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Abstract. We study the real, Euclidean, classical field equation

where φ IR^IRis suitably small at infinity. We study existence and regularity
assuming that Λ^O, FeC°°(IR), and αF(α)^OVαER These hypotheses allow
strongly nonlinear F and nonunique solutions for / φ 0. When F' ̂  0, we prove
uniqueness, various contractivity properties, analytic dependence on the
coupling constant λ, and differentiability in the external source /. For
applications in the loop expansion in quantum field theory, it is useful to know
that φ is in the Schwartz class £f whenever / is, and we provide a proof of this
fact. The technical innovations of the problem lie in treating the noncompact-
ness of lRd, the strong nonlinearity of F, and the polynomial weights in the
seminorms defining .̂

I. Introduction

It is well known [1] that the tree approximation to the first functional derivative of
the time-ordered, connected generating functional of a boson quantum field theory
obeys the classical field equation with an external source. The tree approximation
to the connected generating functional is an infinite formal sum in powers of the
coupling constant, over Feynman graphs with no loops. It is the zeroth order term
in the loop expansion, which is a formal power series expansion in he.

The same correspondence holds in the Euclidean version of boson field theory,
where the time-ordered generating functional is replaced by the Laplace transform
of the interacting Euclidean measure on Re ίf' . We refer to the Laplace transform
rather than the Fourier transform in order to arrange for a real classical field with
the better sign of the coupling constant.

We want to discuss the classical field equation itself in this paper, and not how
it emerges from the limit hc = Q; but since it was the initial motivation, we describe
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the correspondence. Let

,?(/) = exp[L(/)/fc]

= #-' I &φ{-(hcΓ1ί\:λV(φ)-φndx}dμ0(φ), (1.1)
Re^'

where fe Re^(IRd), dμG is the Gaussian measure for the free, Euclidean scalar field
of mass m, and F(φ) is a local interaction, a function of φeRey^IR^), including
renormalization counterterms. The normalization constant N is chosen to make
<ί(0) = 1. Of course, the r.h.s. is a formal object. If we make a formal power series
expansion of δL/δf(x) in powers of he, and call the zeroth order term

it is a theorem in the formal power series sense that

= f, μ = mc/h, (1.3)

where F — V$ is the derivative of the interaction evaluated at zero in any explicit he
dependence. In practise, this means that F is the derivative of the naive interaction,
without counterterms, because the counterterms, including those coming from
Wick ordering, are of higher order in he. The above formula is often derived by a
stationary phase argument on the Feynman path integral, in the Minkowski
version [1], We refer to [2] for a sketch of the Euclidean argument, which is
straightforward.

This paper is an exposition of techniques for studying the Euclidean classical
field equation

f, μ2>0, λ^Q. (1.4)

We look for real solutions for source functions / in a variety of function spaces,
including the Sobolev spaces Hs(IRd), s^ — 1, Lebesgue spaces Z/(IRd), and the
Schwartz space ̂  .

An immediate application, discussed in [2], is to higher orders of the loop
expansion, where the solutions of the classical equation have a central role.

There are two important classes of Euclidean problems, qualitatively richer
than ours, which fall outside the scope of our discussion. One is that of three and
lower dimensional problems of static, finite energy, soliton solutions of certain
non-Abelian gauge field and other models; the other is that of four and lower
dimensional instantons in the Euclidean versions of those field theories. A
comprehensive and still fairly up to date reference for these problems is the review
article of Jackiw [3]. For us, the classical potential term V0 + μ2φ2/2 has a single
minimum at φ=Q, which is equivalent to our conditions αF(α)^0 and μ2 >0. For
the field equations, these conditions imply the uniqueness of the vacuum solution,
that is, the solution with zero external source /. In the more complicated problems
mentioned above, it is exactly the nonuniqueness of the vacuum which is the heart
of their interest. Our simpler problem may have some useful points of contact with
such problems.
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Our investigation is divided into four parts : existence, regularity, uniqueness
and contraction estimates, and dependence on λ. Corresponding to this division,
we state four main theorems.

We use the real Sobolev spaces Hs(Rd) = {ue«9ί7/(lRd) :(l + |ξ|2)5/2|u|eL2(Rd)}.
For s a nonnegative integer, this is the space of distributions whose partial
derivatives of order less than or equal to s are square integrable.

Theorem 1 (Existence of Solutions). If Fe C(IR) and αF(α) ̂ 0 for all αeIR, then for
any /eH_1(IRd) there is at least one φeH1(IRd) which is a weak solution of the
classical field equation in the sense that F(φ)eL^oc and Eq. (1.4) is satisfied in the
sense of distributions. In addition, φF(φ)eL1(IRd) and F(φ)e//_1(IRίί).

If φ is such a solution, we have V^e ^(IRd)

$μ2ηφ + Pη Fφ + ηF(φ)dx = (η,fy, (1.5)

where <, > is the pairing H1 x H_1-^R Since F(φ}eH_1, this identity extends to
all ηeH άlR?), and \ηF(φ) is replaced by <n, F(φ)>. If /=0, we may take η = φ to
obtain

Sμ2φ2 + \Pφ\2dx + (φ9F(φ)y = 0. (1.6)

Formally, <<p, F(φ)>" = " J <p(x)F[<p(x)]dx^O since the integrand is nonnegative. It
is not difficult to show that indeed <φ, F(φ)>^0 (the necessary techniques are
described in Sect. IV), and it follows from the above identity that φ = 0. Thus φ = 0
is the only solution in the absence of a forcing term. However when /φO there may
be several solutions.

