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Introduction

In this paper, we study the following problem: Given a one-parameter family of
continuous maps of the interval [0, 1] into itself, how many of these maps show
aperiodic behaviour? For a particular family of maps containing a quadratic part
we are able to show that for many values of the parameter (in fact for a set of
positive Lebesgue measure) these maps do present aperiodic behaviour.

The parameter in question will be called J (and is always supposed to be small,
positive) and the particular family of functions is defined by

2x if 0<x=<i-0
Jox)=12(1—x) if 146<x=1
1-0—(x—%)?%6 if xeE,,

where E; = {x||x—3| <8}, so the graph of f; is

x=1-8-(x-Y,)%/6

X—=2(1-x)

0 , 1
Fig. 1. The function f; for 6=0.15
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We shall analyze in great detail the successive iterates x, = f;(3) of the point 3, and
in particular the derivative D, ;= f;"|.= ;. 12 We shall show that for a large set of
9, D, s diverges exponentially, ie. D, 4/>2"". This implies together with the fact
that f7(%) does not return with a strict period to E, that f; has sensitive dependence
with respect to initial conditions in the sense of Guckenheimer. Namely, this says
that there is an ¢ >0 such that for every x there is at least one (in fact very many) y
arbitrarily close to x such that |f}(x)— f3(y)| > ¢ for some n>0. We thus conclude
that the “aperiodic” behaviour, observed numerically for many such maps, is a
quite “common” thing. Such a result has been predicted, based on experimental
evidence by several authors, cf. in particular Shaw [1] and Lorenz [2].

Fix a small § >0. We analyze the function f = f;. Let x=3+p,_ 0, with |u;_ ]|
< 1. Define n; to be the smallest value of n for which |f"(x)—%| <4, and let dy,
= f"(x)—3. We shall establish a relation between g, y;,_, and n. From the
definition of f we have

f)=1-61+p_))
FH)=20(1+p ).
We claim that for 2<n=<n, f"(x) can be written in the form
['(x)=2A+02"" (1 +pi_,)d,
with 0= 11 and AeZ.
(Proof. The assertion is true for n=2. If it is true for f*, then with y= f"(x),

224)+02"(1+p7 )0, if 0=Sy=3-9

n+1 —
S {2—4A~0'2"(1+ui2_1)5, if $+0=<y<I1,

so that the assertion follows for n+1.) Let
fr(x)=24;+02" "1+ u? )
=3+ud.
This also reads
S[2 (14 )~ o] =0 524,

or
B;
o= : 0.1
2" +vE )+, ©.1)
where B;=g;(5 —24;)e N—1 (since § >0, and |v,| <1, B; must be positive) and v;=
—o,u;. We are interested in f"(3), so that we set p,=v,=0, ie.

B,

0= —g—. 0.2
o= 1 + v ( )
Note. Given B,e N—1 ¢, and A4, are defined uniquely by
A;=n+1,0,=—1 if B;=2n+1+1,
2 (0.3)

A=—-n, ;=+1 if Bi=2n+%.
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These numbers (they are all functions of d), are related to the derivative by

k

n "y )-2m, 0.4)

f;s x=fs(1/2)]

where k is defined by

k+1
n;<m< Zl n;,
=

M=

j=1
k
and m'=m— ) n, (The factor |v,| is absent if m'=0.) Since we are interested in
1

large derlvatlszes, we must be especially careful when a v; is near 0. In particular, if
v;=0 for j>0, we are in the presence of a stable periodic orbit for the value of  in
question, and we discard this value of 9, together with a small interval around it.
The problem is to choose these intervals sufficiently small so that their union has a
relatively small volume, and sufficiently large so that D, ; diverges exponentially.
The main content of this paper is that these two conditions are compatible. In the
study of the excluded volume, we learn a lot about the “typical” behaviour of an
aperiodic map, and this section is written in a self contained fashion so that the
general ideas of the proof should be more easily grasped.

As an example of what is not a “typical” 4, we show that there is an
uncountable set of & for which f"(3)¢E; for all n>0, [so that [f™(f(3))|=2"], but
that this set of § has Lebesgue measure zero. Namely let 27971 <§ <277 be such
that the binary representation of 24§ does not have g— 2 consecutive zeros, nor
g —2 consecutive “1”’s. Then

@) —=24,2275—4

and since A4,eZ, we have from the condition on 8, that the fractional part of f*(3)
—1 cannot have more than g—1 consecutive zeros, hence |f"(3)—3|>4. On the
other hand, the measure of the set of 6 without g—2 consecutive zeros or 1’s in
their binary representation is zero since it is a subset of the numbers without

“digit” 0...0 and ...l in their 277 2_adic representation.
q- e q—2 .
As a first step in describing the excluded volume, we standardize the

description of orbits and introduce “resonances” (values of p for which v, is very
near to zero) and “blocked positions” (the returns to E; after p in which the
images of 7 and of x=2%+y,0 have not yet separated).

Definitions

L. The set IP of primitive resonances depends on 6 through the numbers n,, B, v,. It is
defined by

P={peNln,,,=n, and B,, =B, and v)<2 "A"*I*(p)},
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where 4=|logd|,

0
L= [ @+j73.
j=n+1
(We shall see in Lemma 1.4 below that the condition B,,;=B, above is
redundant.) The intuitive meaning of a resonance is that it is a return to E; which is
a) very near to v,=0 and b) sufficiently near to v, =0 so that the trajectory to the
next return takes the same number of steps (n,,;=n,) and the same left-right
sequence with respect to the maximum (B, ; =B,). Note that 1 <L(n)<3.3.

II. When pelP, then v, is near v,=0 and this means that we have almost
encountered a stable periodic orbit. We shall now devise a test which finds the first
g > p for which the orbits starting from v, and from v, separate again (provided we
exclude a “small” set of §). By definition, the test T(p, p) is true (passes). Then T(p, q)
is recursively defined by

T(p,q) is true if [n,,,=n,_,,, and B, =B,_ .,
and T(p,q—1) is true and signv,=signv,_,
and [if geIP then

Vgl >1v,—,l(1 = 2(g—p) )11

This test says first of all that the two orbits are considered to be blocked if they
return simultaneously to E; and have the same left-right sequence. Furthermore if
g is a resonance, then |v,| must not be much smaller than [v,_ |. We shall see in
Lemma 4.1 below that, vaguely speaking, v,~v,_, when ¢ is a blocked position.

III. We now define the resonance set IP".
1) Let p, be the smallest element of IP. Then p, is the smallest element of P".
2) If pe P, define #(p) as the smallest integer after p for which T(p, ) does not
hold, i.e.

t(p)=1inf{s|s >pand T(p, s) is not true}.
Then the element of P’ following after p is f(p), where
f(p)=inf{s|seP and s=t(p)}.

As an example:

Po (po) Pa 1p,) N
| | blocked 1 ] blocked |
| | 1 !
Po | t(po)
] ]
| 1
| |
{ |
p1 t(pl)
| |
! |
Po> P1» P2EP, p2=f(po) t(p2)

Pos P2, p2=f(p0)~
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IV. The function g counts the number of “unblocked” positions between t(p) and
f(p). The formal definition is

qit)=t if t<p,,
qt)=q(t—1) if p=Zt<t(p) for some pelP’,
qgt)=qt—1)+1 if t(p)<t<f(p) for some pelP'.

The function r counts the number of pelP

r(s)=card{p|pelP,p<s}+1.

V. We next describe five situations in which we exclude a set of §. Recall that all
the quantities B;, n,, ... are functions of ¢ and that 4=|logd|.
For every je N, we define

1! ={5|0=5<6, and |v)<4~* and

(j=1orj=<p, or {p)<j=< f(p) for some peP)}, j=1,2,....

Of course, one of the problems will be to describe this exclusion as a function of 8.
The idea of excluding I} is to avoid for the unblocked positions and for je P’ and
for j=t(p), when pe P’ that |v;| gets too small. The larger the number of returns
already encountered, the smaller we choose the excluded volume. No exclusion
is necessary when j is blocked, because we shall derive from v;~v;_, [where
p<j<t(p)] that |v;| does not become too small, since |v;_ | does not.

For every je N, we define

I}={5|0§5§50 and 1—|v|<471%
(if j=1 replace —15 by —3)},j=1,2,....

This exclusion has the purpose of avoiding v; (for all j) to be too near to + 1. The
problem with which this is connected is the following. We would like to argue that
whenn,,#n,_,,, thenv, —v, _ is not too small. What may happen, however, is
that after n,_,, , steps the image of 3+ du, =4 is near to the boundary of E, while
f"a7r (3 +0p,) just very nearly “misses” E;. In fact, the exclusion I} handles the
case n,,,>n,_,., while the exclusion I} below deals with the case when n,_, ,
<n,_,, and prevents f"a*'(3+0pu,)¢E, from approaching E, too much from the

outside.
I)={6]0<6<6, and In<n,,,, 3B

compatible with n, §, Jee {1, — 1}, such that
I6(1+v:+e27" ) —B27" 1 <4627"471373Y,j=0,1,2, ...

Here, a number B is called compatible with n, ¢, if there is an orbit of f; for which

the pair B, n actually occurs in a first return. The precise definition is:
A number Be N—1 is compatible with n, § if there is an x, 1 <x <2, such that
1) |x0—B2 """ <2715,

2) For all ' <n and all Be N—%,
Ixé_B/z—n’+1[;2—n’+15'
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We shall now define a further set of 6 which will be excluded. Let Z be the sum
over the blocked indices <s, i.e. over

{jlj < s and for some pelP, p<j=<t(p)—1}. 0.5)

Then we define
= {5|O_.<=5 =J, and

Vb5 M+ 1 >100004(s) logZA}, s=1,2,....
j

This set excludes in essence those ¢ for which a non zero fraction of positions is
blocked or for which long returns are blocked. We shall see on p. 123, that on the
complement of I#, one has

s<q(s)(1+¢)
for some small ¢ > 0. Therefore a “typical” orbit is unblocked most of the time. We
shall also derive, in Lemma 4.4, the inequality

Hp)-p=p,

which says that if a resonance occurs after p returns, a “typical” orbit is not
blocked for more than p returns. On the other hand, it seems to us that if we single
out those § for which only a finite number of blocked positions occurs, or for
which only blocked sequences of bounded length occur, then the Lebesgue
measure of these J is zero.

Our last exclusion is the set I? (which has in fact zero Lebesgue measure among
those J remaining after the other exclusions). It is essentially

= {6(0§5 <d,and sSNC{m;};,_, , , where

m=Y ni}, s=1,2,...,

k=1

see Sect. 7 for a precise definition. This excludes those & for which f*(3)eE; for
k=1,2,..., ie. for which the image of the maximum periodically returns to E;.

Results

Define now J(5,)={6|0<6 <4, and 6¢I, s=0,1,2, ..., 1=1,2,3,4,5}. Our results
are

Theorem A. For §,>0 sufficiently small, the Lebesgue measure of J(J,) is at least
do(1—1/log(dg ).

