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Abstract. Well known classical spinor relativistic-invariant two-dimensional
field theory models, including the Gross-Neveu, Vaks-Larkin-Nambu-Jona-
Lasinio and some other models, are shown to be integrable by means of the
inverse scattering problem method. These models are shown to be naturally
connected with the principal chiral fields on the symplectic, unitary and
orthogonal Lie groups. The respective technique for construction of the
soliton-like solutions is developed.

Introduction

Classical spinor systems (classical analogs of fermion fields with c-number values)
have often been considered in the physical literature. First of all, there are the
models of Nambu and Jona-Lasinio [1] and Vaks and Larkin [2]:

00" =1/2y" ) p*of
B
0" =120 ) p*'ypf (1)
B
and the Gross-Neveu model [3]:
anq)a - iwa Z (w*ﬁ(pﬁ + @*ﬁwﬁ)
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B
where n=t+x, {=t—X.
Models (1), (2) are relativistically invariant and represent systems of N massless

Dirac equations in a two-dimensional space-time with nonlinear (cubic) terms.
Models (1), (2) correspond to the actions
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Such models arise in solid state physics as a result of the Hartree-Fock
approximation to real fermion systems. They may acquire a direct quantum-
mechanical sense as well (if the index « is isotopic).

Neveu and Papanicolaou [4] have conjectured that models (1), (2) can be
integrated by the inverse scattering method. They [4] have succeeded in proving
this hypothesis for N=1,2; when N >2 they have found that the systems (1), (2)
have infinite series of conservation laws.

In the present paper systems (1), (2) are shown to be integrable for any N. These
systems are closely connected to integrable systems previously considered —
principal chiral fields on Lie groups, they are in a sense the simplest versions of the
latter. Model (1) is connected with a chiral field on the unitary group SU(N), and
model (2) with a chiral field on the real symplectic group Sp(2N,R). We consider
also a new classical spinor model with the Lagrangian:

S=[dtdx [z (i9**0, 0" +ip**0 p*)
=3 2 (@™ @f — * ™) (p*yf —yp*Py”)). (5)
o, f

This model is connected with chiral field on the orthogonal group O(N). The
method developed here makes it possible to find explicit soliton solutions of the
classical spinor systems under investigation.

1. Some Information from the Inverse Scattering Method
1. The integrable systems under investigation are the compatibility conditions for
the system of two linear equations [5]:
Y.=UY¥
(1.1)
y=VY.
Here n=t+x, £=t—Xx are light cone variables, and U, V are rational functions of
the parameter 4:
Un

Aay 12
v (1.2)

V="Vt Z i+a,’

where a, are arbltrary complex constants, here a,+a,+0; U,V, ¥ are complex
N x N matrices. The system (1.1) should be compatible for any A.
The compatibility conditions have the form:

K
U=Uy+ Z
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2. Consider the change of variables
X=g¥ (1.6)

in the problem (1.1) where g(&,#, ) is some nondegenerate matrix function. With
such a substitution, Egs. (1.1) are transformed to the form:

0. X=UX

- (1.7
oX=VX,
where
U=g.g~'+9gUg ™"
9.9~ ' +gUg (18)

I~/=gng*1+ng*1.

If g is independent of 4, then U and ¥ are rational functions with poles at the
same points as U and V. Therefore, the compatibility conditions of the problem
(1.7) have the form of (1.3)-(1.5) where instead of U,, V;, U,, ¥, the transformed
matrices U,, V, and U,, V, appear:

Up=9gUog ' +g:97%, U,=gUg ", (1.9)
Vo=gVog ‘+g,97 . V,=gVg ' (1.10)

Transformations of the form (1.6) have been introduced in [5, 6] and are called
gauge transformations.

Different choices of the matrix g correspond to dlfferent gauges. For instance,
the gauge for which U V =0 (the matrix g= gO is determined from the
equations g,.+ Uyg =0, g, + V59, =0 up to multiplication by a constant matrix)
is called canonical ; the gauge in which one of the residue matrices, for instance V,
is of Jordan canonical form, is called a pole gauge (g =gy is determined as a matrix
reducing V; to Jordan form) [5].

Equations (1.3), (1.4) in different gauges have at first sight different forms;
however, it is clear that their solutions are connected, and it is sufficient to study
them in a single gauge.

3. It follows from (1.4) that the invariants of the matrices are independent of #.
Thus

U,=0,U &), " (L.11)
Similarly :
V=, V(v . (1.12)

In other words the invariants of the residue matrices are first integrals of the
system (1.3), (1.4) which actually falls into a set of systems differing in the
predetermination of the values of the invariants. Systems with different sets of
invariants may result in solutions which differ qualitatively (see [5, 7]), and,
therefore, each of these systems should be studied separately.

It should be noted that the gauge transformations do not affect the values of
the invariants U, and V.