Theorem 2 (Regularity of Solutions). In addition to the hypotheses of Theorem ί
assume that Fe C°°(IR). Suppose φεH^*), F(φ)eH_ 1(Rd)nL1

1

oc(Rd)J and φ satisfies
the classical field Eq. (1.4).

(i) (Lp regularity) If l<p^oo and /e!/(Rd) then φeLp(ΪRd) and μ2\\φ\\LP

^\\f\\LP.IffeL*>then

<peΓ\W£ipQR*)C Π C1+α(IRd), lim φ(x) = 0,
p 0 < α < l |Λ:|->OO

and min {0, ess inf/} ^μ2φ^ max {0, ess sup/}.
(ii) fSmoofn regularity) If /eCk + α(Rd)nL°°(]Rd) then φ e Ck + 2 + α(Rd) /or any

integer /c^O and ae(0, 1). // /e^(IRd) then φε«^(Rd).
(iii) (Όs regularity, small s) If sε [- 1, 1] and /eFΓs(IRd)nLGO then φeFΓs+2(IRd).
(iv) (Weighted spaces, small s) For any integer k and seIR let

Rd) if |a|^fc}. // se[-l,l]

In addition to the above hypotheses assume that the number of dimensions dig 5.
Then

(v) (Hs regularity) If s^-l and /eΉs(Rd) then φe//s+2(Rd).
(vi) (Weighted spaces) If fc^O is an integer, se[— 1, oo), and /e^fc snL°°, ίnen

Remarks. 1. We do not know if (v) and (vi) are true without the restriction drg5.
2. For each result except the ̂  result in (iii) F need only be differentiable to

finite order. For example FeC(R) suffices for (i), and FeC^IR) suffices for (iii) and
(iv) while FeCs+1(R) suffices for (v) and (vi).
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3. If / and F are real analytic and /eL°°, then Hopf s theorem [4] implies that
φ is a real analytic.

4. If /eC^IR^nL00 then /ef |C f c + α(lRd) so (iii) implies that φeQ Ck+α(IRd)

Theorem 3 (Contraction Estimates). Suppose that FeC(IR), F(0) = 0, and F is
nondecr easing. Forj = 1,2 let φ^ be solutions, in the sense of Theorem 1, of the field
Eq. (1.4) with sources fjEH_1(ΊRd). Then,

(ii) // for some pe(l, oo] f± and f2 are in Z/(IRd), then

Remark. Inequality (i) implies the uniqueness of solutions with a given source in

Theorem 4 (Smooth Dependence on λ, f ) . In addition to the hypotheses of Theorem 3
assume that FeC°°(IR) and that s + 2>d/2.

(i) ( Differentiate Hs dependence) For /e#s(IRd) and A^O let
φ(λ,f)eHs+2(\Rd) be the unique solution of the field Eq. (1.4). The map
(λ,f)*-*φ(λ,f) is infinitely differ entiable on [0, oo) x #s(IRd) with values in Hs + 2(]Rd).

(ii) (Analytic dependence on λ) Suppose in addition to the above hypotheses that
F is real analytic on JR. For fixed f the map λt-*φ(λ,f) is real analytic on [0, oo) with
values in Hs+2(JRd\ that is, for each A0e[0, oo) there exist φneHs+2(lRd), n = 0, 1, ... ,

and r>0 such that φ(λ,f} = ^(λ — λ0)
nφn is convergent for \λ — λ0\<r.

o
(iii) (Weighted spaces ^k J Suppose k is a nonnegatίve integer and that the

hypotheses of (i) are in force. Then the map (λ, f)\-*φ(λ, f ) is an infinitely
differ entiable function on [0, oo) x 5 ŝ with values in ̂ M+2 If, In addition, F is real
analytic on IR, then the map λ±->φ(λ,f} is real analytic on [0, oo) with values

™^k,s+2

Remarks. 1. F is real analytic means that F is the restriction to IR of a holomorphic
function F on an open set L/CC with IRC U.

2. The map (λj)^φ(λj) is Ck if FeCs+/c+3(IR). That is, F need only be
dίfferentiable finitely often to ensure that φ is. For proof one need only examine
closely the proof of Theorem 4.

