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Abstract. Some general results on strong cluster properties of connected or
partially connected correlations, and their links with analyticity properties
with respect to the potential or to classes of perturbations of the potential are
presented.

1. Introduction

In earlier papers [1-3] the notion of strong cluster properties of correlations was
introduced; these properties were proved for totally connected correlations in
various situations and their links with the analyticity of thermodynamic and
correlation functions with respect to the activity or magnetic field were
established.

In the present work we present more general links between cluster properties
and analyticity. Namely an equivalence is exhibited between analyticity with
respect to general classes of perturbations of the potential, and corresponding
strong cluster properties of totally or partly connected correlations. As an
example, analyticity under perturbations of the two-body potential is linked to
clustering with respect to subsets of two points.

A large part of the results has been previously reported in the thesis of one of
the authors [4], where the details of some proofs, omitted here, will be found.

The systems considered here will be lattice gases. By the Lee-Yang isomor-
phism, they can be turned into spin \ systems and the results can be adapted to this
case with only minor modifications (conversion formulae will be found in [4]). As
in previous papers, it should also be possible to obtain results of the same type for
continuous systems, but this will not be treated. Finally, the results apply mainly
to potentials that decrease at least like an inverse power s of the distance, s > v, or
s > 2v, where v is the space dimension. For simplicity, some of the results will be
stated only in the case of finite range or exponentially decaying potentials, but they
can be adapted to the above-mentioned case of power decay.
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The organization of the paper is the following. Preliminary definitions and
results on the various systems of totally or partly connected correlations
considered, and on some of their links, are given in Section 2. Corresponding
strong cluster properties are then introduced in Section 3. These properties are
proved at low activity in Section 4. Extension theorems, which allow one to extend
them from small regions to larger domains in which analyticity properties are
known, are presented, together with some applications, in Section 5. Finally it is
shown in Section 6 that conversely strong cluster properties at real points imply
analyticity properties, and equivalence theorems follow. Final remarks are
indicated in Section 7.

In the following, analyticity with respect to the potential is to be understood as
analyticity on a Banach space. It is equivalent to analyticity in any direction of the
space, together with a local boundedness condition [5].

2. Preliminary Definitions and Results

A) Correlations

The following families of correlation functions, which are all equivalent for the
definition of the physical states, will be considered. Being given any subset X of
points xl9 ...,xN of the lattice, ρ(X) denotes the probability that each point ofX is
occupied by a particle. For reasons which appear later, it will also be convenient to
consider functions ρ(Xv .. >,XM) that denote the probability that each point ofXt is
occupied by a particle, i = i, ...,M. Here each X is, as previously, defined as a
subset of points of the lattice, and not as a multiplet of points of the lattice, i.e. the
points of Xt cannot coincide and their ordering is irrelevant. In view of the
definitions, ρ(X) = ρ(X). On the other hand some points of a subset X. may coincide
with some points of other subsets Xj9 jΦί, in which case ρ(Xί9 " ,XM) does not
necessarily vanish (for instance ρ(X,X) = ρ{X) by definition. For general ex-
pressions of the functions ρ in terms of the function ρ, see [1,4]).

The underscripts ~ in ρ{Xv > ,XM) and later in ρτ(Xv ...,XM), Lδ(X09 ...,XM),
etc. are intended to specify in a completely unambiguous way the subsets X. that
are considered.

B) Partially Connected Correlations

Being given a family of functions Xί9.. . ,X M ->/(X 1 , . . .,XM), where each X. is a set
of points in Έ and M is any positive integer ( M ^ l ) , a corresponding family of
functions fτ that are partially connected with respect to the sets Xl9...,XM is
defined, by induction, through the formula:

(1)

1...M k

..,xM)- Σ Π / τ ( { * ; } ; ^ ), (2)
π i Ttfc j= 1

k>ί

where the sum ]£ in the right-hand side, runs over all non trivial (fc> 1) partitions
of 1, ...,M. The totally connected functions x l 9 ...5xJV->/Γ(x1,...,xJv) are the
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particular case of (1) and (2) obtained when all sets Xt have one point. For a
presentation of some links between totally and partly connected correlations, see
[1,4].

For reasons which appear below, the most convenient functions will be the
functions £Γ(X 1 ; . . .,XM) obtained from the function ρ by the formulae (1) and (2)1.
The correlation functions ρτ

Λ relative to a finite box AcTF, for given boundary
conditions, are defined similarly.