Theorem B. For 6,> 0 sufficiently small and for all 6€ J(,) one has

(1) If(sm'x=f6(1/2),>2"/7

(2)  f; is topologically conjugate to a piecewise linear map g,:x—t(5—|x—3[), with

> /2.
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(3) f; is sensitive to initial conditions : i.e. for every xe[0, 1] and small ¢ >0 there is
in every neighborhood U of x a y and a number n such that |f{(x)— f7()| >e.

The proofs of these facts take up the remainder of our paper and we outline
here the main steps.

In Sect. 1, we warm up with some easy observations, among which the most
farreaching is that some minimum time is required between two returns to Ej;
namely

Mi>5718. (0.6)

In Sect. 2, we prepare the tools for the comparison of v, with v,_, when g is
blocked. The main observations are:
If g¢1P then

vyl =27 "a*12472, 0.7)

(i.e. non-resonant v’s are not arbitrary small). Also, as long as q is blocked, due to
the basic identity (0.1),

a-1 1 [v,—v, _ |
V2= _ Da =Yooyl 08)
g j=1;II-1 25 |yl + vy ) 2t

(i.e. v,, which is resonant, can be estimated through the square root of [v,—v _ |).
In Sect. 3, we bound the quotient
g—1
n Ivj/vj—pINA_4>
Jj=p+t1
and we give bounds on [v,—v,_ |, using the exclusions. This serves in Sect. 4 to
bound recursively the derivative as follows. From the calculations on p. 117 we
see that a quantity of interest is

m

R,= [T Ivj2m+.

j=1
Assume we have already bounded R,,_,. Then the main result is that, essentially
due to (0.8),

~ -8 n 1/2 _ 1/2
Rypy-1~47 R, (2" Ry 1) Wiy = Vil

ie. we have absorbed the potentially dangerous factor v, into the last two factors.
Using now the bounds on [v,—v,_ | established in Sect. 3, we get in Sect. 5 the
exponential divergence of R,, i.e. Theorem B 1.

In Sect. 6 we bound the excluded volumes. The idea is to measure how fast a
resonant interval is traversed when ¢ varies (very little). The relevant bound shows
that

dv,

dv| 2UR,
s

45

and then we use the formula

o~ fav,|g-

card[v; (v,)]
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to bound the integrals. We need a relatively fine decomposition of 0<d <d, in
order to get the desired bound of Theorem A.

In Sect. 7, we use the exclusion of I to reduce the discussion to the analysis
done by Guckenheimer [3], and this yields Theorem B2 and B3. In particular
there is a homeomorphism 4 (which is not necessarily absolutely continuous) such
that hof,=g, oh.

It seems to us that most of the preceding results carry over without much
change to similar families of functions which are suitable small perturbations of
the special family we have chosen. Note that our particular choice has been
motivated through the following consideration: the often studied maps
x+>4sx(1—x), with s=1-n262/4 are conjugated [through x=sin?(ny/2)] to
y+(2/m)arcsin(s'/? sin(ny)) = f;(y). Then f; is similar to f; in that for small

" 2
whG+y)=1-6— 3y2+(9(52).

Note. Similar results have been announced by Jakobson.

I. Preliminary Remarks
Lemma 1.1. We have

2> 1/(89).
k
Proof. By definition, with j>1, and N,= Y n,
1=1

If37 -3 —31<d,
so that
i) 21-25
and
f;ij_;+k+1(é_)§2k+15, k>0,
as long as 26 <4 —4. For §, sufficiently small, this implies

2nj+152_‘1‘_-.

Lemma 1.2. We have
0/4<B,/2"=¢.

Proof. From
6=B, /2" 1+v)),

we deduce
d(l+v,/2m~Y=B,/2m" 1.

The assertion follows from Lemma 1.1.
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Lemma 1.3. If j> 1, then with
Q=B2"/(B,2"),

one has 3<Q<3.

Proof. By (0.1), (0.2),

0= T4y v 2t
L+v, 217
The assertion follows, if J,, is sufficiently small, from Lemma 1.1.

We next present two simple consequences of the absence of a resonance
condition.

Lemma 1.4. If n,, ,=n,,, and B, ¥ B, ,, for some s,t 20, then
W2 —VEZ 21,
(Here, vo=0.)
Proof. By Eq. (0.1), we have with n=n,_, =n,, |,
Ve =V} =(Bey;—Bis /(02 = (Veu 1 —vee )2" 1
By Lemma 1.1, we find
2—v2| 2276 =32 2275,
Lemma 1.5. If n,, ,>n,, ,, then
Vs g #2702 D) 21
(Here, vy=0.)
Proof. From Eq. (0.1), we have
Svyyy =By, — 2 (14+vH)0,

ie.,
V1 72707 =)0 =B, = 2"+ 7 (1 +v])9.

Since B,, , is compatible with ng, ;,d, we have for all n<ng, , with x=1+v2,
[2""1x6—B,, |29,

but this implies the assertion of the lemma.

Lemma 1.6. For 6¢I} and ¢>0 one has for §,<0(e),
q(s)Zs(1—e)2r(s)(1—e).

Proof. From 6¢1% we have

Zb’s n;,, =10000¢(s)log, 4.
J

But, by Lemma 1.1, n;, , > 4/2. Therefore
Zb,s nj+1>(A/2)(5*‘I(S))'
J
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Thus
As/2<q(s)(4/2+100001og, 4),

and the assertion follows for sufficiently small 6.

II. First Consequences

In this section, we collect several estimates which are relatively straightforward
consequences of the definitions; in particular, we defer the recursive bounds to a
later section.

We define

J4={5|0<6=<6, and
O¢ls, j=0,..,5; k=1,..,4}.

Lemma 2.1'. Let 6>0.
(1) If pelP’ then

V§=(V1_Vp+ 1)/2np+1_1-
(2) If pelP’ and p<s<t(p) then

lvs_vs—p|=‘vs+1_vs—-p+ 1'/(2ns+1—l(lvsl+|vs—p'))‘
(3) If pelP’ and p<s<t(p) then

s—1

Lt T e

j=p+1
Proof. (1)is an immediate consequence of n,, ; =n, and B, , =B, and of (0.1). To
prove (2), we note that p<s<t(p) implies n,,,=n._ ., and B, ;=B _ ..
Therefore (0.1) implies
Vo= Ve, =i —vi v +v,_ )
= —'(Vs+ 17 Vs—p+ 1)21 Tt l/(vs + vs—p) ’

and the assertion (2) follows now because p <s <t(p) implies v,v,_ ,>0. (3) follows
now by induction.

Lemma 2.2. Given § >0, let peIP’ and p<p+j<t(p) and jeP. Then either

vy dZ vl +3777), 21)
or

va+j—vjl§%j‘zivjl. (2.2)
Proof. Suppose the contrary of (2.1). If p+jelP, then due to the condition

1:,-2

T(p,p+)), vyl >yl (1 —3)
This and the contrary of (2.1) imply (2.2) since v, ;v;>0. If p+j¢ P, then since

N,ij+1=Nj.1=n;and B, ., =B, ,=B,, we must have

v, |>27"2A72L(p+j).

p+j

1 Empty products are defined to be equal to 1
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Since L(j)=1 for all j=0 we find

bl Lp4) [ & )
b L) g(kﬂl(”k )

But [] (1+k™3)=<exp(j~?/2), so that

k=j+1
[y > I (1= 4577

Therefore one of the two alternatives must hold in this case, too.

Lemma 2.3. If 6eJ; and q¢P, then
Y2227,

where A=|logd|.

Proof. We distinguish four cases.

Case 1. n,;=n, and B, =B,. By the definition of IP, since g¢IP, we have
Vi>2TmATE,

and the assertion is evident.

Case 2. n,;=n; and B_, , # B,. Then the assertion follows from Lemma 1.4, and
from v, =0.

Case 3. n,,,<n;. By Lemma 1.5, we have
Ve g +20 1712121,
Assume now vz <27"a*1*1473 Then we have for e=1 or for e=—1,
Vs Hel =473,
But this implies, by (0.1),
5=B,, /2" et 4),
with |4]£2473, so that
(6= B, , /2" +2)| £24736/@ 1~ 1),

and since 2"+ > (5~ '), by Lemma 1.1, this is in contradiction with 56-]: (since
5¢13). This implies (1) in this case.

Case 4. n,, ,>n,. Applying again Lemma 1.5, we have
vy —2m " 221,

Assume now vz <27"a*1*1473 Then we have, as before
v, +el<a73,

and this is in contradiction with deJj (since 6¢17). Hence the assertion follows in
this case.
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Lemma 2.4. Let deJ;, let pe P’ and q=p+j<t(p). Then
pri/VAZAT

Proof. By Lemma 2.1 (2), we have

|v

|v

p+i Vil _ Vpsjo 1= Vel <427 My |72
vl 28 Ty (v I ) T ’

jtp
If p+j¢IP and if we assume
|vp+j| <A-3
b
|Vj|
then (since n,, ;. =n;,,), we have
2y 2> 20, 2482 42,

by Lemma 2.3, since p+j¢IP and 6eJ*, .. Hence it follows

ptj

Pod 5y o=Vl oy gp-20 47,
|Vj| |Vj|

(2.3)

which is in contradiction with (2.3). If p+jeIP, since p+j=+t(p), the test implies

Ve i/viI>1=3j73)>473.
Lemma 2.5. If 5eJ?, then for s>0,

vz A7,

Proof. By induction on s. The lemma is obvious for s=1 by 5¢I]. Assume the
bound for all s’ <s. If s is such that for some pe P’ we have t(p) <s < f(p) (or s=p,),
then the bound follows from d¢1!. In the opposite case, we use Lemma 2.4 and

obtain
|VSI g |Vs/Vs_p| Ivs—pl g 4- 3'A —46-p) B

and the bound follows.

We now start the estimates which show that at the point #(p), the values v,
and v, _, are “well separated”. This is of course due to the exclusions we have
performed. Note however, that our procedure of “waiting” with the exclusion up
to t(p) instead of excluding the resonance condition at p altogether is crucial in

obtaining a sufficiently good bound on the volume of the excluded ds.

Lemma 2.6. Given p and s>p let 6eJ;_,, | be such that peP’ and s=1(p).

(1) If vyv,_, <0 then

|Vs— vs—p' >A—4(s—p) .

() If ng,y=n,_,.yand B, *+B,_,,, and vyv,_,>0 then

2 2 —ns+1—1
[vg —ve_p 227" 706,
B) If ngy >n,_ .y and vy, ,>0 then

2 2 —ng- —15(s—p+1)
[vg —ve_|227 " 214 Pl
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4 If ngyy<ng_ .y and vy _ >0 then
V2 V2 |22 g TS n =3,
) If ngyy=n,_ . and Bo, =B _ ., and vy,_,>0 then s=f(p) and
[vy—v,_ |Z47367P,
Proof. We distinguish five causes for which the test T(p, s) can fail.
Case 1. vy,_,<0. Then

vy = Ve =V vy 21,

and the assertion follows from Lemma 2.5.