A remark is in order about techniques. The existence theorem is made
nontrivial by the fact that F may be rapidly increasing at oo. For example, F(φ)
— φ expφ. In such cases (at least for d ̂ 4) the nonlinear term is in no sense a small
perturbation. The associated Minkowski equations φtt — Ad_iφ + μ2φ + F(φ) = f
are poorly understood for such strongly nonlinear F. Matters are further
exacerbated by the fact that IRd is not compact, making degree theoretic ideas more
difficult to apply. It is important to realize that the existence and regularity
theorems are proved in a generality that permits multiple solutions. In the absence
of a source (/ = 0), the only solution is φ = 0 0 however, multiple solutions may
exist for / Φ 0.
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The critical parts of the regularity theorem are the Lp estimates, which are
derived using multipliers in the fashion of Moser [5] and Brezis and Strauss [6].
The unboundedness of lRd creates technical problems here, too. One cannot prove
L°° estimates by taking the limit as pκ>oo. The L°° estimate (which is the most
important one) requires a separate argument resting on a Harnack type inequality
of Moser. Once solutions have been shown to be bounded, the growth of F at
infinity becomes irrelevant and the regularity theory proceeds without essential
difficulty. It is worth noting that, as far as we know, the regularity in S^k>s spaces
has not been observed, even in the linear case. The contraction estimates are
proved with multipliers in the same manner as the Lp estimates.

To study the dependence on λ and /, we show that for (A,/)~(A0,/0) one can
reduce the study of the field equation to solving a nonlinear equation G(Jl,φ,/) = 0,
where G is smooth. When JF'^ O, the implicit function theorem can be invoked to
obtain the desired results.

Many of the techniques we use are not new. However, since nontrivial
innovations are required in several places, and because of the importance of the
classical nonlinear field equations in mathematical physics, we feel that it is
worthwhile to set down the basic facts in accessible fashion.

II. The Existence Theorem

This section is devoted to a proof of Theorem 1. Replacing λF by F, we may
assume, without loss of generality, that λ=l. For further notational convenience,
we often suppress the labels IR and lRd in the names of functions spaces. The
argument of F always takes values in IR, and those of φ and / in lRd.

We use Galerkin's method to construct approximate solutions φk. For
fc = l,2,... choose 7kCCo(Rd) such that VkCVk+l, dimF fc<oo,and \jkVk is dense in
Hj,. We seek φkeVk such that

x = (wjy (2.1)

for all w in Vk. The solution φ is obtained as the limit of a subsequence of the φk.

i. Existence of φk

Define Γ : C£(Rd)->C0(IR) by

T(ψ) = (μ2-Δ)ψ + F(ψ}. (2.2)

The basic estimate is that VφeC^

(2.3)

snce
Let πk :L2(ΪRd)->Vk be orthogonal projection in ZA Consider Vk as a scalar

product space with the L2 inner product. Now f\Vk is a continuous linear
functional, so there is a unique fke Vk such that V w e Vk

<w,/>=(w,/k)L2. (2.4)
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Equation (2.1) is then equivalent to the equation πkT(φk} — fk = Q. We consider
πk°T — fk as a continuous vector field in Vk. Let Γk be the bounded open convex set
Γk-{ ί;eFk:||ι;|| f ί ι<l+max(l,μ-2)||/|| f ί_ J.We show that deg(πkΓ-/k,3Γk, 0) = 1
([7] is a good reference for degree theory), and thereby conclude that πkT — fk has
a zero in Γk. The basic estimate is that for ψεVk,

(πkT(ψ) - 4 ψ)L2 = (T(ψ\ ψ)L2 - (fk, ψ)

_ l ] . (2.5)

On dΓk this is strictly positive. Therefore Φf = (l-ί)(πkT-/k) + ί/, O^ί^l, is a
homotopy of πkT—fk to / which never vanishes on dΓk, since for φeδΓk,
(Φt(ψ\ ψ)L2 > 0. It follows that

deg(π,T - /„ 3Γk, 0) = deg(/5 5Γk, 0) = 1 . (2.6)

Thus for each fe we may choose φke Ffc satisfying (2.1) and in addition with ||φJHl

<lH-max(l,μ~ 2 ) | |/ | | H _ l . Thus, taking w = φk in (2.1), we obtain the additional
estimate that

:gconstant independent of fe. (2,7)

2. Use of Compactness to Extract a Convergent Subsequence

The Rellich compactness theorem, together with the weak compactness of the unit
ball in H1, imply that there is a subsequence (still denoted φk) such that

φk-+φ in H1 weakly. (2.8)

φk-+φ in Hl

s

oc strongly for all s< I . (2.9)

φk-+φ pointwise a.e. (2.10)

By Fatou's lemma,

(2.11)

and the right hand side is finite by (2.7). Thus, φF(φ)eLl(ΊRd). Since

+ max|F(s)|, this implies that \F(φ)\^φF(φ) + max\F(s)\9 so F(φ)eLtoc.

Following Strauss [8], we show that a subsequence of the F(φk) converges in
the weak star topology of L^ (recall that (L^J = L£mpact). To do this, it suffices to
show that for each ε>0 there is a <5>0 so that ωClRd and meas (ω)<δ imply
f|F(φk)|<ε for all fc. Given ε>0, (2.7) permits us to choose M>0 so that
ω

2$φkF(φk)<εM for all fe. Let δ = εί2 sup \F(s)\\~l. Then |F(



Euclidean Classical Field Equations 19

+ sup |F(s)|, so if meas (ω)<δ,

sup |F(S)|< + = ε. (2.12)

Thus, passing to a subsequence, again denoted φk, we may assume that

*y in Aoc weak star. (2.13)

It is important to make the identification y = F(φ). To do this, observe that for
any bounded set FcIRd and any ε>0 the pointwise convergence (2.10) together
with Egoroffs theorem imply that there is a set vCE with meas(v)<ε and
F(φk)-+F(φ) uniformly on E\v. Then F(φk)-*F(φ) in Lx(E\v) weak star. However
by (2.13) F(φk)-^y in Lx(£\v) weak star. Thus y = F(φ) a.e. on £\v. Since ε>0 was
arbitrary, it follows that y = F(φ) a.e. in E and therefore almost everywhere in JRd.

