, and if ¥(z)=1y( ]/;),
one has, (recursively on k),

Po(7) =2~ k= 1) j% W/ 2)du, (k1) (2.2.4)
! !

from which one deduces

k!
[POz) < a0 oS sup Itp‘z’"(ulf)l (2.2.5)

and especially,

[P0 <a@MAKED T2 i [p®) SaMb (k)T (@20).  (2.2.6)

2.3. Computation of ™" and its Derivatives

The computation of the left hand side of (2.2.2) relies on the “integration by parts”
formula (1.7.2): one shows, with the help of (1.4.8), that derivations under the
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integral sign are allowed, and one obtains, [with the notation (1.7.3)],

f[ DZ“}ff rom) = ,CXP(%QZC 2¢2|\gl3 +iole{a, g)

k=j

H (D, +i0l(D,e)0 )'Ik](a +ifco )nl(aa +ipcd )NZY(J)-v(da).
¢ (2.3.1)

- 0
As the derivations (é_g + iCcc’?g), ( ot +igcd ) and (D, +ig{(D,¢)d,) are mutually
commutative, to compute the derivatives of Y one applies derivations (% + iCcag)
0
d
an ( .

the function logY itself.
First one has, (with A ;=0 A),

+igcd ) to the right hand side of (1.8.11) and (1.8.14), (with u=¢), as also to

0
(% + iCcég> logY,=— gTr {I+iolA]" (A —cAy)}, (2.3.2)
and, for n=1,

_(__ 1)n+1

= w—ﬂ(n +1)!logdet,, ,(I+iolA)

£ Y (= (k= D+ 1= K)ol Tr {(AMT +iolAT ™

n n—k
+ %k; (—DF Yk—1)!(ig) "2 (565 + igcag) [Tr{A*[I+ielA] *cAy}]1,
(2.3.3)
(proof by induction on n). One can then achieve the computation using the
Leibnitz formula, equalities (1.8.30), (1.8.31) and

(35 +ipcd ) {[I+ioCA]™ Y}

k
= ) X a’;(u){[HiQCAT‘ [T T é>[1+iQCA]-1)}, (2.3.4)

keN ue?(ex) j=1
k=n<2k |lul=n—k

(as also the analogous formula obtained by exchange of ¢ and (), where 2(e,) is the
set of subsets of ¢, ={1, ..., k},

20%cA if jeu
T = tal? P 2.3.
0= Dot e WEPe). @39
and where the integers o*(u) satisfy
k
Y okw)= ( ) (k=n=2k), (2.3.6)
ueP(ex) n— k

luj=n-k
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indeed, one shows easily that the family = Y  ok(u), (n,keN, k=<n=<2Kk),

ueP(ex)
lul=n—%k

satisfies the recurrency relation ff=kp*-1 +(2k—n— 1)B_, with B3 =1, (85 =0, if
k>0), which implies (2.3.6)|.

2.4. Bounds on the Integrant
Next one has3°

Lemma. For all n,, n,eN, one has

6 ni a na
—+ iCcag) (~ + i@c6g> [I+iolA]™ !
“(6@ ¢ (24.1)

2\ In1+n2
gnlznzllcosArggél“"‘+"z+“[(2+(g|)2(2+|c|)2(1+(|Aa|72+c"f’ll4)} :

and

<n, !n,!|cos Argo{|~ ")

Hg“i)]n1+nz+2.

m

l(i + iCcﬁg) (i + chag) log Y,
de o (242)

'{(2+ leD*2+1CD*(1 + [All 7, +C(Ilgil R

Proof. 1) First, from (2.3.4), (2.3.5), (2.3.6) and (1.10.4), one has

J . " ) -
”(a—g+19cag> [I+iolA] "}

k
<n! ), ( k)lcosArgQCI""“’
he

keN
ksn<2k

(lel AT + 1Ll lolell Agg 1)~ "(lol*ell Agyy )" "

<n!lcos Argol|” " V(1 +lol Al 7, + (L +[CDlolell Ayl 7). (24.3)

0 .
Next one applies (£+iéc6g) to the right hand side of (2.3.4). Then, using (2.4.3)

where one exchanges ¢ and {, and that the only nonvanishing derivatives of the T}
satisfy