Case 2. vyv_,

V2—v2 |Z2 151,

>0and n,, ;=n yand Bo, #+B,_,, ;. By Lemma 1.4, we have

s—p+
Case 3. vy,_,>0and n,,>n._,,,. By Lemma 1.5, we have

|vs—p+ L +2ns—p+l“ 1(v32_p_ vSZ)l ,Z 1.
Assume the contrary of the conclusion of (3). Then we must have
L=y ppq l<a™ 136770,

and this contradicts 6¢17_,, ;.
Case 4. vyv,_,>0and n.., <n,_,,,. From Lemma 1.5, we have
[y g +2 17102 =02 )21,
Assume again the contrary of the conclusion of (4). We find again
L=y, |S471367D=3, 2.4

From the Eq. (0.1), we derive, with e=+1 or —1

€ B,
6(1+v3_p+ 2,,“1_1) = 2ns+21 —6(vZ—vZ))

_ (Vs+1—3)_ B,
ons+1=1 _2ns+1—1

+A,

and from (2.4), we find [4| £46 27"+ 14~ 5¢~P73 and this contradicts e J;_, (i.e.
3¢ )

Vs—p>0and n,,=n_ ., and B, =B, ;. Since s=1(p) the test
T(p, s) must have failed. The only remaining possibility for this to occur is that se IP
(actually in IP’) and

vl vy, l(1=3(—p)7?).

Therefore [v,—v,_,|Z3Iv,_ |(s—p)~3, and the assertion follows from
Lemma 2.5. This completes the proof of the lemma.

Case 5. vy
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Corollary 2.7. Given p and s>p, let e Ji_ p+1 be such that pe P’ and s=t(p). Then

_ —ng —15(s—p+1)
[Vy— Ve | =27 14 .

N

This is just the worst possible combined bound of Lemma 2.6.
Jj
Note. A direct calculation, using Eq. (0.1), and 6¢ ( ) I? shows that
s=0

|fm(%)—%|—5>5A-15(j+1)

for m between return j and return j+ 1.

III. Comparison of Blocked Sequences

In this section, we bound the quotient

s—p—1

H |vp+j/vj|

j=1

from below, where peIP’ and s =t(p). This bound will express the fact that as long

p
as the orbits of x, = f"4(3), where N; = 21 n;, and of 7 are very near to each other,
i=
. d it 4
the derivatives E( M), where N+1= ) n; taken at x=f(x,) and at x= f 3)
j=p+1
should be about equal. In fact, due to the conditions T(.,.), and by the chain rule,

we find

d s—p—1
(™ =420t [ v, 20,
dx x=f(xp) j=1
while
d s—p—1
—(M =+2m ] v2mer
dx x=1(1/2) j=1

Now our interest in |v,, ;/v;| should become obvious from n; ,=n;, . ,(j=0,
1,...,s—p—1). We next prepare the necessary tools to perform bounds when s
satisfies p<s=t(p) for some pelP'.

Define t,=p and denote by ¢,, ..., t,, the elements of {ne N|n—pelP and p<n
<s} in ascending order. In the next two lemmas we only consider values of ¢
which produce this set.

Lemma 3.1. Let 6eJ?

n—p Let lsatisfy t,_, <l<t, for some k, 1 <k<m. Then
[v,— Vl—pl
vil

where A=|logd|.

§ Ivtk_ Vtk—p12A45(tk_l_ 1)/3,
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Proof. By Lemma 2.1 (2) we have

v, —v,_ v, —v, _ | %1 _ _
il P el T e,y
'Vz-p| |Vl—p| j=1

te—1
=V = Vil (2m_p+l_1v12—p)_1 ) Il—-[l-l (znj_P“—lle—pD_l .
j=

Since [—p¢ P, Lemma 2.3 implies,
(@rerei v )T <244,

while j— p¢P implies through Lemma 2.3 and 1.1,
@iy, )T S2(86) 2 42 <81,

for sufficiently small d,>0. This proves the assertion.
We next want to include the terms ¢, in our product.

Lemma 3.2. Let 6eJ2, let pe P’ and p<s<t(p). Then

ﬁ vil

A~
I=p+1 |Vz—p|

I

Proof. With t, defined as before, we have

ﬁ bl _ ['”]{ [V, | "‘11[1 Ivll} 15[ il

I=p+1 Ivl—pl k=1 |vtk~pll=tk—1+1 lvl—pl 1=t +1 I"z—pl

From vv,_,>0 and from Lemma 3.1, we have for ¢,_, <I<t,

v Vi—V,_
v 21—” 1=yl 21—y, —v, _ |24%601=13, (3.1)
Vil Vil e
I-p l—p
Therefore,
te—1 'vll

> ] (1-c5m),

0
I=tr_1+1 |Vz—p| n=0

where C=|v, —v, _ | 24*, Since 1 —x>exp(—2x) for 0=<x <1, the above product
is bounded below by exp(—2C(1 —5'%)~1) provided C<4.

We are now going to prove C <31. If £,€ P, then

C=24%(|v, | +1v,, — ) =07,
by the definition of IP (note ¢, — pe P, too), and by Lemma 1.1. If t,¢IP, we have by
Lemma 2.1 (2),

[S2/(2"* v, |),
so that by the definition of IP and by Lemma 2.3, C<6'/3 in this case.

,vtk— vtk—p



130 P. Collet and J.-P. Eckmann

Summarizing, we have found so far

v Kt [v)l

I

X, ="
|Vtk p|l=tk_1+1|vl—pl
vl

Ve

2 e exp(— 5440y, — vy, (32)

We now use Lemma 2.2. If the first alternative of its conclusion holds, then |v, |
> v, -l and

v, _1+| ~ Vo pl
|vtk—P| I tk PI
and since t,—pelP we have |v, _,|7'>4%3.3712"/2 Therefore, by Lemma 1.1,

X, Z (14, = v, 16 P) (1 =544, —v,,_,)

=1, (3.3)

2

where the last inequality follows by simple arithmetic from 54*<§~ /3, If the
second alternative of Lemma 2.2 holds, then

h"k—'kl’l) (1 SA4|V:k_Vzk—p|)

Itk pI

X,z(1-

gl—lvtk—v,k_pl(| |+5A )
lk p

21—3(t—p) 2 (1 +54%y, _ D).
Since t,—peP, |v, _,|<d'?, by Lemma 1.1, and hence
sz1_%(tk_p)_2‘

We next analyze the product

s

Y= ] W,

I=tm+1

We distinguish two cases.

Case 1. s<t(p)—1. As before, we find, of (3.3), [Lemma 3.1 holds for ¢, , =t(p)],

tp)—2
4 —1-1)/3
Y= ]_[ (1 Vi) = Veipy - pl 24 5t V3)

I=tm+
> [] (1-Co"9)24,
n=1

because C <3 for sufficiently small §,, with

451/6
C=1viipy = Vigp-p|24%07°.

Case 2. s=1t(p)—1, and s—p¢P. We use Lemma 2.4. By multiplying the result for
the case s=t(p)—2 with the bound for [v,, _/v,,-,-1 We get immediately
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Y =4473. [Note that if s=#(p)— 1 and s —pe P then s=t,, by the definition of ¢,,
so that we have exhausted all cases.]

We complete now the proof of Lemma 3.2 by multiplying the bounds for X,
and Y. We get

five 1

1—~(t -p)7?).

||:|§

This product is bounded below by
[T(1-3Yz3e ¥ 25.

All this combined yields the desired bound.

Corollary 3.3. Let 5eJ? let peP’ and p<s<t(p). Then
0 2|y

— =L >AT4.
I=p+1 ‘V1|+|Vz—p|

Proof. Let A, B>0 and suppose |4 — B|/B<e¢<1. Then we have 24/(4A+ B)>1—g¢,
as one can easily check. Using this inequality with 4=|v,and B=|v,_ |, we find by
Lemma 3.1, with the notation introduced there,

te—1 ] ll

W= Zexp(—44* v, — v, ),

=1 V]
cf. the derivation of Eq. (3.2). If ¢, +¢(p), then we bound
We= W2 v | +1v,, - D)
as follows. If the first alternative of Lemma 2.2 holds, then
Wi zexp(—=54*v, = v, - D-(L+ v, —v, /2y, D)
21,
as in Eq. (3.3). If the second alternative of Lemma 2.2 holds, then
W;;éeXp(—M“!v —Vy—pl)
=1y =V pl/ 1V D)
z1- %( —p) (1 +54%y, ).

The result follows as in the proof of Lemma 3.1.

Corollary 3.4. Let 5eJ? let pelP, and p<s<i(p). Then
: 2|Vl—p|
I=p+1 IV1|+|Vz—p|

for some universal constant C.

<c,
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Proof. Let A, B>0 and suppose |4 — B|/B <& <3. Then we have 2B/(A+ B)<1+z¢,
as one can easily check. Using A=|v,|, B=|v,_ |, we find by Lemma 3.1,

te—1 zlvl——pl
I=t)-1+1 |v1| + |vl—p|
cf. Eq. (3.2). The factors
o 2|y

r— tk—p,
L=
Ve, |+

W= <exp(d4*y, —v, ),

o

| k
tk—p

are bounded, using Lemma 2.2. If the first alternative holds, then

V’[/éé[}’[/k(1_%'_‘ﬁ___vt_k;1’_') <1,
Vel
while in the second case
W= V"Vk(1 + —'”’k‘”‘k'vl)
Vel

S1+(G—p) 2 G+84%y, )

<1+3(t—p)~ 2.
We may now multiply over k, when s <t(p), as in the proof of Lemma 3.2, and the

result follows in all cases [even for s=t(p)], since 2|v, _ |/(|Iv, |+v, -, )=<2,ifd,is
sufficiently small.

IV. Bounds on the Derivative

We now derive recursive bounds on the quantity
m
Rm= l—l Ivjlznﬁrl B
i=1

 which is directly related to the derivative, cf. p. 117
Proposition 4.1. The following relations hold, when deJ2:
A7 *R R

p ' n—p>

if p<n<t(p) for some pel?’,
A—BRP_ 1R1/2 2n1/2

tp)—p—1

n
Wiy = Vi =l TT 2%+,
I1=t(p)

if n=1t(p) for some pelP'.

v

Proof. The claim in the first case is equivalent to

n n
IT Ivjza=* T1 v,
j=p+1 j=pt+1

Since n<t(p), this inequality is an immediate consequence of Lemma 3.2.
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Let now n=t(p). In this case, the potentially small, resonant factor v, will
disappear in the estimate and will be absorbed in the factor RiS_ 1 Vi = Vip)- A2
The effects of the resonance at p are thus partially gone when the estimation has
proceed to t(p). From the definition of R,,,, we get

Hp)

Rip =R, 27", [T 2%y
j=p+1
1/2 tp)—p-1 1/2+ i
SR et Vo) Vil Il 2T vy
ot 2mm= D2 j=1 2yl DY

DMpy+ 1 Ivt(p)l ,

by Lemma 2.1. By Corollary 3.3, this is bounded below by

|1/2 tp)—p—1

[V =V
np+1) t(p) t(p)—p 1/29np 4 j+1—np+j/2
RpzR, 2% = T 1_[1 [Vpo I 52010
j=
n ~4
2wty 1A
_ 1/2 _ 1/2 4—4
- Rp- 1 Rt(p)—p— 1 Ivt(p) vt(p)—pI 4
j2+1/2 P pt 12
n n,
.Qm |vt(p)12 t(p) + 1 l—Il |Vp+j/vjl /
j=
12 . 1/2 4-8
ZR,_ Ry p— 1 Vipy = Ve -1 4

2
22y 21,

by Lemma 3.2. This proves the proposition, even in the case n=t(p)— 1, which is
an obvious consequence of what we have done for n=1t(p).
We next show that when e JZ, then R, is large.