3. Passage to the Limit /c— >oo

Suppose w e F j for some /. Then (2.1) holds provided fc^ί; and we may pass to the
limit fc-+oo in (2.1), since weH1 ? φk-*φ in H1? weLc°°ompact, and F(φk)—F(φ) in L^
weak star. Thus Vwe ukFfc,

j μ2wφ + Pw - Vφ + wF(φ)dx = (wjy. (2. 14)

Estimating crudely, we find that J |wF(φ)| ̂  const || W| | H I . Since ukVk is dense in H1?

this implies that F(φ)eH_1 and that (2.14) extends by continuity to all weH r

Since identity (2.14) is equivalent (for φeH^) to the field equation (1.4), all the
assertions of the existence theorem have been verified. D

Remark. Except for the intervention of the local spaces #*oc(Rd) and L^c(Rd) in (2.9)
and (2.13), this argument is standard. The noncompactness of Rd is only a minor
inconvenience here.

III. Regularity Theorems

The critical step in the regularity theory is to show that if /is bounded then so is φ.
For classical solutions this is a simple consequence of the maximum principle.

Boundedness of Classical Solutions. If φeC2(Rd) is a solution of the classical field
equation (1.4) with /eLQO(Rd)nC(]Rd) and \φ(x)\-*Q as |x|-»oo then

Proof. We show that μ 2φgmax fsup/,θl. The proof that μ2φ^min ίinf/,θl is
\ Rd j \ Rd I

similar.
If supφ^O we are done. Otherwise there is an x0eIRd such that

supφ = φ(x0)>0. Then — Jφ(x0)^0 and F[φ(x0)]^0, so the field equation (1.4)
implies that μ2φ(x0)^/(x0)^sup/, and the result is proved.

The problem is to prove a boundedness theorem for weak solutions. The idea
of the proof is easy to describe and is inspired by the multipliers of Moser [5] (see
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also Brezis and Strauss [6]). Temporarily ignoring convergence problems, one
takes η = \φ\p~2φ in (1.5) to obtain

l(p-l}\φΓ2\Fφ\2 + μ2\φ\p + \φΓ2φF(φ)dx = ̂ \φΓ2φf (3.1)

(as in Sect. II we have taken λ= 1).
Dropping two positive terms from the left hand side and applying Holder's

inequality to the right with 1/p -f 1/q = 1 yields

Since (p—ί)q = p we may divide both sides by (§\φ\p)1/q to find the estimate

This is the assertion of Theorem 2(i). We now supply the ideas necessary to
make this argument rigorous.

1. Proof of Part (i) of Theorem 2

Suppose 1 <p< oo and define yn :IR-»1R by

\s\p~2s if p^2 and \s\^n

or l<p<2 and l/n^ |s | l jn,

np-1 signs if |s|^n,

n2~ps if l<p<2 and |s |<l/n.

Then yn is uniformly Lipschitz continuous so φeHi(J!Rd) implies that yn(φ)eHi(lRd)
and Vyn(φ) is the element of L2(IRd) equal to y'n(φ}Vφ where \φ\ <n and \φ\φ ί/n and
equal to zero otherwise (see Lemma 28.1 in [9]). Choose φeC^(IR) such'that
O^V^l? ψ(s) = ψ( — s), ψ(0) = l j and ^X5)^^ f°r 5>0. Define ^meC^(IRd) by
^m(x) = ιp(m~ 1|x|). If φeH1 is a solution of the field equation we may take ηmym(φ)
as "test function" in (1.5) to obtain

Notice that F(φ)eL1

1

oc and ηmyn(φ)eL^paci so the pairing (ηmyn(φ\ F(φ)> is an
integral of a nonnegative function and is therefore nonnegative. Similarly, since
feLp and ^myn(φ)eL*mpact the pairing on the right of (3.2) is also an integral. Now

ηm^ J ηmy'n(φWφ\2^\yn(ψWψ'^m (33)
\φ\<n

since / ̂  0. Thus, estimating the right hand side of (3.2) by Holder's inequality and
using the fact that ηmyn(φ)F(φ) ^ 0 we have

ί yn(
^ (ί l/IX^)1/p(ί |y»(φ)l^mdχ)1/β , (3.4)

where 1/p-h 1/^=1. Now \yn(s)\q^syn(s) for all seIR (they are equal for l/n^\s\^n\
so the ^f-norm on the right of (3.4) is at most equal to (§ φyn(φ)ηm)llq. Using this
estimate and rearranging terms yields
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For fixed n, the right hand side is o(l/m) as m-»oo, and φyn(φ)ηm-^φyn(φ) and
\f\pnm-^\f\p, both monotonically. The monotone convergence theorem allows us
to pass to the limit m-> oo in the integrals in (3.5) to conclude that J φyn(φ) < oo and
moreover

Letting n->oo, φyn(φ)s\φ\p, so the monotone convergence theorem yields
μ2\\φ\\pίϊ\\f\\p, which is the desired result.