6 r
ll(a_Q + iCc@) {—ioA+{0*Ay,}

s2+lehelAyls,  (0=rs2), (2.4.4)

a ¥
(55 + iCc69> {0%cAy}

<(1+leDlAll7,+2+le)llellAyl 7, 0=r=2),
(2.4.5)

30 In what follows, we select (for simplicity) quite rough estimates
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one has, from the Leibnitz formula

“(6@ +iled ) (;{ +ipcd )n [I+iolA]™?

k n 2k
C plh) g Bl
kzzE:N 2 n,—k, k;Ee:lN ky n 2 n,—k;

k2=ny =2k ny—2ka<ki=ny
!
LI
4N, (15jsko+1)  katl

kz}:ﬂ 0=k l_.[ (qJ1)
i ji=1

Jj=1

ka+1

- [T 4;'lcos Argol|~ " P(1 + || |A]l 7, + (1 + DI el Ayl )%
j=1

(2+leD*el Ayl o) 7F (L +1eD Al 7, + 2+ le)?Clel Ayl )27,
(2.4.6)

from which one deduces

] "0 "
'l(gé+iCc6g) (6C+1QC5) [I+ioCA]™!

§n1 !nz !2n1+n2 ICOS ArgQCl—("‘“” 1)

2+l +IEDIAL 7, + 2+ [)* @+ LD el Ayl )" . (2.4.7)

2.1) In the case n; =1 one computes the derivatives of log Y, by differentiating
the right hand side of (2.3.2). First, if n, =1, n, =0, one has

a .
(8—9 + 1Ccag) log,

<3lcos Argol| "ol (Al Z, +ellAgl7),  (24.8)

and, if n, =2, n, =0,

a 2
KBE + iCcag) logY,

+7lcos Argol| 21+ (1 +lel + LD Al 7, +lel (1 + 1D *el Ayl 7). (2.4.9)

S5 lcos Argel| T (JAIZ, +elAy,ls,)

Next, in the other cases, (n; =3 or n; =1, n, 2 1), one estimates the nonvanishing

derivatives of g(A2 —cA,) by

ri 6 r2
||(a@ s ) (ac *iged ) {—§ (A2‘°A“”)} .

S+ +lel+HIDIAl, +2+1eD* 2+ el Ayl )%,

0=r; =3, 0=r,=2), (2.4.10)
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and, according to (2.4.7), one deduces, from the Leibnitz formula,

o e
’( +1Cc0) (ac—i-zgca) logY,|<n,!n,!12"*"% 1 |cos Arggl|~ ™ *"2)

do
@ (1ol +IDIATLy, + 2+ o)+ el Ay 7" 72,
(n, 23 or n,=l,n,21). (2.4.11)

i) If n; =0, one estimates the right hand side of (2.3.3). From the inequality
[easily deduced from (1.4.5), (1.4.6) and (1.4.7)]

n+1(___u)k n+2

log(1+u)+ < [sinArgu| Yul"*%, (n=0,|Imlog(l+u)|<mn),
=k n+1
(2.4.12)
and from Al , <|[Al,,, (n=20), one deduces
DY g det, . (1 +iolA)| Sn!2" 2[cos Argal|~ ol 2 A% 2. (2413
G ogdet,  ,(I+iglA)| =n [cos Argol|™ *oI"™ |l (2.4.13)

Next, from (1.10.4),
i (k—1D)!(n+1—k)!|o|"* 2| Tr{A" " 2[I+iolA]"*}|
k=1

<2n!{cos Argol|"lo|" " 2||A %2 (2.4.14)

T2

and last from (2.4.3) one obtains

H(aC +igcd ) {0A[I +iolA]™ "}

<n!|cos Argol|™"" V(1 +lol [All 7, + (L +1Dlelell Ayl 7). (24.15)

T2

Therefore, from the Leibnitz formula,

“(ac +igcd ) {o0A[I+iolA] 1}¥

T2

n! k

O H
q,elN(l<1<k) n(

):q—n

(:C + igcﬁg)qj {oA[I+ig¢A]™ 1}

T2

I\

+h—1 i
n!(n _q )lcosArgQCI O+ lel Al + (1 +1CDlel el Ag 7 )",

k
(2.4.16)
n+k—1
(5] 1

n n—k
Y (k—1)!gl**? (tjC +ipcd ) Tr{A*I+iolA] *cAy}
k=1

=nllcos Argol|™"(L + ol |A]l 7, + (1 +I{DlePel Ayl 7 )", (24.17)