4. To construct exact solutions of system (1.3), (1.4) by the inverse scattering
method 1t is required that at least one particular solution of this system be known.



24 V. E. Zakharov and A. V. Mikhailov

It would be natural to start from a solution which is homogeneous in space-time,
“from the classical vacuum”, on which background the dynamics would develop.

A set of matrices V(n), U3(), V2(n), US(E) satisfying the following system of
algebraic equations will be called a vacuum solution:

[US V51=0, [Up,)1=0, [V, %’]1=0, (1.13)
K VO K UO

0—yQ m 0_yo— m 1.14

(pn VO * mzl an+am ’ q::' UO mgl an+am ’ ( )

when the gauge of problem (1.13), (1.14) coincides with that of system (1.3), (1.4),
this set of matrices will be called a first order vacuum solution of system (1.3), (1.4).
When the gauges are different then, after the corresponding gauge transformation
reducing problem (1.13), (1.14) to the same gauge as (1.3), (1.4), we get a set of
matrices UY(&,7), V(& n), U n), VO(£,1) which is the solution of system (1.3),
(1.4), which we call a second order vacuum solution of system (1.3), (1.4).

Almost all the systems considered earlier have been considered on the first
order vacuum background. An example of studying a problem on the second
order vacuum background solution can be found in the paper of Shabat and one
of the authors [8]. Below we show that for the Gross-Neveu model only the
second order vacuum leads to a nontrivial dynamics.

In this paper we shall mainly deal with systems given in the canonical gauge U,,
=V,=0. To diminish the number of indices we restrict ourselves to the problem
with one pole* a, =1. In this case the system (1.3), (1.4) takes the form

0,U,=1/2[V,U,], (1.15)
0.V, =1/2[V,U,]. (1.16)

The compatibility conditions of (1.13), (1.14) for the first order vacuum solution
have the form

LU&), V2(n)]1=0, (1.17)

where the matrices U(¢), V(n) satisfy system (1.15), (1.16). For the second order
vacuum the compatibility conditions are as follows:

(UG, Vo ()] =0, (L.18)
UL, Vo) +2 VP )]1=0,
[V20n); Ug(&) -3 UT(9)]=0. (1.19)

In order to obtain the second order vacuum solution of (1.15), (1.16) one should
perform a gauge transformation [Egs. (1.18), (1.19) must be transformed to the
canonical gauge]. It follows from the foregoing that it is necessary to find the
matrix g°(&,#) satisfying the consistent system of equations

0,9°+UJg°=0, 0,9°+V5g°=0 (1.20)

1 It goes without saying that this restriction is not essential and that all results can be easily
generalized to the K-pole problem
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and then using it to perform the gauge transformation of (1.8):

09 =g°U%°1

f/o _ go Vlo go 1
(leading to U= V2 =0). The matrices U(¢,5) and V2(¢, ) satisfy system (1.15),
(1.16). They are called the second order vacuum solution.

It should be noted that the vacuum solution matrices each depend only on a
single variable, in particular, they may be constant, and the vacuum solution of

system (1.15), (1.16) of the second order (1.21) must necessarily depend on both

coordinates.
5. Let us consider Egs. (1.1), where U, V are the vacuum solutions {UJ(¢), V¢ (),

U%¢é), V(n)} of Egs. (1.13), (1.14). The matrix ¥°, which solves
0,0 =U(E, )P, (1.22)
0,P°=V"n,7)¥° (1.23)

(1.21)

can be sought in the form of a product of functions
P&, n, A=A (1, 1) (L.24)

where ¥PP(&, 1) commutes with ¥(y, A).

If the matrices U§, Vg, U2, V2 are constant (the most interesting case), then
Egs. (1.22) and (1.23) can be easily solved. Below we assume the functions ¥, to
be known.

It should be noted that the function ¥° provides complete information about
the vacuum.

The matrix X is: X=¥Y¥°~ ! It apparently satisfies the equations

0. X=UX-XU°

oX=VX=-XV°. (1.23)

Let us denote g=X|,_ . Then A1— oo in (1.25) we get

Up=9:9" "+9Ug™ ", Vo=g,9 " +9gV5g™". (1.26)
Assuming A—a, in (1.25) we yield

U,=XUX", X, =Xl,—.., (1.27)

0,X, =X, — X, P (1.28)
Analogously 1— —a,, leads to

0. X, = WX, — X, %2, (1.29)

V=X X X=X,__,. (1.30)

Below we shall construct a number of explicit expressions for X and thus find
exact solutions of Egs. (1.3), (1.4), and (1.27)—(1.30).

6. Equations (1.3), (1.4) contain only linear operations and commutators. We
may assume therefore that the matrices U and V belong to a Lie algebra g. It is
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clear that any subalgebra g’ C g is an invariant of system (1.3), (1.4). In other words,
if the initial conditions are given in some subalgebra, then in the process of
evolution the fields stay in the same subalgebra.