F i n a l l y some of t h e s e t s Xl9.. ,,XM m a y b e i d e n t i c a l Given a n y set Xl9.. .9XM

of M subsets, Yl9...,Y will denote, in the following, the p different subsets
/ P \

appearing among the M sets Xb with multiplicity M 1 ? ...,Mp ^ M^M). If we

consider M + l s e t s X 0 , X 1 ? ...,XM, then Yv ..., Yp will refer to the previous sets Y£

defined for Xl9 ...,XM and Yo will be identified to Xo.

C) Derivation Relations

The explicit definition of the correlations in classical statistical mechanics yield
moreover the following derivation relation (see details of the proof, for instance, in
[4]):

i = 0

P

(3)

•(XOiXί,...,Xu;Φ)=-^-~^-QΛ[X0;Φ- Σ λfo

QM

(3')

where ZΛ is the partition function and Φ denotes a potential B-+Φ(B) acting on the
subsets B of points of the lattice. By convention it contains the one-body part, i.e.,
the chemical potential, which is obtained when JB is composed of only one point b
and is allowed in general to depend on b, and it includes the reciprocal
temperature β. I.e., ZΛ and the correlations ρΛ are defined (for free boundary
conditions) by the relations:

Σ f l (4)
YCΛ [ \

ρΛ(X;Φ) = [ZΛ(Φ)Tι Σ expf- Σ m], (4')
YCA\X [ BcXuY j

where Λ/X is the set of points of A minus the points ofX.

1 The totally or partially connected functions ρΓ(X1 ?.. .,XM) will not be used in this paper. They are
defined from the functions ρ by formulae (1) and (2) together with the convention ρQCv ...,XM) = 0 if
some points in a subset Xt coincide with points of a subset Xj} j 4= i
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Finally, by definition, δx.{B) = l ifX ΞJ5, δx(B) = 0, otherwise.
An infinite system will be said to satisfy the derivation relations (A) for a given

value Φo of the potential, and with respect to the perturbations Ψ of the potential
that belong to a given Banach space £, if

i) the function ρ(X0 Φo -f Ψ), ΨeE, are infinitely differentiate with respect to
Ψ at Ψ = 0; i.e. the derivatives Dnρ/Φ0 exist, as multilinear continuous functionals,
for all positive integers n.

ii) For all ^ !PBe£

n

Dnρ/Φ (X Ψ , ., Ψ ) = V Γf
B \ , . . . , B n ί = l

ρ τ (X 0 ,# 1 , . . . ,β n ;Φ 0 )

whenever the sum in the right-hand side is convergent.
Such derivation relations are equivalent for finite A to the previous relation

(3'). For infinite systems they are an extension of the latter and as a matter of fact
still imply relations similar to (3'), as can be seen by choosing ψ. — δXι, i = 1,..., M.
If we consider an infinite system obtained as the limit of a sequence of finite
systems when A~*oo, they will be a consequence of the relation (3') if for instance
the strong cluster properties hold.

3. Strong Cluster Properties (SCP)

Being given M subsets of points Xί9...,XM and a distance function δ in Zv,
Lδ(X1, ...,XM) will denote the minimal length, with respect to the distance δ, of all
graphs that can be constructed on the points of the setsX l 5 ...,XM and on possibly
arbitrary other points yl9...9yq9 q^O, and are connected with respect to the sets
Xv ...,XM and the points yl9 ...,yq: i.e., if each setX or point yj is represented in
an auxiliary topological space by a point, then the graph obtained in this space is
connected. The length of a graph is the sum of the lengths of its lines. By definition

A tree £Γ o n l 1 ? >..9XM is a graph of M— 1 lines, connected with respect to the
sets Xί9 ...,XM. The length Lb(βΓ) is the sum of the lengths of its lines.

The distances δ considered will be of the form:

δ(x-x') = χ\x-x'\, χ>0 (5)

or

<5(x-χf) = sx log(l + oc\x- x'\) α >0, s > v, (6)

where |x — x'\ is the usual Euclidean distance, and v is the space dimension. Hence
the function e~

δ{x~χ/) will be either equal to e~χJiX~x"i (case of exponentially
decaying or finite-range interactions), or equal to 1/(1+ α|x — x'\)s (case of poten-
tials decaying with a power law).