To derive the L™ estimate the argument must be modified substantially. Notice
that one cannot merely let p-»oo since / need not be in any Lp space other than
L°°, and secondly ||/||Loo might be smaller than lim ||/||LP. What does immediately

p-» oo

follow is that

(3.6)

which suffices for many applications. For example, if /eL°°nZ/0 for some p0 < oo
and esssup|/|-H>0 as jR->oo, then the right hand side of (3.6) is equal to H / H ^ . To

\x\>R

derive a sup norm estimate for φ without the hypothesis that |/|->0 at infinity, we
use more of the elegant ideas of Moser [5].

Lemma 1. Suppose that £2clRd is an open set, φeHl™(Ω), F(φ)eL1

1

oc(Ω),/eL1

1

oc(Ω),
and (μ2 — A)φ + F(φ) = f. Suppose fc:IR->IR is a nonnegative convex function such
that fc(0) = 0 and there is a ρ>0 with fc"(s) = 0 i f \ s \ > ρ . Then Ak(ψ)^ - fk'(φ\

Remark. Since /eL^00 and fc'(<p)eL°°, it follows that fk'(φ)eS>', so the assertion
— Δk(φ)^fk'(φ) makes sense and is equivalent to the fact that jPφ Pk(φ)

— φfk'(φ)ώc:gO for all nonnegative φe^(IRd).

Proof. We prove the result assuming that fceC2(]R). The general case follows as in
[5] by approximating general k by convex functions satisfying the additional
hypothesis. Since fe" = 0 for |s| large, k is Lipschitz continuous, so
φεHl?c=>k(φ)eHl?c; and we need only show that Ak(φ)^ - fk'(φ\

By hypothesis

j μ2ηφ + Vη*Vφ + ηF(φ)dx = j ηfdx

). Take η=ψk'(φ) with ψe@(Ω), ψ^O. Since sign k'(φ] = sign φ, it
follows that φk'(φ) and k'(φ)F(φ) are nonnegative; so 0^ J μ2ηφ + ηF(φ)dx. Thus

Evaluating Vη yields

J ΐ

since /c"^0. The proof that —Δk(φ)^fk'(φ) is complete. D
Now suppose that φ and / are as in Part (i) of the regularity theorem and that

p=oo. Let fc(s)=|s|; then Lemma 1 implies that — A\φ(s)\^ \\f\\ «. on Md. Moser's
method [5] yields a constant c>0 so that for any x0eIRd

(3.7)
\|x-xo|<2
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The proof is exactly as in [5]. A more general result is proved in Theorem 8.17 of
Gilbarg and Trudinger [10]. Since φeL2(IRd) it follows that φeL00^) and that
esssup|φ(x)|->0 as R-+CO. Consequently, / + F(φ)eL°°(lRd); and the elliptic

|x|>Λ

regularity theorem for the operator μ2 — A implies that φe (°| W^;p(IRd). In
p>l

particular, φ is continuous. We have proved the last sentence of Theorem 2(i).
We next prove the estimate μ2φ^max {0, ess sup/} for/eL 0 0. Let

ί2-{xelRd:μ2φ(x)>max{0,esssup/}} .

By the above assertions Ω is an open set, which is bounded if ess sup/ >0 and in Ω
we have

lim μ2φ(x) = max {0, ess sup/} .
χ->dΩ

It follows from the classical maximum principle for subharmonic functions that
μ2φ^max{0,esssup/} in Ω. Therefore Ω must be empty, and supμ2φ
rg max {0, ess sup/}. That infμ2φ^min{0,essinf/} is proved in the same manner
with

Ω = {xeRd :μ2φ(x) <min {0, ess inf/}} ,

and the proof of the first part of the regularity theorem is complete. D

2. Proof of Theorem 2 Part (ii)

By Part (i) φe C1 +α. The result follows from a finite number of applications of the
following "bootstrap" lemma.

Lemma 2. // φeCl+* and /eCk + α with kj nonnegative integers, then

Proof of Lemma. Since φeC / + α, F(φ)eCz+α, so (μ2-A)φ = f-F(φ)eCmin(k'l}+a,
and the result follows from classical (circa 1900) regularity theorems for
μ2-Δ. D

From the lemma, if / rg /c, φ gains two derivatives. If / > /c, the conclusion is
φeC2 + /c+α. Let m be the unique integer such that l + 2m<>k<l + 2(m-f 1). Then
m+1 applications of the lemma yield φeC* + 2(m+1)+α. If l + 2m = k we are done. If
l + 2m<k one more application of the lemma yields the desired result, for finitely
differentiable /.