The problem of restricting to invariant manifolds in integrable systems is called
the problem of reduction. In this sense the restriction of system (1.3), (1.4) to the
subalgebra is reduction.

Below we shall assume all poles to be real. The algebra g is g=sl(N, €), and
from (1.1) it follows that ¥(&,#n,4) belongs to the group SL(N,C) of most
importance for us is the reduction to:

i) g¢'=SU(N) — the algebra of anti-hermitian matrices,

ii) ¢'=Sp(2N,R) — the algebra of the real symplectic group,

i) ¢'=SO(N) — the algebra of anti-symmetric matrices.

In the first case of real A the function ¥(&, #, 4) can be chosen to belong to U(N),
in the second case to Sp(2N,R), and in the third case to O(N).

We shall mainly consider the simplest case of a single-pole problem in the
canonical gauge:

Ul
0P =", (1.31)
V.
p=_1 . 1.32
Oy /1+1T (1.32)

From (1.31), (1.32) it follows that the matrix g=¥(&n,A)|,-, satisfies the
equations

9e=39:9""9,+ 9,9 "9

which are the field equations describing the principal chiral field on the group (for
instance, on one of the groups enumerated above) [5].

It goes without saying that each reduction imposes certain limitations on these
scattering problems (or the Riemann problems). Reduction on SU(N) has been
studied in [5]. Reductions on the real algebras Sp(2N,R) and SO(N) are studied in
Sect. 3. A detail analysis of these reductions will be published elsewhere.

2. Correspondence of the Classical Spinor Systems to the Chiral Field Models

Chiral fields on Lie groups have been investigated in [5]. They may be regarded as
representatives of equivalence classes of integrable two-dimensional relativistic-
invariant systems. A classical spinor system is shown to be connected in a natural
way with each such system.

Let us transform Egs. (1.28), (1.29) to relativistically invariant form. To this
purpose we determine the function ¢, and yp, as follows

0, =X (&, )& W, a,), 2.1)
=X (En DGO PAE, —a,). 2.2)

[Here X, X,, ¢°, ¥, are determined in formulas (1.27), (1.30), (1.20), and (1.24).]
They evidently satisfy the system

(pnn = ¢nq0n 2 wn-’,‘ = %wn
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which can be rewritten in the form

K 0,,—1
YV
Vo = Jmmrm 23
'I(P" mgl an+am ‘q)n’ ( )
K 0 —1
PuUn®
Vap,=— Y —momim 24
{lpn m;1 an+am ns ( )

where V, =0, =V, V,=0,—U,, [V, V.]=0.

Equations (2.3), (2.4) are of the form of a classical spinor field (¢, v, form a
two-component Dirac spinor) and are obviously relativistic-invariant.

Equations (2.3), (2.4) possess a variational principle [9]. Let us consider the
functional

K
S=[dndss,| = ¥ (o0 WyoUl vy Vo)

K
+ ) (a,+a,) o, Udo, 'y, Vop, ! (2.5)

and calculate its variation taking account of the fact that

1

oy, t=—p, oyt ot =—0, 00,0, "

The condition 6S=0 is equivalent to the following equations (variation with
respect to @, p,):

K 0,,— 0,,—1
mem Wm 0 __ V)me Wm
v — U) = 2.6
X a+m)¢" ( ;aw Jou 20
q)mUm(pm 0 __ (pm Umq)m
LmomIm Tmomim 2.7
(V+mgl a,+a, ) PuVi= V<V+ ;1 a,+a, )w"’ 27
and to the equation (variation in g)
K K
Vi Zl U, = Ve Zl Vn}. (2.8)
Equation (2.2) can be solved, using (1.27), in the following way:
K 0,,—1
YV
— Fmm¥m = 2.9
R 29

where Q,(¢,#) is any matrix commutating with U2(¢). In particular, 6S=0 is
satisfied provided Q,=0.

It may seem that the functional does not unambiguously determine the
equation for the matrix ¢, All the ambiguity is, however, connected with
multiplication of the matrix ¢, on the right by an arbitrary matrix commutating
with U2(¢). Indeed, from [Q,(&, 1), US(&,n)] it follows that it is possible to find a
matrix R,(&,#) satisfying the equation

R, =R,0, (2.10)
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and commuting with U2(¢). It is easy to verify that the transformation ¢,—¢,R,
does not change the functional S; in this case Eq. (2.9) transforms to (2.3), (2.4).
This fact shows that any representative of the “flag space” connected with the
matrix U2(&) can be chosen as ¢, (see [5]). So, without loss of generality, we may
assume that the functional S unambiguously determines Egs. (2.3), (2.4). It can
easily be verified that Eq. (2.8) is their consequence.