Proposition 4.2. Let ne N, let 6eJ?* and let pe P’ be such that p<n< f(p). Then

Rngé—llg"q(n)/lo. 4.1)
If, in addition, one has t(p)=<n< f(p), or n=t(p)— 1= f(p)—1, then
R, =5 1/8-ami8 4.2)

If n<p,, then (4.2) holds.

Proof. Note 6 ~1/8>§~1/10 50 that (4.2) is a better bound than (4.1). First note that
q(n)>0 when n>0 since from éeJ$ and Lemma 2.5, p,>1. We prove first the
result for all n<p,. Then we proceed by induction on n=p,, by assuming the
result for all R; when j<n.

Case of n<p,. In this case, we use the equation

n

R,= [T Ivj2m=s.

n
j=1
Since deJ;;, we have 2+ 1|y | > 47 %, by Lemma 2.5, and hence by Lemma 1.1, we
find R,>6""3. This proves the assertion.
We claim now that there remain four cases for n.



134 P. Collet and J.-P. Eckmann

Case 1. p<n<t(p).

Case 2. t(p)<n< f(p).

Case 3. n=t(p)—1=f(p)—1>p.
Case 4. n=t(p)—1=f(p)—1=p.

That this is a complete set of possibilities is checked by inspection. We now
discuss the four cases which occur in the inductive part of the proof.

Case 1. For some pelP’, one has p<n<t(p). From Proposition 4.1, we have
R,ZA7*R,R,_,
=A4"*R,_,2"|vR,_,
> A"4§~UB—alp=1)/8, 5= an=p)/10
2" |
Since g(n)=q(p—1), we find
ané—I/S—q(n)/S
2"y, |47%).
By Lemma 1.1, and by e J (which follows from 6eJ}}), we find from Lemma 2.5,
2"y, | 267147 47/8.
Therefore we find
Rﬂ;é—l/B—q(n)/lO
'(5—12—341—4)
,(5~q(n)/40A~4p)_

For sufficiently small §,, the last two factors are not smaller than 1, since g(n) = g(p)
>p(1—¢) by Lemma 1.6. This proves the assertion in Case 1.

Case 2. t(p)=n< f(p) for some pelP’. This is the crucial case, in which we avoid a
factor A~ *? which would occur had we not eliminated v, in Proposition 4.1. We
use the result obtained there:

-8 1/2 ny/2 _ 1/2
RngA Rp—lRt(p)—p—l2 |vt(p) vt(p)—pl

n
. n |Vl|2m+l'
I1=t(p)
By Lemma 1.1, 2.3 and since deJZ, we find |[v,[2"+*1 26713, and 22257113, so
that
-8 -1/3p1/2 _ 12
R"gA Rp—l(S Rt(p)-p—l |vt(p) vt(p)~p|
LOnupy+1/25 = n=up)/3 =2

Next we use Corollary 2.7 (note deJ;; implies deJy,,

— —nypy+1 A=~ 15@(p)—p+1)
Vi) = Vi) pl 227"+ 14 :
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Hence we find

2 —(n—
R, ngf 1Rz1(§)—p— 15 (n—t(p)+1)/3
. A* 15@¢(p)—p—1)—~40 .
We now substitute the recursive bounds and get
R >4~ 1/8-alp—1)i85~qttp)—p—1)/20
LT+ 13 4~ 15@(p)—p—1)—40
Since n—t(p)+1>0, we have §~ " 'P*TV3>5-1/6-(-tw)+1)/8 By definition,
q(p—1)+n—t(p)+ 1=q(n). Therefore, we find
R >§~ 1/8-a0)8
_(571/6A—40)
_(5‘q(t(p)'p— 1)/40A —-15@(p)—p— 1)) .
Since 6¢I}, Lemma 1.6 holds and we can thus make each of the last two factors
greater than one, by choosing J, sufficiently small.
Case 3. n=t(p)—1=f(p)— 1> p. Hence, we have t(p)—p—1>0, and thus
R, =Ry /(2" )
>A78R,_(RYZ__ omy

Wp)-p—1 W)~ Vip)-p
> =85 1/8=alp=1)/85-1/16q(t(r) ~p—1)/20

|1/2

Q2= nepy+1/2 4~ 8(t(p)—p—1) .

In the last inequality, we have used Corollary 2.7 and t(p)—p+1<n, since p> 1.
We also have g(n)=q(t(p)—1)=q(p—1). Since #(p)=f(p), we find n,, , =n, and
thus

Rn >0 1/8 —q(n)/8

.(5—1/16A~8)

(67 20@) == 1)/20 4= 8G(p)~p= 1) (4.3)
Applying again the argument of Case 1, the last two factors in (4.3) are bounded
below by 1, and the assertion is proved in this case.

Case 4. n=t(p)—1=f(p)—1=p. We have
R,=R,_ |v|2"*
=R, 2MmFDRly vy |12, 4.4)
by Lemma 2.1 (3), and since n,,, ; =n,. Since p+1= f(p)eIP, we must have [v, ]

<6'* by Lemma 1.1. On the other hand, seJ{ CJ+ implies |»,|>4~* Hence we
find |v,, ; —v,|"/>>473. Substituting into (4.4), we get

R 25—1/8—11(17— b/8on1/2 =3 ,
and since ¢(n)=q(p)=q(p—1) we have
R 2571/8—q(n)/8.(5—1/3A—3).

This last factor is larger than 1 and thus the assertion follows.
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Corollary 4.3. Let ne N, let 6eJ2. Then
R,,g&' 1/8—n/1 1(n+ 1)20 .
This follows at once from Proposition 4.2 and from Lemma 1.6.

Lemma 4.4. Let n>0 and 6eJ?. Let peP’ and p<n and t(p)—p—1=<n. Then
tp)—p=p.
Proof. The proof assumes Proposition 4.2 for n. From Lemma 2.1, we have

t(p)—1

2_ 1-n; —1 Vi = Ve -5l
vp= [T 27"l +lv- D7 -1
j=pt+1
tp)—p—1 tp)—1
2|vj—p|

<4 I 27mwwml™ 11
j=1

j=p+1 le|+le—,;| .
By Corollary 3.4, this is bounded by
V2<4CR,,

tp)—p—1"
By Proposition 4.2 for s=t(p)—p— 1, this is bounded by
V;Z; §45q(s)/10C§5s/11 ,
by Lemma 1.6. On the other hand, since pe IP, and 6¢1I}, we have v2 = 47°%2, 5o that
we find

—8plogd = —(t(p)—p—1)4/11,
ie. t(p)—p=<p88logd/A<p, since p>1 and 88logd/4<3.

V. Exponential Divergence

The purpose of this section is to improve the bounds on R| so as to show that the
characteristic exponent of the trajectory of the critical point is strictly positive.

Consider the functions n(Jd), By(d) and ¢/0)=signv/(d). It is clear from their
definition that these are piecewise constant functions of 6. On the other hand,
fixing n, B, ¢; for i=1, ..., s defines a set K({n;, B;,0;};<,) of values of ¢ for which
n{d)=n,, B{d)=B, and ¢,(0)=g,, for i=1,...,s. We next cast the classification of
the n,, B;, and g, into a more convenient form. Namely, we fix first the set IP’ and
the set {t(p)|peP'}. More precisely, given J, define

2(0)={neN|n<s and
(n<p, or t(p)<n<f(p) for some pelP)},
[the “unblocked” indices],
T(6)={pe N|pe”" and «(p)<f(p) and «p)=s},
[those peIP’ for which t(p)<f(p)],
T,(0)={pe NipeP" and «p)=f(p)<s},
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[those pe P’ for which t(p)=f(p)],
0,0)={ne ]NIp§n§s<t(p) for some pelP'},

[the last few indices, if they are “blocked”].
All possible sets 2, T, T., and Q, can be obtained as follows.
1) Fix [20, and O<p,<p, <...<p,=s.
2) Fix t; (=t(p,) satisfying
p;j<t;<p;., for j=0,...,I-1 and t,>p,.
3) Now
T ={Pj|tj<pj+1»j<l}u{plltlés} >
T, ={pjlt;=p;+ ,i<l},
0.=0, if s=¢,
={p,p,+1,...s}, if s<t,
2,={neNin=<s and
(n<py or t;<n<p;,, for some j<I or n>1)}.
As in the case of the K({n;, B;, ¢}, <), we define K(Z, T,, T;, Q,) to be the set of those

¢ for which Q (0) = Q, etc. The next two lemmas adapt the factor R,_, optimally to
the form of the sets X, T, T}, Q..

s Le Lo

Lemma 5.1. If 6eJ{nK({n, B, 0;};<s+ )NK(Z, T, T}, Q,), then
R,z ] 2%+

JjeZs
-8 2p1/2 1/2
T A7P22RG Wiy = Vil 2 272 )
peTs
-8 /2p1/2 1/2
- [] 472 R o Vi) = Vel
peTs
‘R(Q), (5.1)
where
RQY=1, if Q,=8,

S—p1

R(Q)=A4"%2"]y, |- Hl 2%
j=
i Q={pppi+1>--»5} and szp,.

Proof. We use extensively Proposition 4.1. Assume the result for R,_, where
pelP’. We are going to prove it recursively for all s when p <s< f(p). The case s <p,
then completes the inductive proof.

Case 1. p=s<t(p). Then we use first the inequality R, =R, _; R(Q,). If p equals t(p’)
for some pelP’, then X=X _,=% ., T=T,_,=T, T=T,_,0{p}
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=T, u{p'}. We then write
p—1
R,_,=R,- [] 2|

! j=pr+1
=10 1111 -
JjeZs qeTs qeTyp

p—-1
"y
’ l_l 2 ’“|Vj|
J=Pp

ST . I1 - 11

jels qeTs qeTy:

-8p1/2
-4 Rt(éf’)— P 1|Vt(p’) - Vt(p’)—-p’l H2gmiz (5.2)

by an obvious variant of the second statement of Proposition 4.1. The formula
(5.1) follows now in this case. If p=*tp’), Vp'elP’, then X =2, |, T.=T,_,,
T;=T,_,, and the assertion follows immediately from R, ZR,_;R(Q)).

Case 2. t(p)<s<f(p). [The case s=t(p)=f(p) has been handled in Case 1.] Then

we write

N

Ry=Ry,_; [ 2"+, (5.3)

’ i=t(p)
We have now
=X, uitp)+1,...s},
L=T,uip}, T=T,.
We now write

n/2 4—-8pl/2 _ 1/2
Ripy-1 2Ry 12" AR () s iy = Vil - 5.4

If p#t(p’) we are finished, since then T,=7,_, and T,=T,_,, and the assertion
follows from (5.3) and (5.4). If, on the other hand, p=1¢(p’) for some p'e ', then we
have T,=T,_,u{p'} and use instead of (5.1) the formula (5.2) for R,_, to arrive at
the result.