Let β&i be a class of subsets of TΠ, i = 1,2,.... We shall say that the functions fτ

satisfy a strong cluster property, or SCP, of Type 1, resp. of Type 2, with respect to
the classes ^ , if there exists for each i= 1,2,... a function g. defined on the sets of
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the class M{ and a distance δ satisfying

£ e-«°.*><oo
xeΈv

resp. a positive function u satisfying

Σ M(|X|)<OO

such that the following bounds (7) or (8) respectively, are satisfied:

\fτ(X0,...,XM)\ < Π OtiXi) x Σ Π «M• (8)

M

j"(xo,...,xM)Y\gi(xi)
i = O

The function u considered in Equation (8) will most often be of the form

u{£) = e~δi*\ in which case the term γ[ u(β) is equal to e~
Lδ{3Γ\ The sum Σ *n

Equation (8) runs over all trees that can be constructed o n l 0 , - ,XM The factor
yK*(X0, ...,XM) in Equation (7) is equal to one if all setsX0, ...,XM are disjoint from
each other (no common point in Xt and X if i+j). It is equal to M1!.. .Mp! if the
sets Xt are p disjoint sets 7 1 ?..., Yp occurring M 1 ? . . . , Mp times. It is more generally
equal, if the sets Yv ...,Yp are different but not disjoint, to :

JTQίo,...,XM) = Mγ\..Mp\ Infμι} ^ L _ s u p / χ λ\M (9)fμι}

i = 0

where / x is the family of sets 71 ?..., Yp that contain x.
The function fj will be said to satisfy a SCP of Type 1 or 2 if they satisfy bounds

of the Type (7) or (8) with functions g and δ or u that are independent of A.
As will appear later in Sections 4, 5, SCP of Type 1 or 2 will appear naturally in

various situations. We show below that the Forms 1 and 2 are essentially
equivalent. This fact will be needed in order to get equivalence theorems between
analyticity properties and SCP.

The SCP express both a decrease taking into account the separation of all
clusters with respect to each other and precise bounds, with some uniformity with
respect to M and to the configurations of the sets in the classes ^ . A discussion of
the nature of these bounds in simpler situations has already been presented in
[1,2].

Before outlining the links between the Forms 1 and 2 of the SCP, [Eqs. (7) and
(8)], we first make some remarks.

1. The strong cluster properties on the totally connected functions imply, as
easily checked, bounds on the partially connected functions that do contain the
strong decrease factor

or Σ ΓMO.
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Moreover, it can be proved (see Section 7C) that they imply the bounds (7) or (8)
when the setsX0, ...,XM are disjoint [in which case J^(X0, ...,XM)= 1]. However,
it is not known so far to us if they also imply precise bounds of the form (7) or (8),
when the sets (Xo, ...,XM) are not disjoint.

2. An alternative useful form of the bound (7) is:

M
τ(\fτ(X0,...,XM)\<^(Xι,...,XM)x Y[9i(Xi)xe-LMXo'-'XM)- (10)

i = 0

In view of the definition (9), one has:

Hence (10) implies (7). Conversely (7) implies (10) with each gt being replaced by

2g,
3. There is no restriction in principle on the classes ^St that can be considered.

However, they will usually be chosen translation invariant and the functions g{ will
then also be chosen, or assumed, translation invariant.

The classes Sd{ of interest are, for instance, the class of all sets X in Έ, the class
of all sets with a given number n of points (|X| = n\ certain subclasses of the latter
(for instance, when n = 2, the class of two-point nearest neighbour sets), and finally
the class of all sets X such that |X| fg n.

We now indicate the links between the two forms of the SCP, i.e., the bounds
(7) or (10) and the bound (8). For simplicity, we restrict our attention to the case
when all classes &. and all functions #., z = l ?2,... are identical. The results
described extend the analogous results on the totally connected correlations given
in [2, 3]. In the following, being given a function Ψ defined on the configurations
X in Z\ the norm of Ψ is defined by

ii^ιι = sup £ \ψ{χ)\

Xax

and II ΨWQ will denote the norm restricted to the setsX in the class J*. The subscript
β& will be left implicit if there is no possible confusion.

Lemma 1. The bound (7) implies a bound of the form (8) with u = e~δ\ where

a ' ( x - x ' ) = ! | x - x ' | if δ{x-xf) = χ\x-xf\

δ'(χ - x') = s log 11 + ^ |χ - χ'| I if <5(x - x') = s log(l + α|x - x'|)

and with g replaced by g' = 2gh, where h is any (arbitrary) function on & such that

\\h-%£L

Remark. The function u obtained is always integrable when δ is of the form (5) or
(6) (with s > v in this latter case).
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Proof. Lemma 1 is a direct consequence of the following inequalities:

Min Lδ.(F)£LδQC0,...9XM), (12)

M

Jaxv--.,XM)ύMί\...Mp\γ[2h{X^ (13)
ί = l

and of the fact that the number of trees on M{ points is always larger than \M{\.
The inequality (12) is proved by methods analogous to those of [1], resp. [3],

when δ is of the form (5), resp. of the form (6).
The inequality (13) is obtained by replacing in the right-hand side of (9) each λi

by l/ft(X\).