Equations (2.3), (2.4) are gauge-invariant in the sense that they do not impose
any conditions upon the matrix g. Therefore, the transformations ¢,—he,,
yp,—hy, are admissible, where h is an arbitrary matrix depending on ¢ and #.
Under such a transformation only the matrix g will be changed. It is possible to get
the final determination of system (2.3), (2.4) by imposing an additional condition
specifying unambiguously the matrix g. Undoubtedly, it is the variational principle
for all such systems. In this sense the matrices ¢,, i, should be regarded as variable
ones, in which the variational principle is formulated in a most simple manner.

In view of the recent paper [10] it seems quite probable that the variational
principle predetermined by the functional (2.5) is not the only variational principle
determining Egs. (2.3), (2.4). At any rate, this is the case for the sine-Gordon
equation. We may show that the functional S calculated for the case when system
(2.3), (2.4) is equivalent to this equation (see [5]), differs from the natural action
functional for the sine-Gordon equation.

3. Construction of Soliton Solutions

1. The study of analyticity properties of the function X (1.24) for complex values of
the parameter 4 is very important for constructing exact solutions by the inverse
method. The solution of system (1.3), (1.4) corresponding to the case when the
function X is rational we shall call a soliton solution. In [11] it has been shown
that the calculation of such solutions is a problem in linear algebra and can be
solved explicitly. In [5, 7] the simplest soliton solutions have been investigated for
the principal chiral field on SU(N). In the present paper we consider soliton
solutions for principal chiral fields on the real matrix groups as well.

The choice of the group [fixed reduction in system (1.3), (1.4)] imposes
restrictions on the number and position of the poles of the function X. The
solution of system (1.3), (1.4), for which X has the minimum number of poles, will
be called a single-soliton solution. In this case one should take into consideration
that the function X is determined up to multiplication by a constant rational
matrix function of A commuting with U°, °,

2. We start with the case of the chiral field on the SU(N) group. From (1.25) it
follows that U, V belong to the algebra of antihermitian matrices, provided the
function X obeys the involution

XX =1 3.1)

and for real values of the parameter A is unitary. Involution (3.1) does not impose
any restrictions upon the arrangement of poles. Multiplying by some appropriate
rational function it is possible, as is shown in [5], to transfer all the poles into a
fixed (upper or lower) half-plane. In this case the single-solution considered in
[5,7] corresponds to the function X, having only one pole. However, bearing in
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mind a further comparison with the real case, we shall assume the poles of X to be
located at complex-conjugate points. Since the gauge is canonical, it can be
presented as follows:

B,
X=1 32
+ Z( o ) (3.2
From (3.1) it follows that
Al B}
1= . 33
+ z(z Iz /1") (3:3)
From X‘1X=XX‘1=I we find
A,Bl=B,AT=0
A,0f +1,Bl =0
y B (3.4
a)n=I+ ; ;"n—)_“m * mg:‘n }“n_)”m
A

B
=1+ ) —= +Z/1_'"Z.

m*n An_;{m

From (3.3) it follows that the matrices 4, and B, are degenerated.
The system of quadratic relatiorts (3.4) can be solved as follows. Let us write A,
and B, in the factorized form

A,=X,F!, B,=YG!, (3.5)

n- n?’

where X, F, are rectangular matrices made up of N lines and K, columns; Y, G,
have N lines and S, columns. The matrices F, and G, are known, and X, and Y, are
unknown. From (3.4) it follows that the following condition should be satisfied :

FiG,=0 (3.6)
and also the relations

X (Floh)+(z,G,) YT =0. (3.7)
Expression (3.7) can be identically rewritten in the form

7,G,=-X,o,, o,F =Yal, (3.8)

where o, is some K, xS, matrix. Relations (3.8) represent a system of linear
equations for X, Y, :

X (FIG GTG
G,+ > nl )+ Z %G ) =-X,%,, (3.9)
m+n j’ }” m m
Y (GIF
m m#n }”n_/lm

3. From formula (1.25) it follows that
U=—-X(0,-U%X"". (3.11)
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We substitute X into (3.11) in the form of (3.2). In order that U be a solution of
(1.3)(1.5) it is necessary and sufficient that U should represent a rational function
with poles at the points a, (1.2). We assume that the points A, and 1, coincide with
none of the a, Therefore, the function U at the points 4,4, should be regular,

though formally it may have at these points poles of up to second order. The
requirement of the absence of second order poles leads to the equations:

FID(,)G,=0
- (3.12)
G!D(A,)F,=0,
where
D(,)=0,—U";_,,
which due to (3.6) can be solved in the following way
D(A)G,=G
(—n) n nﬁn (3.13)
D(A)F,=F,y,.
Analogously
D(4,)G,=G,f
~(_") n= Gl (3.14)
D(Z)F,=F3,,
where
D(A)=28,—V°,_, ;