Case 3. s<p,. This case is trivial. This completes the proof of Lemma 5.1.
We next improve Lemma 5.1 as follows.

Corollary 5.2. If
dedinK({n, B, 0ii<s+ )NKEZ, T, 17,0,

then
Rz [] 27+
jeZs
. —89n1/2R1/2 _ 1/29n¢py+1
[T 4752 RE. s =il 227 |
pels
. —89n JAp1/4
114' 2% R Gy - p-1
pels

“R(Q,).
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Proof. In view of Lemma 5.1, we only have to show that for peIP’ and t(p)=f(p),

De(p) + 1/4R11(/4 12>1. (5.5)

»-p- 11V~ Vitw) -
If (p)=p+1 then we argue as in Case 4 of Proposition 4.2. So assume now
t(p)>p+ 1. From Corollary 4.3, we find

1/4 -1/32—@(p)—p—1)/100
Rt(p)—p—lzé .

The inequality (5.5) will thus follow from

Wiy = Vil V2 200+ 114 2 A= =P 1), (5.6)

Note that this is an improvement over Lemma 2.6. We distinguish four cases. Let
V=Yiy H= Vi) —pr
Case 1. wv<0. Then |v—y|>|u|> 4~ * PP by Lemma 2.5.
Case 2. |v/u|=2, and uv>0. Then |v— pu| =|u| and the result (5.6) follows as before.
Case 3. |v/u| <%, and puv>0. Then |v—p|=3|u| and the result (5.6) follows.
Case 4. 3<|v/ul<2 and pv>0. Since t(p)=f(p)eIP we have n,, ,,=n, and
b <4-27 2472,
and hence |y <327 "2, Thus
e
v+ |l

The assertion is now immediate from Lemma 2.6 and from n,, , , =n,.
Define now the number N; of “unblocked” steps,

Ng= Z N1t Z Mpy+1 -

JjeZs peTs

|1/2.

1/2
ni/41,2 _ 42
) 22 |vt(p) Vi) - p

Then we have the more convenient reformulation.
Corollary 5.3. If
deJinK({n, B, 0i}izs+ 1)NKQE, T, T3, Q)
then
R = 2N46
Proof. 1f je 2, we have by Lemma 2.3,
oy ‘Iva >0m+1/2 =25 gnieal3

If pe T, then we want to extract a factor 2" +*/# from the corresponding term in

Corollary 5.2. This term is
~89m/2p1/2 _
A7P2 Ry - o= 11Vito) = V- o)

EA_szmlthl(g—p- 1A_S(t(p)_p_I]A_242n‘(")“/4,

|1/22nt(p)+1lv

(by the bound given at the end of the proof)

n 4
22 t(p)+ 1/ s
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[by Proposition 4.2, if #(p) — p > 1 (using again g(s) >s(1 —¢)), and by Lemma 1.1, if
tp)—p=1].

Finally, the term R(Q,) is bounded below by 4~ %5, using Proposition 4.2, and
deJ?. From card (Z,UT)=gq(s)=s(1 —¢) and from 2"/1°°°> 4, we find

R > n 2nj+1/3—'lj+1/100_ l—[ 2"t(p)+1/5'—nt(p)+1/100
s=
jels peTs
10 card(Zsu T, —4s
A s s)A ,

and the assertion follows. We still have to provide the promised bound. We want
to show [with g=t(p)]
X =, v, V2 v 23 2 48 p D),
Proof. Since pe T,, we have #(p)¢P. We distinguish three cases.
Case 1. |v,|<[v,_,|/2. Then
s Z IV, 2214,
so that X >(2"a*+/?|v [)*2/42 A~ 7 since q¢P, by Lemma 2.3.

|v

Case 2. |v,|>|v,_,|/2 and v,v,_,>0. Then
X =23 232 U2y Vv, + v, DY
z%!vg _ V‘?_p‘uz 2nq+ 1/2 2nq+ 1/4'Vq|1/2 .
The assertion follows now from g¢P, by Lemma 2.3 and from Lemma 2.6 (2)—(4).

Case 3. |v|>|v,_,l/2 and v,v,_,<O0. Then |v,—v,_ |>|v | and we proceed as in
Case 1. The proof of Corollary 5.3 is complete.

Theorem 5.4. For ée () Ji=J, we have
n=0

(1) zn!RsIVs+1|§2(n1+NS)/7’
2 R22%7,
where Ny= ) n;, .
ji=1

Proof. Fix eJ_, and assume first, for some peP’, that t(p) <s = f(p), or that s <p,,.
From Corollary 5.3, we have

N N7+ —1)4/900
ngz /622 /7 +(a(s)— 1) 4/ ,

since n;=[log,4|/22 A/3. We rewrite this, using Lemma 2.5, as
2”1Rs|"s+ 1| z 2(n1 +Ng)/7 +Ss/72—Ss/7 +(q(s)—1)4/900
. 2n1/7A —4(s+1) ,

where S,=N,— N.. But

S;= Zb,s iy
J
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cf. Eq. (0.5). The assertion (1) of the theorem will thus follow if
0=<n,/7T—S/7+(g(s)—1)4/900 — (log, 4)4(s + 1)

but this is obvious from §¢I# and from Lemma 1.6. The assertion (2) is a simpler
variant and follows in the same way.

VI. The Excluded Volume

In order to bound the excluded volume, we need a lower bound on the “speed”
with which a resonant interval is traversed when ¢ is varied. This is done in the first
part of this section. These bounds are done recursively, i.e. when we bound the
excluded volume at “level” s, i.e. [J%_ ,\J?|, we shall use deJ?_ . Let I, =J%_ \J%if
s>0. The volumes I? will be bounded in Sect. 7.

UL

s21

Theorem 6.1. The excluded volume,

UL

s=1

, satisfies

é60A(;1 >

where A,=[logdl.
We first give a general bound on the derivative of 6 with respect to v,

Proposition 6.2. Let s>1 and 6eJ?_,. Then

dé < 46 '

dv = |R,_ ;2™

Note that since by Proposition 4.2, R,_, is large, we see that [d§/dv | is small, i.e.
|dv/dé| is large. In other terms, the resonant interval is crossed rapidly.

Proof. We prove recursively a slightly better bound, namely

dé 39 1205 (54 120
b STR_ exp (5 j; G+1) . 6.1)

This obviously implies the bound of the proposition provided J, is sufficiently
small. Since B, =562 "' +v,)" !, we find

dé
_;1—v—=5(2n1_1+v1)_1’ (62)
1
so that
02 ML —dvi <3627, (6.3)
1

This implies (6.1) for s=1. Assume now (6.1) for all i<s— 1, for some s=2. From
the basic equation

Y B2™ v
L+vi + 2= S,,<1+ ,,_),
10 ons=1 B,2" 21
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we find
dv,_, 1 B dv, \1
s I 1— s 1 . .
dv, 2%y, ( B 2%y, dvs_1> ©4)
Using now the proposition for j=s—1, and Eq. (6.3), we get
dv, _[dé[ﬁ‘1< 45 2m
dv,_,| dv,_,||dv,|] T2™R_, &

Substituting into (6.4), we get, using Lemma 1.3,

dvs— 1
dv,

where X =12.2 ™R 1, |v,_,|~*. By Corollary 4.3, and from éeJ?_, we find
Xs§951/8+(s—2)/11A4S§%51/20(S+ 1)—20,
and thus (1—-X )~ <exp(6*/2°/(s+1)*°). The Eq. (6.1) follows now for j=s from

do do
dv| |dv,_,

<2y, (=X,

st_ 1
dv,

by induction. This completes the proof.
We now describe in more detail the order of the exclusions. Let K, = {2797}
<8=271}. Define V{, to be the volume

VE.= [} do, k=1,...,4.

delfn(@d- (\Jiu...uI¥~ 1)K,
The sum of these volumes is evidently an upper bound on the volume excluded at
step s, when €K . We shall exclude the volumes in the order I}, I, I3, If, I, I3, ...,
ie., when we bound the volume of I}, we assume deJ¢_ |, when we bound IZ, we
assume deJ*_ \I! etc. The estimates will, however, be presented in a different
order, namely first all V] , in great detail. The cases V7, and V7, V;? are then

s, q° s, q°
variants and we present their treatment later.

Case of V!,
We want to express the excluded volume through a precise version of

do

dv,
We have already seen in Proposition 6.2 how to bound dd/dv,. We now bound the
cardinality of v.*(v,), i.e. the number of solutions to the equation v()=x, when
xe(—1,1).

Recall the definition of the sets K({n;, B;, ¢,}, <) of p. 136. We note the following.

fdé=x [dv, card(v; 1(vy).

Lemma 6.3. The equation v (0)=x, with xeR has at most 2° solutions ¢ in

K({n; B;, 0;}: <)

Proof. Rewrite the basic equation relating v; to v;_, as
Vj=BjT—2nJ_1(1+vf—1)y

with t=1/5. Substituting recursively this expression, we see that for fixed n, B,,

i=1,..,s, the function v, is a polynomial of degree 2° in 7. The assertion follows.
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Next we observe that in the exclusion of I, for fixed s we exclude |[v|<A™%
(but only if s is not “blocked”). So this leads to a bound 24~ for the variation of v
From Proposition 6.2, Lemma 6.3, and the bound on the variation of v, we have

do
V;}q S Zq 2° Sup* z—‘ 2445
ny, By, 0,iSs 4 s
166
< q 25 sup* A —43] ,
B ”i,BuZthigs ép 2ans—-1

where sup* is the supremum over the set J;_; nK,nK({n;, B;, 0;};< )N {dls=<p, or
Ipe P’ such that (p)<s< f(p)}, and Y is only over those B; compatible with n,
and some oeK,.

We proceed now to the correct description of the exclusion. The following
observations are very crucial. The numbers B;,,, n;.,, j=0, 1,..,s—1 are
uniquely determined by the B, ;, n;,, with ieX _,UT,_,;U{0}. Similarly, by the
condition T(.,.) in the definition of #(p), the ¢;,, j=0, 1,...,s—1, are uniquely
determined by the ¢, ,, with ie X _,UT,_,UT,_,U{0}. Therefore, we may write
the precise version of the previous estimate as

VaaS ) Dy )

Qs-1,Ts-1,Ts— 1,251 Bi+1,m41 . Quet
ieSs—1UTs-10{0}ieZs—1UTs-1UTs-10U{0}

166
-2°sup* AT 6.6
supt | e } (6.6)
where sup* extends over Ji_ ,nKnK(Z,_{, T,_,, T,_;, O, )nK({n, B,

0:}i<s)P{0ls=<p, or IpelP’ such that t(p)<s= f(p)}. Substituting the bound of
Corollary 5.2, we have

1 —4q q
vsowre ¥ >
Qs-1,Ts~1,Ts-1,25-1 Bi+ 1,41
ie¥s—1uTs-1U{0}

Z sup* 28— n1
1

. Q1+1
ie¥s-1UTs-1UTs- 1U{0}

( n 2—n,+1|vj|—1)

jeZs-1

- 2p-—1/2 —1/29— -1
( n A%l Rt(p)/—p—1|vt(p)_vt(p)—p| 22 Mmﬂlvt(l’)I )
peTs-1
( l;[ 482_"MH'/4RJP§/—4,,-1>A_4SR(QS—1)_1- (6.7)
pels-1

Lemma 6.4. For those & which occur in V!, one has R(Q,_{)=1.
Proof. In order to be able to estimate R(Q,_,), we consider four cases.
Case 1. s=t(p)=f(p')>p'— 1. Then we have

R(Q, )=4"*2"]y,IR

s—p' —1
|vs_ Vs—p'|1/2

—4
=4 2”‘Rs-p/-1—“2<7:—W

s—p'—1
[T 2072 (v, |+ v ™12,
j=1

Pt
by Lemma 2.1. By Corollary 3.3,

s—p'—1 21/2 s—p'—1

H A—4 1—[ |le~1/2'

j=1 (le'+j|+|VjD1/2 - j=1
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Therefore,
s—p'—1

RQ- )z a7 2" y=ve ("R, yo [] 27702712
=1

247822y —v,_ ['PRIZ, .