Remark. If the class 36 contains sets X such that the distance between the points of
X can be arbitrarily large, the function h (X~>h(X)) necessarily increases when the
points of X are separated, since

The function h may, however, be chosen such that this increase is slow.
This factor arises from the form (13) of the bound obtained above on Jί. It is

conjectured that Jf satisfies, when L{XU ..., XM) = 0, the more refined bound:

V Q C X ) L l ( = 0), (14)

where C is independent of M, Xv ...,XM and N{β~ L{3~) — 0) is the number of
trees o n l l 5 ...,XM of zero length, i.e., such that all lines of 3~ join two identical
points.

This result has been checked in a number of cases, but it is not proved in
general so far. If proved, it would allow one to obtain a stronger version of Lemma
1 in which g' = Cg, where C is a constant, instead of g' — hg. This would allow one
to work with strong cluster properties of the form (7), (8), (10) in which the
functions X-+g(X) would only depend on the number |X| of points inX, and would
yield in turn simplifications and improvements of some of the results described in
Sections 4-6.

Lemma 2. Let 7V(J*, J* o )= Max \B\ be finite, and let δ be a given distance function.

Then: the bounds (8) with u(/) = e~m imply bounds of the form (7) or (10) with δ
replaced by any distance function δ" such that e~(d~δ'r) is integrable

xeZv

and with g, g0 replaced by Cg, Cogo where C and Co are constants independent of

Proof. Let: d(x) = e~{δ(x)~δ"{x)\

For any tree £Γ on Xo, ...,XM, one has clearly:
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Lemma 2 is then a direct consequence of the inequality:

Σ Y\d(ηs^(xί,..,xM)DM, (16)

where D is a constant independent of M,X0, ...,XM. The inequality (16) is itself the
particular case n = 0 of a more general inequality that will be needed later and that
we now state.

Lemma 3. Let SS0, 3$^ $2 ^e dasses of subsets of TΠ and let

^v^2)= Max |£|

Let Ψ be any function on &2 with II ψ\\^2<co, and d be any positive integrable
function. Then for any Xoe@O9X1,...9XMe0#1:

Σ Σ I
..,Bne®2y{Xo,...,XM,Bu...,Bn)ί=l £z9~

M...,XM)(C\\ψ\\)nn\, (17)

where C^2eί £ d(x))N.

Proof We first show that given any classes J ^ , ^ 1 ? . . . ,^ m such that
fc = 0,...5m and given functions Ψk on J*fc with H ιF fcll^k<oo? one has:

m

Σ Σ Π IW)I Π

d(x)ψ f [ llyjl. (18)
J

In fact, the left-hand side of (18) can be written as the sum over all trees ^(0, . . . , m)
constructed on the pomίs (0, ...,m) of

Σ ΠinWI Σ

where the last sum runs over all trees ^'(XQ, -,B'm) that reduce to the given tree
^ ( 0 , ...,m) in the auxiliary topological space where the sets X0,B

f

v...,B
r

m are
replaced by the respective points 0,..., m. For any given tree ^"(0,..., m) this latter
expression is bounded by

as can be seen by induction on m, integrating at each step over one of the points of
the tree which is an end point of only one line of ZΓ.

Equation (18) is then a consequence of the fact that the number of trees
..5m) is ( + l f - 1



Analyticity in the Potential 139

The bound (17) follows from the bound (18) if one chooses m = M + n,
M

Bk = Bk_M, k = M+1,...,M + π, Ψk=Ψ, k — M-\-1, . . . , M + w a n d Ψk= Σ λtδx,
ί = 1

fe = l, ...,M, together with the remark that the left-hand side of Equation (18) is
then larger than:

-F^-Π/f^ Σβ Πl^) l^ z Σ B Γ

7 = 1

and that

Remark. The above results can be slightly improved by making use of the following
formula which gives the exact number N(pv...,pM) of trees on M sets of
respectively p1,...,pm points (see Appendix):

M I M \M-2

N(p1,...,pM)=Y\Pί(Σpi) • (19)
1=1 \ί=l /

4. Low Activity Results

In this section we prove the strong cluster properties of partially connected
correlations at low activity.