B,» B.» 7. 7, are some matrices that, generally speaking, depend on ¢ and 7.
From the compatibility condition of (3.13), (3.14) we have

op, op 5

ﬁn _ ﬁn +[ﬂnﬁn]:0

on 0

- (3.15)

a’/l - 86 +[yn’))n] =0'

Then

angnéngl’ Enzgnngn_17 3.16
—h ', 5 =h h! (3.16)

Yu= nén 2 Y= ny'‘n >

where g, h are any non-degenerate S, x S, and K, x K, matrices.
The factorization (3.5) is ambiguous. Indeed, if the transformation

Fn_>annT > Xﬂ _)ann_ !

is performed with an arbitrary non-degenerate matrix f,, then A4, is not changed.
The freedom in the choice of the matrices f, is just connected with some freedom in
factorization, and an arbitrary choice of these matrices does not change the final
result. We choose these matrices in the simplest way, requiring that

ﬂnzﬁn=’yn=?n=0‘
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Now the solution of Egs. (3.13), (3.14) has the form
G(&n)= ll/o(fa , }‘n) G,

F(&n)=Y%n,4)F),
where F?, G? are constant matrices satisfying the condition (3.6), and ¥°(&,#, 2) is
one of the solutions of system (1.1) satisfying the condition

PO )P En, D=1

The last condition is necessary for the requirement (3.6) to be satisfied at any
point of the A-plane. As a rule, a vacuum “wave function” of the first or of the
second order is chosen as ¥°.

It is also necessary to require that there be no first order poles in expression
(3.11). Imposing zero residue at the point A=21, results in the equation

(3.17)

oy’
D)ol +1,D(A,)Bl = A, —— B!. (3.18)
0A \iza,
Taking account of (3.5), (3.17) we reduce Eq. (3.18) to the following:
ou°
X, FID(A)o} — X 0,0.Y, =X FI —— . GnY,f. (3.19)

Differentiating relation (3.8) with respect to é
(0 F)) ol + Flo.0] =(0.0,) Y +0,0. Y,

and using the equation for F:
0. F+FIU°,_, =0
U(Z)=—-U%4,)

we obtain
F*(a UO)wg—(aéa )Y, +0,0: Y. (3.20)

Inserting (3.20) into (3.19) we get

ou° :

X, (0:00) Y, =X Fl —— i G, Y X0, Y

In a similar way we have
aVO def T

X, (0,0) Y, = X, Fl —— Gn VX oY,
One can verify that ocn:oc,,(é) and o2 =o2(n). Consequently, in order to cancel the
first order poles it is necessary and sufficient to put o, = S5°d¢’d} + S"dn'a? and o
is an arbitrary constant.

The scheme of calculation of the function X for the soliton solutions can be
formulated as follows. Each N soliton (i.e., the one corresponding to 2N poles of
the function X) solution is given by: a set of N rectangular constants N xS,
matrices G?, a set of N rectangular constants K, x N of the matrices F?, a set of
rectangular constants K, x S, of the matrices &, a set of N complex numbers 1,
and the matrices F? and G? satisfying the condition (3.6). The matrices G, (&, ) and
F(&,n) are calculated by formulas (3.17), and the matrices X, Y, are determined

A= An
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from the solution of Egs. (3.9), (3.10). Then constructing A, and B, (3.5) we find the
function X (3.2) corresponding to the N soliton solution.

We consider now the case of a unitary group. In order to turn to the
orthogonal group it is sufficient to require that the function X should be real at
real 1. In this case 4,=B,, that is,

G,=F,, Y=X, K,=S, o=—or.
4. In a similar way it is possible to consider any classical real matrix group.
Such groups are characterized by the invariant form #

g Fg=J (3.21)

which can be reduced to any of the two canonical types

-1' i . —1.
}p o - (3.22)
\ .

-1, 1 I
q [ " I 0 (3.23)
L —1 L 1. i
The group preserving the form (3.22) is called the pseudoorthogonal O(p, q), and
the group preserving (3.23) is called the symplectic group Sp(2N, R).
Using the reality of X at real A, we have

X=1+ ;(ﬁéﬁ}; + ifn}:) , (3.24)
X t=gXrg-1t. (3.25)
Assuming
A,=X,F! (3.26)
we see that
Fr #F,=0. (3.27)

Proceeding from the above statements we arrive at the equations for X ,:

X,(F}./F,) X, (FynfF,)
F m m n m m_ n — _X o .
f n mgn ln_lm ; ln_im n='n

(3.28)

In the case of the symplectic group o'f =, in the case of the pseudoorthogonal
group o' = —a.