[because

k
{(‘Ij)l <jsk€NS Y ‘1;:”}
i=1
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then, joining (2.4.13), (2.4.14), (2.4.17), one has from (2.3.3),

0
'(aC +igcd ) logy,

<n!lcos Argel| (1 +lol Al -, + (1 +1{DlelPel Ayl ) 2. (24.18)
3) From (1.8.2) (with h=0, u=t), one has
1415, = [ 66792, e ek 10— y))dxdy

S T
<lg* ”2“[2 k(_t)*k(_r)] Il

_ «=1r —
<@n) " 2gl3IE, kyykll3

d
<0 Mgl ] s = g ol

(2.4.19)
(because |lkll,, =1, by assumption). On the other hand A,(t)=0, thus, from
(1.8.17),

IA@ll 7, = Tr{Ay, 0} =c®)llgll3. (2.4.20)

Then one verifies (2.4.1) and (2.4.2), inserting respectively (2.4.19) in (2.4.7), and
(2.4.19), (2.4.20) in (2.4.8), (2.4.9), (2.4.11) and (2.4.18). O

2.5. LP-Estimates

Now, supposing Ue%, [see (1.4.16)], and BC U a bounded subset, are given, one
has

Lemma. For any n<1/4, there exist constants M,>0, ¢, >0 such that for all
ny,ny,neN, a,eIN,, (1=i<n), jeN, jSmin(a); <;<,, (/=0 if n=0), te[0,1] and
(0,0)e B, one has

n na

H o Hi0l(D,)0,) (6 +i(ed )"1 (;C +ch6> log Y(J

Sntn (M oLL+ [ AW AN 7, a4 naypr T €0 ()] +mat2

pa(n))? H (erka-1)7" (2.5.1)
i=1
here p,p pe[l—f-oo[ad1 14—1
W ) > na —=—r1+—
v P PP

Indeed, for n=0, (2.5.1) simply follows from (2.4.1) and (2.4.2).
k
Next one computes 6;‘(“]]” A""’S")) by iterating (1.8.30); one deduces
i=1

k
a;('rr{“ﬂ”&“’&)}) thanks to (1.8.31); then, with the assumptions of Lem-

i=1
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ma 1.9, and adapting elementarily the proof of this lemma?', one estimates the

norms of the derivatives of functions in the left hand side of inequalities (1.9.1)—

(1.9.5): so one verifies that each one of these can be generalized by

— applying 0, to the function of the left hand side,

— multiplying the right hand side by n!, and substituting there a new constant
(independent of n), to c,

so, for example, (1.9.3) is generalized by

k

Iag-=TT" AT, I, <n!p*2(k)"> [T (chrioy) 7" (2.5.2)

i=1 icaub

0
Then one applies derivations {— +i{cd ) and (6
do ! a¢

(1.8.15), and, according to the estimates of 1.10, one verifies (2.5.1) using, on the one
hand (2.4.1), and on the other hand (2.5.2) and the four analogous inequalities
described above, to estimate the various factors. []

+igcd )to functions (1.8.3) and

2.6. Proof of Proposition 2.2

Then Proposition 2.2 comes from inequality (2.5.1) as follows : First, if w; denotes a
set with n; elements, (j=1,2), and P="P(e,uw, Uw,) the set of partitions of the
disjoint union of e,={1, ...,n} withw, and w,, one has

[;ﬁ (D +iol(D,,¢)d,)- (6 +ilcd )nl(§C+zgc8 )nJY=<Z ]—[X(u))'Y, (2.6.1)

i=1 PeP ueP
with
Fi junwi| 0 lunwal
Xw=| ]] (D, +iol(D,, €)3,)- (6 +i§c69) <ac+zgc6) logY.
iveunen, 0 (2 62)
Next, pe[1, + oo[ being fixed, for each Pe ‘B and ue P, one sets
2(n; +n,+2|P))
P,u)= , Puy=——-np, 2.6.3
Pi(P,u) [unw, |+ unw,|+2 PP lumenlp (263)
and p(P,u) ( ! + ! )_1 so that ), ! ! and thus, from Holder’s
,Uy= ) TSI T T 5
P PP p(Pou) Sp(Pou) p
inequality
[TX@)|| = TTIX@) .- (2.6.4)
ueP p ueP