We now apply Corollary 2.7 and notice that n,, ,=n, since t(p')=f(p)=s.
Therefore we deduce the bound

R(Qs- l)g A _SA T8l 1)Izsll—zp' -1
We now use Corollary 4.3 and Lemma 1.1 to obtain the estimate

R(Qs— 1) ;5— 1/16—(s—p' — 1)/22A —8(s—p'+1)

é o~ 1/16 % 1.

Case 2. t(p')<s= f(p'). We have in this case s—1=t(p’), therefore Q._, =0 and
R(Q,-,)=1.
Case 3. s=t(p')=+ f(p'). As in Case 1, we have

R(Q,_ )= A~ 82m 2y —v,_ |Y2RYZ, .
We have

P SA™H<ATHTITE< AT Y,

by Lemma 2.5. Therefore

ve— Vs—p'l =z(1-4 ‘4)|vs_p,( =>4 —4(s—pt1)

From this we deduce using Proposition 4.2, that

R(Q,_)=A785~ 13§~ (=L g=26=p* 1) > |

4
tp)—p*

by the exclusion d¢1

Case 4. s=t(p')=f(p')=p’ +1. In this case we use |v, —v|> 47> and proceed as in
Case 3. This completes the proof of the lemma.
Hence we now have

1 g g —4s-10
VoS 0()2 ) ) q
Qs-1,Ts-1,Ts-1,%s~1 Bi+1,ni+1
ieXs— 1uTs—1U{0}

Z sup* 2s)—m
Qi+1 o
ie¥s-1UTs-10Ts- 1L{0}

( l_[ 2—n,+1lvjl—-1)_( l_I A82—mi250e)—p—1)/22

JjeZs-1 peTs—y

(tp)—p)~ 10|V,(p) — vt(p)—pl —1/2 |vt(p)|_ 1= newy+ n)

. ( [ 27m4856@=-r=Di44(y(p) — )= 5) '

peTs-1
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We now apply Lemma A.3 and A.4 to sum over n,, B, and g,, i>1. From now on,
the variable 6 in sup* has disappeared, and we use the symbols § and 4 to denote
their worst possible values when 6K . We obtain, using Lemma 1.6 to absorb the
factor 2%,

Vslqé@(l)5 Z A~ HEs-1uTs—4f+ 1)
Qs—1,Ts-1,Ts-1,%5-1
'22|Es_1uTs-1uT;,. 1|+222|2s..1uTs_1|+2

. Zq .27 18-l
Biy,ny

.CITs-11 f18]Ts— 1|9 —ni1|Ts-11/2
n A~ 106w -p 5t —p— 1)/22(t(p)—p)_10
peTs-1

ABITs Q= Tamslnid T 50 == DI44(y(p) — p)=5

peTs—1
From Lemma 1.1 we deduce

V:qg@(l)é 2 Zq 2—n1,2—mlTs-1uT’s-1|/8

Qs-1,Ts-1,Ts-1,%s-1 By,m

AT T TS ] () p)

peTs-10Ts-1

We now reexpress the sum over the choicesof Q,_;, T,_,, T;_, X,_,, as explained
at the beginning of Section 5. We also use the estimate 6/1°°94 <1 in some cases
to eliminate some factors 4. In this way we end up with

LV sy X Yy

s>0 120 0<po<...<p; By,n

D 84~ t,—p) 2

Pj<tjSpj+1,j<l
t>pr
-1
. 1_[ (t._p.)_2,2—”1[Ts—IUTls—lllsA_ZlEs—ll
J J ‘
j=0

Note now that |X_,|=(po—1)+(p,—ty)+ ... +(p,—t,_,). Summing over the
t,—pj, and over p;—t;_, and over p,, we get with some constant K,

Z Vslqé Z Zq 2_n15A_12_ql/4K1+1.
s>0

1=Z0 By,ny
From the inequalities
279=B,2" P+ 22717 Wve(—1,1),
we deduce
oni—q+1 >B, >om-1-4-2
so that
Ya2Tmgmart

By, ny
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We may now sum over g and [ to get the statement of Theorem 6.1 in the case of
the V! .
= q

Bound on V7,

We have again a bound of the form of (6.7), but with the factor A~*S replaced by
A7 135 and with sup* extending over the set

de(J;- I\Isl)anmK(Zs— Lo T 1,00 1)
~K({n; B, Qi}igs)'

We again estimate R(Q,_;) from below. If Q,_, =0, we have R(Q,_,)=1. If
Q,_,+0, we have

R(Q,_ 1)gA““2’”val|R
for some p;, p;<s. From Lemma 1.1, Lemma 4.2, and from 56.]:1, we deduce

R(Q,_,)24 —pls(s_pl)zo .

s—pi—1°

Therefore we have from s=p,
ATIORQ,_ )T S(s—p) 0.

! » apart from a factor (s—p;) = if

The bound for ¥?, is now the same as that of V!
p,<s=t(p,). The end of the estimation follows as before.

Bound of V3,
In this case we eliminate those é for which
[6(1+vZ+e27" ) — B2+
§452—nA—15s—3EQ,
with ¢= + 1. Consider now the function

xX(v)=06(v) (L +v*+e27" 1),

We want to exclude an interval of radius ¢ around x=B/2" . To bound it, we first
compute

dx

dv
By Propositions 6.2 and 5.2, we have, since v=v; and since we assume already
deJi_ \I}UI?) in the inductive process,

26(v)v+ 3%(1 +v2 427,

ﬁ ,lv I—ls455(s—1)/11+1/8A5s~
dv| % T

Therefore
dx

o= (v )v 2+ 0(5110%).

s
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The corresponding v, intervals which are excluded through I? have therefore a
total length of at most

dvy
dx
<1624 15573y =1
<2-ng~10s,

2:2.0-

We next discuss the number of solutions of (1 +v? 42 ""1)= yeR. This is again a
polynomial equation. The function v, is a polynomial of degree 2° in 7=1/J. Hence
the whole equation is of degree 2-2°+1 in 7, ie. for every B, n, there are at most
2-2°+1 intervals of length 27”4~ 1% which will be excluded. The bound for V), is
therefore

A

w
IA
4

166
q 2s+2su * —2_"41_98}.
Ny, By, 01 ;l 5p zans—l

A&

s

We first perform the summation over B and n. Since B has to be compatible with n
and 6, we obtain

Y2 Y 2T o),
B,n n

by Lemma A.2. The estimate is now similar to that of V2.

Bound of V!,

We recall that Ny= ) n,,, I} is the set of those & for which
=1
Se=D s n;, 1 =10000(¢q(s)+1)log, 4. (6.8)
j

From the definition of I#, we deduce that there is an exclusion at t(p’), where p’ is
the largest element of IP’ less than s. We want to exclude those ¢ for which S, ,, is
so large that (6.8) is satisfied. We have to exclude at most a Vi Interval of length 2,
ie. v,,,€(—=1, +1). As before we give an estimate on the measure of the set of
those 6 for which a §,,, is too large in the preceding sense. The bound on V!, is
therefore:

lIA

Vi< Y® 28 sup¥ [ﬂ}

mBoo.  6:(6.8holds 2R
i<s and [s=t(p")
= for some p'elP’]

When s=t(p’), we have from Lemma 4.3 and Lemma 1.1,
R(Q,- 1)=R(Qt(p’)— D=4 —4om va’| Rs—p'— 1
g A —42n1A —4p’(s__p/)102Ns_p: ~1/22
;A _5P'(S_p’)105NS‘P’— 1/22 .
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From Corollary 5.2 we deduce
R,z [ 27y
JjeZs-1

—~8~n1/4 3/8 1/2 n
1;[ 4= R'(P)"p—llvt(p)_vt(p)—pl 'vt(p)lz e
pels—y

l—[ A—82n1/8R1/8

p)~p—1
peTs—1

ni/8 p1/8 —5p’ N10~HNs- pr -
2ER by —p—1 AP (s—p) 02 st
peTs-10Ts-1

From Theorem 5.4 (2), we deduce
Z /8 R1/8 > z INe(p)-p-1/56

tp)—p—1=
peTs- 10T peTs—1UTs—y

Note now that every blocked n;,, satisfies n;,;=n; ., ,. Since from the
hypothesis, we have §,,,/200=501log, 4(q(s)+ 1), we obtain

A—Sp’(t(p/)_pr)IOZN:(p/)—p/_1/22 H 2n1/8Rt1(/8 >Alss(t(p')—p')10.

p)—p—1=
pels-10Ts—

The end of the estimate is now as in the case of V2,

VII. Sensitive Dependence on Initial Conditions

In this section, we use the information obtained in Sect. 5 and the theory of
Guckenheimer to establish that f; has sensitivity with respect to initial conditions,
and that it is conjugate to a piecewise linear map, g, ; i.e. for some homeomorphism
h, we have he fy=g_oh.

Let J,= () J}, ie. the set of § retained so far, and we have shown in Sect. 6
k=0
that the Lebesgue measure of J is at least §,(1 —[logd,| ™ !). We shall exclude from

0
J a further set U I which we define below, and whose Lebesgue measure is

m=1
zero. Then the set J(J,) described in the introduction is J(d,)=J 0& U I> and has
m=1
measure 6,(1—[logd,| ™ 1), as claimed in Theorem A.

Theorem 7.1 If deJ,, f; has no stable periodic orbit.

" "\ 2
Proof. Assume f has a stable periodic orbit P. Since S(f;)= ;’, —%(%) <0, if
i 5 E
x#+%+4, we deduce from a result of [4] that x=3 is contained in the basin of
attraction of P. However this contradicts our preceding result |f"(f(2))|— o as
n—co. We define {a,b}, for a, beRR as [a,b] if a<b and [b,d] if b<a. We now

repeat some definitions of [3].

Definition. The fixed point p of £, n>1, is called central if f"(p)>1 and f; is a
homeomorphism on the interval J = {p, 3} .. The central point p is called restrictive
if (J)C{p,p'} ;, where p'=1—p. The point x =0 is not considered a central point.
We also repeat two results of Guckenheimer [3].
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Theorem 7.2. If f; has no stable periodic orbit, then f; has sensitivity to initial
conditions if f; does not have a restrictive central point. (Cf. Theorem B3.)