5. To determine the dependence of F, on the coordinates (&,#) calculations
identical to those in Paragraph 3 of this section should be carried out. As a result,
we get a generalization of formula (3.16):

JE,=¥En ) I F) (3.29)

(the function P° satisfies the involution Y% ¢ = ¢#¥°~ 1), The matrix «, as in
Paragraph 3, can be easily computed.



Classical Spinor Models 33

6. The function X is calculated in the simplest case when there are only two
poles at the points A, and 1, Such a solution for the case of orthogonal
(pseudoorthogonal) and symplectic groups is simple and corresponds to a single-
soliton solution.

i) Unitary Group. In the case of a unitary group there is a solution with only one
pole [5,7]:

Ao—
X A=I-
(& mA)=1-—"—
where F(&,n)= Y’O(é, 7,20)F°, F° is an arbitrary constant N x K matrix
(det(F°TF®)#0). In order to find X with poles at conjugate points the system of
matrix Egs. (3.9), (3.10) should be solved:

° F(F*F)‘ 1Rt (3.30)

:
G+Y ¢'G =—Xuo
0Ty
1
F-X FFT =Yol.
Ao—4o

The answer has the form
X =[F(lg— o) — 2o — 2)> G(G'G) ™ "]
FTF 414y —Zo2(G1G) " tat] 1

- - (3.31)
Y=[G(Ag—Ag)+ Ao —Ao|* F(FTF)™ o]
[GTG+|Ag—Ao|? M (FTF) " 1a] L.
The final expression for X in this case has the form
2o
X&mA=I+—— /10 [F+ (A —40) G(G'G) ™ 1a']
[FTF+|dg— 2o ?(G'G) tat] L FT
Ao— . -
— =[G +(Ag =2 F(F'F)™'a]
A—2
[G'G+|Ay—Apl* el (FTF) " 1a] ™16, (3.32)

where F(&, 1)=&, A0)F°, G(&,n)=P°(n,A,)G°; F° and G° are arbitrary
constant Nx K, and Nx K, matrices; here F°'G°=0 and det(G°'G®) =0,
det (FOF0) %0,

ii) In the case of real groups Eq. (3.28)

X T F* #F=Xu

JF+
’10 0

has the solution
X =(Ag— o) [IF —(g— o) FF(F* gF)~1&]
[F FF +1ho— Lol (@' (F* FF) " ta)r] 7 1.
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Using (3.26), (3.24) we write out the formula for

X(&,n,4) = 1+’1 °

[fF (ko —Zo) FE(FU g F) ™' a]
: [F*fF+Mo-xol (@' (F' #F)~ o))" F!

Y00 [ $F g~ To) S SF) 1 a]
0

C [F FF +|Ag— T2l (F' #F) " 1o] "1 ¥ (3.33)

When o=0, formula (3.33) is very much simplified

X=I+ '1 ]F(FT FF)1Ft - '1 /F(F" FF)"LFY (3.34)

The matrix F(¢, 17)= I e, ) FF °, where F° is the constant N x K matrix,
and in this case

FO" gF0=0, det(F' #F)+0.

4. The Nambu, Jona-Lasinio, Vaks, Larkin Model

1. Let us consider a model of fields on the U(N) group. The compatibility problem
for this model has the form (1.31), (1.32), in this case the matrices U, and V; are
antihermitian. Suppose the rank of these matrices is unity, then to within a trivial
transformation their Jordan form can be given by

1
Vy=-U%=i S 4.1)
0
Let us designate the first column of the matrix ¢, (2.1) as ¢*=(¢,),,, the first

column of the matrix v, (2.2) as y*=(p,),,. It follows from (2.3), (2.4) that they
satisfy the equations

i
Oy =S¥ ; p*of
. (4.2)
1
Oy =5 0" L o™y’
B

coinciding with the equations of model (1). The remaining columns ¢, and v,
(k=2, ... N) satisfy the system of linear Dirac equations:

i
a"¢1gk= Ewugw*ﬂq)lpk

i
Oy, = §¢“§<p*"w13k
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in an external field and impose no restrictions on ¢* and w* Thus, when the
functions X, Y’l , are known and satisfy Egs. (1.31), (1.32), and (1.22), respectively,
then it is easy to find the solution of Egs. (3.2) using formulae (2.1) and (1.2).

2. In order to find the first order vacuum solution of Egs. (4.2) one should
solve the system (1.22), in which U9/(A—1) and V/(A+ 1) serve as U° and V°,
respectively. The solution has the form of (1.23), where

UO
Y0 =exp (/1 51) 4.3)
%Ozexp(;/iZ). (4.4)

The first order vacuum solution of system (4.2) is determined from formulae (2.1),
(2.2), where X,=X,=1, and has the form:

(") = (exp (%17), 0, ...,0) (T (exp (% 5), 0, ...,0). 4.5)

Let us construct a more general solution of Egs.(4.2) and show that it
corresponds to the second order vacuum. The solution will be sought for as
follows:

@*=A,exp (iu“ +iv§7)
=B exp( u,g an) (0
“ 2 2
Insert (4.6) into (4.2) and determine the relation between the constants:
v,A, =B, BfA,
/ 4.7)

uuBa=AaZA;‘; B,
B

In order for the vacuum solution not to increase in amplitude it is necessary to
assume v, and u, to be real. Then it follows from (4.7) that the quantity 40 =arg4,
—argB, is independent of .