We now go to the case /e^. Let t/ e Jfί^lR**) be the unique solution of (μ2 — A)ιp
= (/2 + exp — x2)ί/2 = h. Since h is a positive element of ̂  it follows that ιp>Q and
ip e 5 .̂ We show that φ is small at infinity by proving \φ\ ^tp. Since both φ and tp
are smooth and vanish at infinity, either φ ̂  ip or the positive maximum of φ — ψ
occurs at some point x0eIRd. The latter alternative cannot occur, for at such an x0

one would have (φ — tp)>0, A(φ — tp)^0, φ^tp^O, so F(φ)>0 and

a contradiction. That φ ̂  — tp is proved similarly.
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Let Br(x) = {yeTRd :\y — x <r}. Then the estimate \φ\^φ implies that, for any r

andJV, J |φ|2 = 0(|xΓN)asx->oo.

To prove that φe^, it suffices to prove that for all r>0 and integer N and
5> ll (/ )llίί s(β ru)) = ̂ (l-χl~]V)as x-*0^' The proof is by induction on s. The case s = 0 has
been proved. The basic ingredient is the elliptic estimate :

\\<P\\H.+ 2(Br(X}} ^ C(Γ> SX I I 9 I I H.(B2r(*)) + \\Δ 9 I I H.(B2r(x)))

Suppose our assertion is proved for s^s0. Then \\φ\\Hs (B2r(χ)) = O(\x ~N\ an<^ fr°m

the field equation Aφ = μ2φ + F(φ)- /, so H^φ|lHSo(β2r(x))=0(|xΓN), s*nce ^ van"
ishes at the origin; and it follows that \\φ\\H8 + 2(Br(χ))=O(\x\~N). D

3. Proof of Theorem 2 Part (iii)

By Partji), φeL00^). Choose FeC^(lR) such that F(s) = F(s) if s|^ \\φ\\L00. Then
F(φ) = F(φ). Now F is Lipschitz continuous and Hl(^d) is stable under com-
position with Lipschitz maps so F(φ)εHv Therefore (μ2 — A}φ = f — F(φ}εHs so

2. D

4. Proof of Part (iv) of Theorem 2

We require a lemma about the spaces £fk>s.

Lemma 3. (i) For all s, σeIR and integers fc, (μ2 — Δ]σ is an isomorphism of
<y> _» </

t 7 fc , s+2<τ ^k.s

(ii)
(iii) /

Proof, (i) That (μ2 — zl)σ is 1 — 1 and continuous from ^;5+2

 to &k s ^s elementary.
To show that it is onto, suppose ηe6^k s and φeHs + 2 satisfies (μ2 — Δ)σφ = η. We
must show that φe^k s + 2σ. This is an immediate consequence of the identity 'xsφ

(ii) Choose FeC^(IR) such that F(a) = F(a) if \a\^\\φ\\L00. Then F(φ) = F(φ).
Since φeH1 and F is Lipschitz it follows that F(φ)eHί. In addition, for all /,
\XiF(φ)\^c\Xiφ\9 where c = max|FΊ, so x F(φ)eL2. Similarly Dj(xiF(φ)) = δijF(φ)
+ xiF'(φ)Djφ, so IDyX^φ)] ^|F(φ)|-f clx^φl, and the right hand side is in L2, so
xίF(φ)eH1. This proves (ii) for fe=l. Analogous arguments yield an inductive
proof of the general result.

(iii) The proof of this is exactly the same as the proof of Schauder's lemma [see
the proof of Part (v)] so is not short and not illuminating. It is omitted. Π

To prove Part (iv) we first treat the case s = — 1 that is, we must show that if
/e^-! then φe.9^ ?1. For fc = 0 there is nothing to prove. Consider next the case
k=l . We must show that x φeίί1 for all L Formally the proof is simple. Take
η = xfφ in (1.5) to obtain

Jμ2xJV + ΠX2φ) Vφdx + <x2

, x f/> .
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Now <x2φ, F(φ)> is formally nonnegative, so

and a bound on ||x f(p||H l follows.
To make this rigorous, choose χeC^(IRd) such that χ^O and χ(0) = 1. Let χε(x)

^χ(εx) and take η = χ2xfφ in (1.5). Then <??x2φ,F(φ)>^0, and one finds that

so

LetM= sup \\xextf\\H 1+ί\V(χcxi)\2φ2dx<co. Then

and it follows that χεxtφ for εe(0,l] is a bounded subset of H1. Therefore
xt φ= limχ^x^ is in /ί^ This completes the proof for fc = l and s= — 1.

For k > 1 and s — — 1 the proof is by induction on k. Suppose the result is
known for all values less than or equal to k. We prove it for k+1. That is, if
/e5^+1 _ 1 9 we show φe^k + 1 v Formally, the proof is simple. If |α| = k+l take
η = x2aφ in (1.5) to obtain

jμ2 x2 V -f- Px2αφ - Vφdx - <x2>, /> - <x2>,

Thus

- Jμ2x2αφ2

and a bound for \\xaφ\\Hί follows. To make this formal argument rigorous one
reasons exactly as in the case fc= 1. This completes the proof when s= — 1.

If — 1 rgsrg 1, the above result implies that φe<5^ Λ so by Part (ii) of Lemma 3
F(φ)e^kΛ; so (μ2 -Δ}φ = f -F(φ)^^k ?s and φe5^s+2 by the first part of the
lemma. D
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5. Proof of Theorem 2 Part (v)

For 5^1 the result has already been proved in Part (iv). For s> 1, (iii) implies that
φe#3. Notice that 3>d/2 since d^5. The result follows from a finite number of
applications of the following bootstrap lemma :

Lemma 4. // φe#σ(IRd) and /e#s(IRd) with d/2<σ then φe#2 + min(σ?s)(IRd).