31 Modified in that way, the proof introduces, except the “kernels” (1.9.19) and (1.9.21), only those
k

which are associated with factors of the form &};;"” in the expansion of d) (‘H As0)  namely
fg(x)* ]3[ FUn)(x — y,)dx, which are estimated by (1.9.23), (1.9.24) and (1.9.25). On; 1;otes that it is not
;fossible::té deduce simply the result from (1.9.3) and (1.9.5) and Hoélder’s inequality, because factors of
the form ﬁ’ A5) do not necessarily satisfy the assumptions of the lemma

=)
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Then one estimates || X(u)| ,p,, by (2.5.1) where one gives to p, and p, the values
defined by (2.6.3): one obtains (with suitable constants My, ¢}),

<M/(n1+nz)n' n (C Ka _1)

PePB ucP
. Z 1+ ||A|[y—2||2(,“+n2+21P|)p+c)n1+n2+zlPl n [ul!. (2.6.5)
PeP ueP

But one has
A%, =1, |Al%,+E,[IAlZ,]1, (2.6.6)

where IT, denotes the orthogonal projection on the “two particles space”
F,e LA, v). Thus, from (1.9.6),

Al = IAIZ, 12 =T, | AlZ I, + E,LIAIZ,D)Y?
ST IANZ I, +ELIALZ, D)

<q'?|ILIIAlZ,15%+E,[IAlZ,]". (2.6.7)
Moreover, from (1.4.9) and (1.4.14),
E[[IIA, i, 17, 1=c0)lgl3, (2.6.8)

and, on the other hand,

“HZHAg,kQ) Hirz ”% =2 Ejz Iz, IEQ)*kQ)(x1 - xz)]zg(x1)g(x2)tdx1dx2

2 ~
éwugnéumnim

2 d 33 gl
§W|]g“i<£(‘p|2+fnz)4/3) T 258 i;' (2.6.9)

Then, inserting (2.6.7), (2.6.8) and (2.6.9) in (2.6.5),

M//(n1+n2)n' n (C”Ka _1) n

i=1

Y (L4 (ng 0y +2/P)Y2 eyt 2P T ! (2.6.10)

Pe$P ueP

Pe® ueP

Last, for any ¢>0, one has
(1 -i-(n1 +n, +2]P])1/2+c)n1+nz+2lp|

mrnat2ipl 2P +n
Z (1’11+n2k+ I ,)exp< 5 n, +IP|>(k‘)1/z
k=0

ny+na+2|Pl—k

1 2 2
<j2;) [(n, +n,+2|P|—k)!]}/2e51 O

IIA

n1+nz 4P|

<(6efe) 2 [(n, +n,)1]V2| P et ¥9? (2.6.11)
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k
[one used inequalities &* < ek!, and & <(26) 2 (k!)Y2e*®, (£>0, keN, ¢>0)], and
on the other hand,

YOAPN T lult =3t 0 0, +0)!, (2.6.12)

Pep ueP

(proof by induction), thus finally

> 1Xw)

PeB ueP

P

M0, n, )22 T (k- ) e F e, (2.6.13)
i=1

from which one deduces (2.2.2), using (2.3.1), (2.6.1), the estimates (1.4.3), (1.9.26),
and Holder’s inequality.

Appendix
We describe the domain defined by (z/2, (84)"/?)e D42, [see (1.4)].
A.1. Boundary of the Domain in the Plane of the Complex Variable A/m?:

.

Argz=0 Arg z=T/360 Arg z=TU/6

N, AR
DN

Argz=T/2 Argz=3Tm/4 Argz=T

Fig. 1
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A.2. Admissible values of |A|/m? lie below the graph of the following functions of
Argzi:

IAl/m?
T T 1
— 2/3 ——— 4
T T T T T T
0 s 0 0
Arg A =0 Arg zA Arg\=Tt/6 Argh=T1/b

| T T | { T | ( T T L

Arg\=1/2 ArgA=31t/4 ArgA=Te

Fig. 2

One sees that, for [ArgzA|<m/2, all A’s such that [A|/m?<2/3 are allowed (see
Sect. 2.1, footnote 28).
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