Expressing u, and v, through the sets {B,} and {4,} and inserting them into
(4.6) we get a solutlon more general than (4.5). The matrices UO and V° have the
form

~ . i i
U?w = —iA,Aj exp (5 (u, —up) &+ 5 (v,— U;;)’?)
. . (4.8)
~ . i i
Vf«;x =iB,Bj} exp (f (u,—up) s+ 3 (v,— vﬂ)n)

and depend on ¢ and 5. The gauge transformation P°=g®° with the function

Gup= 5aﬁexp( uf+ v )
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transforms system (1.31), (1.32) [with U%/(4—1) and V2/(A+ 1) are taken as U, and
V,], into a system with constant coefficients:

A A*
005y = — Su, 88— L7 % 49)
a'ldsaﬂ 2 Uy ati Z a y (DO (410)

A+1
Let us denote:

i i
(U )aﬁ - Euaéaﬁ » (V()O)a[? == 5 vaaaﬂ

(U(l))aﬂ": —iAd, A%, (Vlo)aﬂ=iBaB;.

The matrices constructed in such a way using relations (4.7) are the general
solution of Egs. (1.18), (1.19) to within a constant (independent of &,7) gauge
rotation.

It is obvious that the solution of Egs. (4.9), (4.10) can be found in a factorized
form (1.23):

o= 0 (&P (n,4) (4.11)

the matrix functions cbft< E(f, A) and dﬁgw(n, A) can be chosen unitary (for real 1) and
commutative.

The procedure of finding such functions is a standard problem in the theory of
linear differential equations with constant coefficients. Below we shall assume that
the explicit form of the functions (4.11) is known.

3. In the previous section a scheme of constructing the function for a chiral
field on a unitary group has been described. The explicit form of the functions ¥°
and ¥, makes it possible to construct the function X and to write out the N
soliton solution (2.1), (2.2) for Eq. (1). Here we present the simplest “single-soliton”
solution. It should be recalled that it is defined by giving the complex parameter A,
and the projection operator P, (P5=P,, P}=P,) in an N-dimensional unitary
space. The projection operator can be easily written in a factorized form:

P, =X0(X5Xo)—1X3>

where X, is a rectangular matrix with N lines and with K columns, i.e., the matrix
made up of k-linearly-independent complex vectors.
Suppose PO(&,4, A) is the vacuum wave function (of the first or second order).
Now we write the projection operator depending on & and #:
P(&n)=XX"X)" X",
where

=Y N Ag) X, -
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Now

Q= (H—}L 4o

o= pie.n) #0r—1)
et 4.12)
w1=(1 1T P(é n))‘f"’(é 1).

The first columns of the matrices ¢, and v, as has been shown above, satisfy the
system of Egs. (1).

5. The Gross-Neveu Model

We consider now a model of fields on the real symplectic group Sp(2N,R). U,, V;
are the matrices of the form

A B
[C _ Atrjl ’ (5 1)

where A, B, C are the real N x N matrices, and B"=B, C"=C.

As in the previous case it is required that the rank of the matrices U, and V,
should be unity. This can be achieved by putting U =77, and for these matrlces
A=C=0:

B= o (5.2)
0

Consider the matrices ¢, y; (2.1), (2.2). They can be chosen belonging to the
symplectic group

==V, el t=—J0t S, (5.3)

0 —I\. . . . . .
where ¢ = <I 0) 1sa 2N x 2N matrix. As in the previous section, we are mainly

interested in the first column of the matrices y, and ¢, since it is on its elements
[taking into account (5.3)] that the non-linear Egs. (2.3), (2.4) arise
N

5,,401“,1_%1%“1 pz (UH,; Pisina 1P1,,+N)1§01,3,1)

N
5§lp1“ % Z (plﬁ,lwlp-yxv,l—(plﬁ—fN,!lplﬁ,I).

a=1,2,...,2N, the index should be understood mod2N.
The fields ¢, and y, , are a set of 2N real fields. Two sets of N complex
fields can be introduced

V=3, iy, ) 0= =30, tig,,, . ). (5.5)

It can be verified by direct calculation that they satisfy the equations of the Gross-
Neveu model (2).
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The remaining columns satisfy the linear Dirac differential equations and do
not impose any restrictions on the first column (cf. Paragraph 4).