Proof. The critical fact is Schauder's lemma, which implies that F(φ)e/fσ(IRd). A
precise statement is given below.

Schauder's Lemma. Suppose σelR and σ>d/2.
(i) // FeC00^) then the map (η^ ... ,ηk}^F(ηυ ... ,ηk) is a bounded map from

(ii) Theabove map is infinitely differ entiable. The derivative at η is the linear map

A proof for σ an integer can be found in Sect. V.2 of [12]. For fractional σ a
proof along the same lines is possible, using the fact that Hσ is closed under
multiplication (see Theorem 2.1 in [11]).

Returning to the proof of Part (v), we have F(φ)eHσ, so (μ2 — A)φ = f

n(ffιS), so φeH2 + m{n(^s). D

6. Proof of Theorem 2 Part (vi)

I f s e [ — 1,1] the result is proved in Part (iv). If s_ 1 then by Part (iv) φe£fk 3 and
3 > d/2. The result follows from a finite number of applications of the following
bootstrap lemma:

Lemma 5. // /e«9^s and φe^k σ with σ>d/2 then

Proof. Since φe^k a and σ>d/2 it follows from Part (ii) of Lemma 2 that
F(φ)e^cσ. Thus (μ2 — Λ)φ = f — F(φ)e^mίn(Sj(T). Part (i) of the lemma just cited

implies that φe^ 2 + min(S σ)

IV. Contraction Estimates

In this section we suppose that FeC(IR), F(0) = 0, and F is nondecreasing, so that
[F(s) —F(ί)](s —£)_Ό Vs, ίelR. We begin the proof of (i) in Theorem 3.

Suppose φ1 and φ2 satisfy the field equations with sources fl and /2 in H_v

Then taking φ1 —φ2 as the test function in the field equations for φ. yields

-<φ1-φ2,/ j-F(φ j)>, 7 = 1,2.

Subtracting the j = 2 equation from the j — 1 equation yields

-<φ1-φ2,/1-/2>-<φ1-φ2?F(φ1)-F(φ2)>. (4.1)



26 J. Rauch and D. N. Williams

The first term on the right is estimated as follows :

l/μ2) [left hand side of (4.1)]1/2 \ \ f 1 - f 2 \ \ H _ l . (4.2)

The last term in (4.1) is formally J(φ1 — φ2)\_F(φl} — F(φ2)~]dx, the integrand being
nonnegative. One expects this term to be nonnegative and once that is proved,
(4.1) and (4.2) yield the desired estimate.

Choose /7eC^(IRd) with j f Ξ > 0 and η(0)=l. Let ηm(x) = η(m~~ίx). Let gm :R-»IR
be defined by

is if \g(s)\Zm9
9m{ ] ms\s if s^

Then as m— »oo, ηm(x)gm(φ^)-^φ. in H1, so as m-^oo,

^rnl9m((Pι)~9m(φ2)^F(φι}-F(φ2)y-^<(φ1-φ2,F

since F(φj)eH_ί. On the other hand, ηmgm(φj)eL?ompaci9 and F(φi)eL}oc9 so

and the integrand is nonnegative. It follows that the left hand side is nonnegative,
so passing to the limit m-»oo the desired inequality <φ1 — φ2,F(φ1) — F(φ2)>^0
follows. D

We next prove assertion (ii) of Theorem 3. Formally, the proof is quite simple.
This ideas needed to make the argument rigorous are similar to those just
presented and those in the Lp regularity theorem for p<oo. We present only the
formal argument.

Suppose 1 <p < oo. Subtract the field equation for φ2 from the equation for φ l 5

multiply by \φ2 — φ1\
p~2(φ2 — φί\ and integrate over IRd to obtain

The left hand side is greater than or equal to μ2\\φ2 — φ1\\ρ

LP, and Holder's
inequality shows that the right hand side is less than or equal to

( I I φ 2 ~ 9 1 I I LP}
Plq II /2 - /i II L- Dividing by ( || φ2 - φ , \\ LP)

plq completes the
derivation. Π

V. Dependence on λ

Fix the integer 5 with s + 2 > d/2, and suppose that FE C°°(IR) is nondecreasing and
F(0) = 0. To study the dependence of φ on λ and /, define

G : [0, oo) x #s + 2(lRd) x Hs(Rd)-+J¥s(IRd)

by
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A function φeHs+2 (note that s + 2>d/2, so φ is a continuous function vanishing
at infinity) satisfies the field Eq. (1.4) if and only if G(/l,φ,/) = 0. The differentia-
bility and analytic dependence results will be proved by applying the implicit
function theorem, as in 10.2.1 and 10.2.3 of Dieudonne [13], to this equation. A
critical ingredient is Schauder's lemma (see Sect. III. 5), which implies that G is an
infinitely differentiable map of [0, oo) xHs + 2 xHs to Hs, and that the partial
derivative of G with respect to φ is the linear map

Hs + 2(R^g^\jι2-Δ+λF\φ^g€Hs(R
d). (5.1)

By Schauder's lemma again, the function lF'(φ) = m(x) is in Hs + 2. If A^O then
m^O since F'^0. To apply the implicit function theorem we show that the linear
map (5.1) is an isomorphism. That is the content of the next assertion, with

Lemma 6. // meί/σ(Πld), σ>d/2, and m^O, then the map T:g-+(μ2 — A+m)g is a
continuous linear bijection of Hσ-+Hσ_2.