Theorem 7.3. If f; has no stable periodic orbit, and no restrictive central point, then
there is a 1e(2"/%, 2)] such that f;is topologically equivalent to the map g, defined by
g:(x)=1/2—lz—xl.

Proposition 7.4. The set of preimages of x=1% is dense in [0,1] if deJ .

Proof. By [3, Theorem 2.6], since f; has no stable periodic orbit by Theorem 7.1,
there is no non-trivial interval J on which fJ|; is a homeomorphism for all n.
Therefore

Ln) {x156)=23}

is dense in [0, 1].

We now define some subsets of J . For m, k, and gin N, ¢ =g, =[log,d, '], we
set

IS

,q,k={5linf(5o,2—q)§5>2'q'l and deJ, and
Jj 0

{m,2m,...,km}c{z "i} },

i=1 j=1

e o)
NI e i m<292,
5 k=1

maq =

{5|f; has a restrictive central point of period m} nJ, if m=292,

[ o0
5 _ 5 5 _ 5
L, = U L, and LI = U | R
q4=4q0

q4=4o0

We recall that J(6,)=J,\ () I3, and E;=(—6, 3+0), and E; its closure. We now
m=1

define two integers M and N which are functions of §. M is the unique integer such
that 2e[6+2¥ 715, 5+2M5); N is the smallest integer such that there is a point
ye[1—46,3) such that fN(y)=2 [notice that by symmetry, fN(1—y)=1].

Lemma 7.5

(1) Ifi-6=52M5<4, then N=M+1.

(2) Ifi<2M5<1-25, then N=M.

Proof. We first remark that as long as f(E;)nE;=0 and 1 <n<N, we have
[T E)=f113) 2 16]1=[2"6,2""16].

(1) In this case, we deduce
fUHYE)=[2M5,1—56—6 (& —2M5)2].
Therefore e fM*Y(E,), and we have N=M +1 since

ME)NE;=0 if n<M—1, and 1¢fM(E,).
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(2) In this case e fM(E,) and we have N =M since
E,nfXE)=0 if n<M.
Proposition 7.6. If 6€J(5,), then f; has no restrictive central point.

Proof. From the definition of J(d,) we only have to focus our attention on those
restrictive central points of period less than 6~ /2. We first show that there are no
restrictive central points in E;. Let x be such a restrictive central point of period n
and let K= {x, 1 —x},. We have f}(K)CK and since e K, e f;"*(K) for any r in N,
However, K CE; implies a contradiction with §¢I3.

We now concentrate on those restrictive central points which are outside Ej,
and we first show that their period is less than or equal to N. Let x¢ E; be periodic
with period n> N. Assume first x <3. By Lemma 7.5 there is a y such that x<y <3
and f¥(y)=3. This implies f;'(y)=0. However since S(f)<0 if x+3—6, +6,
f¥(y)=0 implies that y is a local minimum or a local maximum for f}, [4]. This
implies that f;' is not a homeomorphism on [x,3], therefore x cannot be central.
The case x> 73 is similar.

We shall now exclude the remaining possibility, namely a restrictive central
point of period less than or equal to N, p,¢E;. We have fy(3)=1-90, f*(2)=26,

T+ 1(3)=2"6 as long as f;'(3)¢E;. We now compute the position of the fixed point
p,>% of f which is the nearest to 3 for n < N. Notice that this is the only candidate
for a restrictive central point of period n< N. Since p,¢E;, f; can be replaced by the
broken linear transformation defined by

2x if 0=sx<i
g(x)= e 1
2l—-x) if i=x=l.

Let g, be the fixed point of g” which is the nearest to 3 and greater than 1. By a
direct computation, one obtains g,=3(1—2"")"1 If 2<n<M, we have

2—n—1

— 1
—qn_Z'

Thus p, cannot be central and restrictive in this case, cf. Fig. 2.

It is easy to exclude directly the occurrence of a restrictive central point of
period one or two. The only remaining possible periods for a restrictive central
pointare M and M +1if N=M +1, and M if N=M. We investigate the two cases
separately.

Case 1. N=M + 1. This case corresponds to Case 1 of Lemma 7.5. We have f¥(2)
=2M=15 <3, and [ 1(3)=2M5 <3. Since f;<g and f}*(3—9)=2"5 <%, we have
M(x)>gM(x) for xe E;. From this we have 3 <p,,<g,, and therefore p,,€ E;. But
we have seen that such points are not central restrictive if eJ(d,). However no
other fixed point of f} can be central, and so f; has no restrictive central fixed
point. We now investigate fM* 1. We have f;¥* 1(p,,) = f5(pyy) = 1 — 26 > p,, since p,,
belongs to E; Moreover fM*1(1) <1, therefore by continuity there is a solution y
of fM*!(x)=x such that p,,>x>3. This implies p,,, ,€E,, and as before p,,_ ,
cannot be central and restrictive.
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Q757
p,=d,
025 ' / S 075
E
g3
025l 520075

Fig. 2

Case 2. N=M. This case corresponds to Case 2 of Lemma 7.5. We have fM(3)
=2M-15¢E;. Consider the equation for v,

M1 +v?)=3.

This equation has a solution v with 0 <v<1 since
(1-20)"1<27 M5~ 1<2.

For this v we have

MG+ v0) =226+ = L¢ B,

Therefore
ML y5)=2M"15(1+v?)=1.
From this and the monotonicity of f}* on [3,5+vd], we deduce
pu€l3, 3+ VO] CE;.
As before, this implies that p,, is not central and restrictive.
Proposition 7.7. 01 I, has Lebesgue measure zero.
—

Proof. This will be an immediate consequence of the fact that every I has
Lebesgue measure zero. There are three cases.

Case 1. 27971 <6<inf(5,,27% and m<q—3, =4, In this case Lemma 1.1
implies that I} =0.
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Case 2. 27971<6<inf(6,,279), q—3<m<2%%, g=<q,. We shall prove that
AL )S0(1)27/8 2 1f 6e) . we define the numbers [, 1,, ...,1, by

m,q,k m,q,k
L
Y om=m-j for j=1,2,.. k.
i=1
From this we deduce that every n, is in this case less than 6~ /2. The bound on Z in
Lemma A.3 is now

Z S (g (log2y+2)27 4~ (1 — 202~ D)1

2(a+1)/2 2—a
n

+o) Y 2772

n=g—4
—4q/5
2798,

2-(a+1)

if «<3. Let W, be the volume of the set of those 6 in J_, for which 27471 <§
<279 and n;,n,, ..,n,<2@* V2 and v e(—1,1). We use again Corollary 5.2 and
bound R(Q,_ ;). We have R(Q,_,)= 4~ > from Lemma 6.4. We now bound W’ as
in the case of V2. We obtain

W5 < Z z Zq 2= ni§lZs-1l/5

S, =
120 0<po<...<p1<s Bjy,ny

1
)29 m|Ts-10Ts-1]/8
LT sl
pj J?Iléys-l-l,.l J=

<0(1)5°®.
Since AL, )< Y. W

k, ¢
4=4o

ML, ) S O(1)27mkaol10 < 0(1)27*

we have

if g, =[log,d; '] is sufficiently large. From I} = (L, ,, we have A(I)=0.
k

Case 3. 27971 <6 <inf(8,,27%) and m>29*(g<q,). Let
Ea/AZ(%_é/A,%‘I“S/A)-

We shall prove first that Se fj(E, ) for some n<34. As long as f}(E; ,)nE;=0, we
have

fEs )={24,+0,2"0,24,+06,2"(1+47%)5} .,

where 4,€Z and ¢, = £ 1. We define a, and b, by f{(E; ,)=(a,, b,). We notice that
la,—b,|=2"04"? which implies fM(E;NE;+0 for some smallest M, <24.
There are three cases.

Case 3.1. e f;"'(Ey,,), then the assertion is proven.

Case 3.2. 3¢f"\(E;,) and a, €E, (notice that from M,>A—3, we have
bpr, — Gy, | Z O(1) A~ %> 26). This implies

E'=[5+6,3+4721CfM(E, ).

2 A denotes Lebesgue measure
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However, if j>1, we have
JIEY)=[276,27477],

as long as 2771473 <5 —4. Let j, be the smallest integer such that 270473 >%. We
have ZXefjo(E'), since from 2°7'A73<i we deduce d27°<i. Therefore
se ST EN C f{e Mt (E;, ). The assertion is proven in this case since 1+ j, + M,
<34.

Case 3.3. 3¢f"/(E; ,) and by, € E; ,. This implies
E?=[;—47%5-01Cf}(Ey ).

However, if j> 1, we have
JIE?)=[276,2747°],

as long as 2/~ '47* <3 —¢. This implies as in Case 3.2 that e f;'* */o* Y(E, ,) for
some j, such that 1+j,+ M, <34. Assume now there is a restrictive central point
p, of period greater than 54 and such that p¢ E; ,. From the preceding argument,
there is a ye {3, p}, such that f"(y)=1 for some n<44— 1. This implies fJ'(y)=0 if
j>44. Let g be the period of p, since S(f)<0if x+3— 9,5+, £ (y) =0 implies that
y is a local maximum or a local minimum of f% This is a contradiction with the
fact that p is central.

We now recapitulate the possibilities for central restrictive points.

(1) There is no central restrictive point outside E; (Proposition 7.4).

(2) In E;\E; 4, every central restrictive point is of period less than 54.

However the values of 6 for which a central restrictive point occurs in E,\E; ,

5
belong to O I,f,’ o, Which is of measure zero (Case 2). Therefore, we only have to
m=1

estimate the volume of I , for m>27%2 and in the case where the restrictive

central point is in E,,. Let p be such a restrictive central point for some Sel,. Let
K={p,1—p}., we have f(K)CK CE,,, and since €K, fy"(3)e E, for any r=1.
This implies |v,,| <4~ !. From this and

V2, (B, Vo 1) ZO(1) B B|/(527 ")
if B= B¢ (of Lemma A.3) we deduce

|B| <8471 2mmer,
The conclusion of Lemma A.3 is therefore replaced by

ZS0()A" P <q7 M2
Let M , . be the set of those 6, 6eJ,, 27471 <6 <inf(274,8,), 4> q,, and such
that (v,,[<47* for r=1,2,.. k. Let M, , = O M, . ,» we shall now prove the
following bound o

AME, )< O(1)27F.
This will imply A(I;) =0 since I3, C kﬁl M, , by the preceding argument. Let ¥, , .

be the Lebesgue measure of M, | . vy, is any number between — 1 and + 1. The
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bound for ¥},  is the usual one. However, in the summation we have to precise
those r for which r,eIP. We obtain

k
5 —qi/2 q —n
Vm.k,qg Z 2 Z Z 2
i=0 O0<pi<..<pi<km Bi,n
F1<..<Fk-i

Z (0(1)5 E)(tj_pj)—z

Pj<tj=pj+1,j<l
u>p;

,2—”1|Tkm—1Uchm—1|/16q—r(km)/16A—2|2km_ 1

<0(1)kg 470 <g 7.