2. Since the matrices U9 and V) are nilpotent, the corresponding first order
vacuum solution has no physical sense.

As in the previous section the vacuum solution is obtained directly from the
system of Egs. (2). It has the form:

wa=ﬂ;/2Aaei0¢’ (pa=ﬁa— I/ZAaeiG“, (56)
where

N
=—B,00E—0of; 'n+07, 00=% Z Aa%'

A,, B, are arbitrary real constants. The matrices U9 and V2 for such a solution
have the form

. A B T4 B
Ui Ci -Aﬂ’ W=les —ay
A= —A,A(BS)Y?sinb; cosb,
By;;=— A, A, B;)"'? sinf;sin 6,
Cyy= iAj(ﬁiﬂj)”z cosf;cos0;
A= A{BB)~"*sinb;cosb,

B,,;=A,A(B)™"*cosb; cosb,
C A(B.B)~/?sin6;sind,;.

The gauge transformation ¥°=g@°, with the symplectic matrix g of the following
form

2ij=“A

g 7 . )..=(8,,)..=9..sinf.
921 Y22 (g1z)ij——(921)ij——5ijcos ;

transforms the system (1.31), (1.32), in which U, and V;, are taken as U? and V7,
into the system:

0,0°=W,9°, (5.9)
8,9° = W,° (5.10)
with constant coefficients

Wl = 0 Wi (wl)ijzaoﬁiéij
Wi, O (w2)ij= _O-Oﬁi—léij

(W1)ij~ - Uoﬁi‘sij_AiAj(ﬁiﬁj)l/zu“ 1)

(W,);; =008 10— A,ABB) ™ */(A+1).
According to their construction the matrices W, and W, commute at all values of
the spectral parameter 4, therefore the solution of problem (5.9), (5.10) can be
represented in the form (1.23), the matrices ®9(¢, 1) and d3(n, 1) being symplectic
and commutative.

b
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Below we assume the linear differential equations with constant coefficients
(5.9), (5.10) to be solved and the functions ®P(&, 2), D3(n, 1), and, consequently,
PO(&, 1, A) to be known.

3. The problem of calculating soliton solutions, as is shown in Sect. 3, is
reduced to the solution of a system of linear algebraic equations. Using the
function X (3.33) calculated in this Section we can write a soliton solution of the
Gross-Neveu model:

Y= ,;Z Xop(&n, g (Em) (6 D +i®) (&, 1)),
5 Y

0 = L Xy~ gy Em) (@2, 1= D=i93 (1, ~1).
sV

6. The Spinor Field Connected with the Orthogonal Group

1. Suppose G is the orthogonal group O(N), and, consequently, U, and V] are real
skew-symmetric matrices. Consider now the simplest case of matrices with lowest
(non-zero) rank. In this case up to trivial transformations U and V have the form

0.--0 -1
—U=V0= 0 . (6.1)
1 0----0
The matrices ¢, and p, (2.1), (2.2) can be chosen to belong to the orthogonal

group (¥ =¢7 ', Y=y ). The non-linear Eqs. (2.3), (2.4) arises for the first and
last columns of the matrices @,y :

anq’la,l: “%%(V’lulJP1,,,N_1P1%N1P1,,,1)(P15,1

0y P1 = —%zp‘;(wlu,1w1,i,N—w1“,Nw1,3,l)¢1,j,N

gy, = —%;«01“,1%,,,—<p1¢,th1,,,1)w1,,,, ¢

Oy, = —%%(col“,lwl,g,,v—colz,Ncol,,,,)wl,,,N
or passing to complex fields

V=3, Fivy, ), 0' =30, Fioy, ) (6.3)
we get a system

104" = ;ffpw”, i0,p"= };,fulpco”, (6.4)
where

=0 Ryl gh=00* — ¥l (6.5)

In accordance with (2.5) the action for this system has the form:

S={dtdx [g (ip**0.p* +ip**0,0%) ~%a§ Fap fﬂza} , (6.6)

where #%; is the matrix of “color currents”.
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2. Here, as well as in the unitary group, the first order solution can be taken as
a vacuum solution.
It has the representation (1.24), where

costy , 0 - sin@l,zT
o - 1. 0
¥ ,= S S, 6.7)
—sinf; , - 0. . -cosb, , |
__ S g,
where 0, = — T 0,= FESE are constants.

The second-order vacuum solution can be obtained by the method described in
Sect. 1 and illustrated in Sects. 4 and 5 on the example of the models (1) and (2).
3. The soliton solution on the background of the first-order vacuum for system
(6.4) can be easily written down, using the function X (3.33) calculated in Sect. 3:

9= T Xl =D, (1, = 1) +1%5, 1, = 1)

6.8
o= S XME D (D4 (61, (©%)
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