Proof. Since meHσ with σ>d/2, Schauder's lemma implies that g^mg is
continuous from Hσ to itself, and therefore that T is continuous from Hσ to Hσ_2.
Since m is a bounded continuous function, the map g^mg is also continuous from
HG = L2 to itself; so by interpolation, it is continuous from Hσ,-*Hσ, for all
O^σ'^σ.

Since m^O,

for all φeH1? and standard elliptic theory implies that T is an isomorphism of
Hl\-*H_l. To complete the proof of the lemma, it suffices to show that if keHσ_2

and φeH1 satisfies Tφ = k then φεHσ for then T is a 1 — 1 continuous linear map
of Hσ->Hσ_2 and the open mapping theorem implies the continuity of T"1.

Suppose keHσ_2, φeH l 5 and Tφ = k. Then a finite number of applications of
the following bootstrap lemma leads to the conclusion φeHσ.

Lemma 7. // /ceHτ(IRd), φeHλ(lRd)5 σ^/ί^l, and Tφ = k, then

Proof of Lemma 7. (μ2 — A)φ — k — mφ and mφeHλ since multiplication by m maps
Hσ, to itself for all σ;e[0,σ]. Thus k — mφeHm[n(τ λ) so φ^H2 + m m(τ ;). Π

Given (/I0,φ0,/0)e[0, oc) x Hs + 2 xHs with G(/l0,φ0,/0) = 0, the implicit func-
tion theorem implies that for (λ, /) close to (A0, /0) there is a unique φ(λ, f) close to
φ0 with G(λ,φ9f) = Q; and φ is a C00 function from [0,ao)xHs to Hs + 2. This
completes the proof of Part (i).

We next prove the analyticity result that is Part (ii) of Theorem 4. Fix s as
above and /I0e[0, oo), φ0, /0 real solutions of G(/l0,φ0,/0) = 0. Let J ŝ be the space
of complex valued functions on lRd whose real and imaginary parts lie in Hs(IRd).
Since F is defined on a neighborhood in (C of the real axis, the function Γ defined
by
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is a C00 function on a neighborhood tyt of λ0 x φ0 in C x ̂  + 2 with values in Jfs.
The partial derivative of Γ with respect to φ is the linear map

and exactly as before this is an isomorphism of J^s + 2 to ̂ . The implicit function
theorem implies that there is a neighborhood i^ of A0e(C and a unique φ\i^J^s

such that Γ[/ί,<p(/l)]=0 and φ :i^-+3^s is infinitely differentiable, the derivative
being complex linear. By the characterization of analytic functions as functions
differentiable over <C as in 9.10.1 of [13] it follows that φ is analytic on i^ with
values in jήfs, so the restriction of φ to ^n[0, oo) is real analytic. Since the
restriction of φ to [0, oo) yields the real solution of the field equation (uniqueness!)
and A 0ef n[0, oo), this completes the proof of Part (ii).

Finally, we discuss the dependence on λ and / when / and φ lie in the weighted
spaces £fk s with s + 2 > d/2. The proof of both the differentiable dependence on λ, f
and analytic dependence on λ are exactly as above once one shows that the map T
of Lemma 6 is an isomorphism of ̂ k s + 2~*^k s

The proof is like the proof of Lemma 6 with a few modifications. First one
must show that multiplication by m maps £ f k σ - * ί f k σ continuously if O r g σ r g s + 2.
For σ = 0 this is easy since m is bounded, and for σ = s + 2 it follows from Part (iii)
of Lemma 3 (which serves as the natural replacement for Schauder's lemma). It
remains to show that ^k σ is an interpolation space between ̂  0 and £fk s + 2. To
see this, norm £fk 0 by

Then Part (i) of Lemma 3 implies that ίfk σ is normed by

(the last term is to make Λ, below, simple). With these choices of norms each ϊfk σ is
a separable Hubert space, and 5^ ff is a dense subset of ^k 0 with continuous
inclusion. Consider the intermediate spaces between ^ 0 and ̂ ks + 2 in the
framework of Sect. 2.1 of Lions and Magenes [14]. WithX = ̂ k s + 2, Y=^k 0> and
the norms described above, their operator Λ is exactly (μ2— A)(s + 2}'2 and

[^,s+2>^,o]θ = β(^θ) = ̂ ,(S+2)θ [again, Part (i) of Lemma 3]. Thus .^σ

= \-^k, s+ 2>^fc,0 Jσ/(s+2)

Thus T is a 1 — 1 continuous map of ^k,s + 2~^^ktS T° show that it is onto we
must show that if ηe^k s and φeHs + 2 satisfies Tφ = η then φ<Ξ^k + 2 s. This
regularity result is analogous to Part (vi) of Theorem 2 and has a similar proof. We
omit the details.
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