Since AM,, )< Y V5, ,» we have, for k> 40,

4=do
MM, ) Sq0 0278,

which ends the proof of the proposition.
Combining Proposition 7.5, Theorems 7.1-7.3 we obtain Theorems A and B.

Appendix

Lemma A.1. Let f(n,q) be the number of sequences of binary numbers with n digits
but not more than q—1 consecutive zeros. Then

f(n,g)<3-2"exp(—n/21"), (A1)
for g>1.
Proof. The following recursive relations hold for n>g,
fn+1,9)=2f(n,q9)—f(n—4,9). (A2)

This can be seen by appending a zero or a one to every allowed sequence with n
digits and subtracting the number of sequences which end as 10...0, i.e. for which

only n—q digits are arbitrary. No solution to (A.2) can grow fagter than A(q)xg,
where x, is the solution of largest modulus of x4*!=2x?—1. We find, for large
g, Xo~2—2"90r xy <2exp(—(3)?""). In order to derive a bound on A(g) which is
uniform in q it is more convenient to consider

g(n,q)=f(n,q)—f(n—1,9).
Since f(j,q)=2 for j=1,...,q—1 and f(g,q9)=21—1,

flg+1,9=27"1-3,
we find

g(n, q)<2"exp(—n/21" 1), (A3)
for n<g+1. From (A.2), we have

n

gn+Lg= 3 40,9

j=n—q+1



Maps of the Interval 155

and so we should verify for n>gq,

2 lexp(—(n+ 127z Y exp(—jj27Th)
j=n—q+1
or

12(1—2exp(=274" D) )/ 2exp(—2"@"V)—-1).
But this is true and thus (A.3) follows in all cases. Since f(n,q)= Y, g(j, q)+2, the
j=2

bound (A.1) follows by inspection.

Lemma A.2. Let g(n,q, B,), B,>0 be the number of sequences of binary numbers B
with not more than q— 1 consecutive zeros, satisfying

7 1<|B—B|<2".
Then g(n,q) £ 0O(1) 2" exp(—n/24*3) for g>5.

Proof. We reduce this lemma to the preceding one. Since B,>0, we can write
B,=2""2a+b with a,be N, b<2"" 2 If B> B,, then we must have

2204 b4+2"" < B<2" 2q4+ b2,

which is satisfied if
Mg 42" 2 < B< 2" 2g 42"t

Writing B=2""?a+r, we are asking thus how many r there are such that
M2t

with not more than g+4 consecutive zeros, (because the highest order digits of »
may be influenced through 2"~ 2a). But this is bounded through Lemma A.1, by
3.3.2"exp(—(n—2)/29%%).

Substituting the result of Corollary 5.2 into the bounds for V!, we see that it is

useful to have a general bound, for all je X _, (in particular j¢IP), of the quantity
Y4 sup* |yt
Bj+1,n5+1
To be more specific, we extend the sum and the sup somewhat by introducing the
following set for which the bound will be proven. Let
X,={n,Blnzq—4, and B compatible with n and some 6€K}.

Lemma A.3. For some universal constant C, we have, for 1 Sa<3/2,

Z= Z sup |Vj|_a2-nj+l§C.
nj+1,Bj+1eX, 9eKgnK({ni, B;, 0.} < j)
"Jk,Bk, ék fixed & such that JjéP
fork=j deds

Proof. By the equality
— Bj+1 — Bl
2"’“71(1'*“’?)"“’“1 2y,
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we find

B, 2" v v,
2 __ +1 1 +1
vi= (B112”“‘ <1+ 2”1_1) —-1- 2an+1_1).
Since, by construction, j¢IP, we find by Lemma 2.3 that we have to sum at most

over the set v; 227"*147* Therefore, we have to sum at most over the set (with
B=B;,,, n=n;, ),

{n,Bln2q—5,12v;227"4"*=¢%}.

We consider, for fixed n,, By, ..., Ny the function vf as a function of B=B;, , and
v;41- In order to simplify the expressions, we consider B as a continuous variable,
but the correct argument must use difference calculus instead of differential
calculus. Then

ov} om (1+ vl(vj)) ‘ (1 B 6v1>'1’

s ~ B | eer) U
and

ov? _ 1 1— B an -1

041 AT 2B,2%*ty; dv;

By the previous exclusions, and the method of p. 142, we find

-1
aclio B s
- 2B 2%y, Ov; | T
Therefore
2 2
6_\)1._ > @Fl) and 0v; < (9(1).
0B| = 2M*1% Ovjyq| = 2t

Suppose now that for some value B® of B and v of v;, ;, we find
vl <2712,

Then for every B= B, the above bounds imply by integration
|B— B . lvj+ 1=V
52nj+ 1 2nj+ 1
V(B
20(1)[B—B°|/(62"+Y),

since |B— B| = 1. In all these expressions, d stands for its worst possible value. The
bound on Z is therefore

Zé Z 2—nQ—a

n2qg—4

B— B¢ —a/2
+ Y 2'"[' iu} ,

n
n,BeX, 2
B+ B¢

V?(B, Vit )Z0(1)
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where u=0(5~'). For fixed n, we split the second sum over B into two parts
corresponding to

©?227"|B—Blux2"""?

B— B¢
and 1= gu>r where t2 will be fixed below. The first part is bounded by
27t lme@=miz g ) | dz27"[27"uz] "2
222" "yz222"n
<2@2-Dn+1_ 2 g2
= 1—a/2

For the second term we use the bound 2~ 27~ times the number of terms. The
number of choices of B, compatible with n, and some §eK,, according to Lemma

A1, taking f(n—gq, q), is bounded by
3‘2n—qexp(_(n_q)/2q+1)§4'2n—q—n/2q+1.

We thus get the final bound

Z< ) |27tereg2TiemTy — T |

nzq—4 1—o /2
Optimizing with respect to 7 and using u=0(2% we get
Z <(2%q*(log2)*+2)2 1 ~/2)( — @2~ 1)~ 1

-, _

+ Y o227 <.

nzq—4

This completes the proof of the lemma.

Another typical sum in the final estimates is the one for which j=t,=(p)),
when t,<p,, ,, i.e. when je T, The expression obtained through Corollary 5.2 is
then, with fixed p(=p).

Z'= Y sup [2%+ 1| v, —v;_I"*]7 L.

nj+1,Bj+1eXy deKynK({n,, Bi, 0i}i = j)
h 0

fic, B, o, k<j O suc that] t(p)<j
fixed ,

Lemma A.4
Z/§CA10(j_p+ 1)‘

Proof. We first give a general bound on 2"*!|v;| [v;,—v;_,|"/*>. We distinguish three
cases.

Case 1. |v;_,|=2[v;. Then
,vj—p—vjlglvj—pl/zg'vjl'

Therefore

2"”f+‘|vj|_llvj—vj_pl_1/2§2_”1“|vj|"3/2.
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Case 2. |v;_,|<2|v;| and v;v;_,>0. Then

1/2

_ - c1z_renpery =1 DD
27T vy =2 T\jt_v_éllm-
J—p

J

y—n; 121,22 |—1/2
3.2 JHlel le vj—p(

n—ny 1212 2 |-1/2
£6:2 J+l|vj—p| |vj Vj—p(

) mmi 20-P)y2 2 |12
£6:27"r14 [vi—vi_,l ,
by Lemma 2.5.
Case 3. |v;_,|<2lv) and vjy;_,<0. Then
—nj -1y, _ —1/2 < y—n,41],, |—3/2
27m T = =27y .
Combining the three cases, we obtain

27y | T vy TR 2Ty TR 6. 27 AP TP — |72,

pl

For the term 27"+ 1|y | =32, the bound on the sum follows by Lemma A.3. We now
give the estimate for the other term. First of all, we fix n yand B;_ ., , and set
n=n;,, and B=B; ;. We have

B2m v
2 — 1
v:—vi = B2 (1 + ————2,”*1)

j—pt

B. \J v, Vv,
_ j—pt1 1 j—pt1 _ jt1
2n,_p+1B1 <1+2n1—1)+2n,~_p+1—1 2n—1‘

We distinguish two cases.

Case 1. n=n;_,,.In this case, there is at most one value of B (call it B;) such that
vi—vi_ <2776t

This is due to the fact that
dv, dvidv;, 1 dv, 0V}

0B 0v;0B  2v; 0v; OB

B TR T
B, 2", am-t B2+t ly gy, ) oy’
where we have considered B as a continuous variable, as in the estimate of Z.
Therefore, since j¢IP,

vy <O(1)57 4227 "2R; 1,

SO(1)5™ 1242518 +U= D10 < f25-112
as in Proposition 6.2. From this we deduce

’6[1}1 Bj_pﬂzm} B,_,.2"

|2 _ i-pt1 L) m
0B |2 2"-r1B,

ov,
- 2mi-r+1B,

0B

<513,
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Therefore if B+ B., we have
Vi —vi_|=I1B27"6 "' =B,_, 27" 16T+ 027"
=2""0"'B—-2"'B;_,,+0()
22—n—15—1|B__2—sz—pH|gz—n~15—1,
where [ =n;_,,—n From Lemma 2.6 we have (even if B= B°),

22 |12>9-n2 4-8(-p)—2
[vi—vi_ I * =274 .

With u=46"1/2, Bc=2"BJ._p+1, o =1, the summation is now similar to that of
Lemma A.3.

Case 2. n>n, In this case, assume that for some B= B¢ we have

j—pt1°
[v—vi <2 mmerath,
Notice that this eventuality always occurs. We have with [=n—n;_ ,,,

!
V22 =B_2Bj—p+1+ Vi-p+1 _ YVj+1
J ji~p ons onj-p+1=1 on—1

~(B~B)27"6" L +(B*—2B,_,, )2 """
TV g2t TRy 21T

=(B—B)27"6 "L+ 02 " 7).

We now separate the summation on B into two parts. The first one is over those B
such that |B— B°|>2'5, the second one over those B such that |B— B| <2'6. In the
case of the first sum, we obtain
-nj,,2 2 -1/2
5 ZX 27 i vt
|B= 8| >%1s
< z 2—n[|B~BcI2—n5—1]—1/2.
B,neX
[B=B¢|>%21s
Define a=1, u=46""1 and ¢=2""""2 The summation is now similar to that of
Lemma A.3. Notice also that if 2'0 < 1, the second sum is zero. If 2/ > 1, we have
for the second sum from Lemma 2.6,
Y= ) 27mpviovE |THEL92 T et 28U et D)
B,neX, ’ o N '
|B—Be| <215
where $=Card{B|B is (n,d)-compatible, and |B—B|<2'5, oeK,}. From
Lemma A.2 and 2'6> 1, we obtain
Yé 21(9(1)2—6(1—A)52—n2n1_l,+ 1/2A8(j—p+ 1)
éé(o(l)z_”]‘—p+1/22—6(1_A)A8(j_l7+ 1)
§53/2(9(1)2—61A8(j-p+ 1y
Summing over [, this is bounded by ©(1)6/248U~7* 1 and this ends the proof of
the lemma.
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