We recall that the potential Φ includes the one-body part, the chemical
potential; Φ ( 1 ) will denote the potential without this one-body part and z will be

the activity function: xeZv^zx, with llzll = sup \zx\.
xeΈv

Theorem 1. Given a lattice gas with potential Φ ( 1 ) and a distance δ of the form (5) or
(6) such that:

IIΦ(1)eHI<oo (20)

there exists zo((5)>0 such that the correlation functions Q\ satisfy for llzll <zo(δ) and
all A finite or infinite the strong cluster property:

|#ί(Y0,.. .,XM z, Φ^)\ < Clχ°l + M^(X0,.. .9XM)

.e-Ls(Xo,...,χM)7 (21)

where C is a constant independent of A, M, Xo, ...,XM.

Remark. In the case of a two-body potential Φ ( 1 ), the condition (20) is always
satisfied with distance functions δ(x) = χ'\x\, χ'<χ or δ(x) = (s — v — ε)log(l + α|x|),
ε > 0 if Φ ( 1 ) decreases at infinity at least like e~χr or l/rs, s>v.

Proof A complete proof of Theorem 1, which involves long technical parts, has
been obtained in [6] through the study of non-integrated Kirkwood-Salzburg
equations for the functions ρτ

Λ and of their kernel.

We present here a different, shorter proof, which provides, however, so far only
a slightly weaker form of Theorem 1. In the case of classes of subsets and of



140 D. Iagolnitzer and B. Souillard

potentials whose maximal number of points is finite, it would provide Theorem 1
itself if the conjecture (14) on the factor Jί was proved. In contrast to the method
of [6], this method does not require a detailed knowledge of series expansions of
the functions and it directly makes use of analyticity properties that are known
independently [whereas these properties are rederived in the same time as the
cluster properties in [6]). It can therefore be adapted to a larger class of problems.

The slightly weaker form proved here is the following. First, instead of (20), we
shall assume that Φ ( 1 ) and δ satisfy

IIΦ ( 1 )βL^il<oo, (22)

where g is some positive function on the configurations of 7Π such that \Q~ ι II < oo,
and it is also assumed that

N(@,@o) = Max \B\

is finite and that Φ ( 1 ) ΞΞ0 if \B\>N{Φ\ N(Φ)<oo. Second, the result obtained will
be, instead of (21), the following SCP:

\ρτ

Λ(X0,...,XM z,
i=l

me~Lό{X0,...,XM) (23)

where C is, as above, independent of A, M, Xθ9 ...9XM.
The proof has two steps. First, it is proved that for z given and Φ{1)~0 the

functions ρτ

Λ satisfy a SCP. Second, it is shown that a SCP at Φ{i) = 0 with a nice
dependence of the bounds with respect to the parameters implies a SCP of the ρτ

Λ

for any Φ ( 1 ) satisfying (22) and for z small enough. This second step can be
considered in some sense as a particular case of Corollary 2 of Section 6.

Let us consider for any finite A, the following series expansions, derived from
(3), of ρτ

Λ with respect to the potential:

Σ^r Σ Π
n^O " Bu...,Bn i= 1

θ). (24)

Let now B'v...9B'm stand forX l 9 ...,XM, Bl9 ...9Bn. First it can be seen that at
Φ ( 1 ) Ξ O one has:

= 0) = 0 if L ( X o , F 1 , . . . , F J Φ 0 . (25)

This result follows from the relations between the function ρτ(x1, ...,xN)
ρτ(Xv...,XM) and ρτQCί9...,XM) which arise from the definitions, and from the
fact that ρ τ (x l 5 ...,xN;z; Φ ( 1 ) = 0) = 0 if the points x l 5..., xN do not all coincide with
a common point x. This latter fact can be checked through the usual series
expansions of ρτ with respect to z at Φ ( 1 ) Ξ O . Alternatively one can use simple
factorization properties of correlations that occur when Φ ( 1 ) Ξ O .

When L(X0,B'l9 ...,B'm) = 0, the following bounds moreover hold:

\ρ*QC09 B'l9..., B'm z, Φ^ = 0) < Jf{B'l9..., Bm)C(zrC'(z)^ , (26)
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where C\z\ C"{z) are independent of Λ, ...,X0, B'ί9 ...,B'm9 and where C'(z) can be
chosen arbitrarily small if Hz II is chosen sufficiently small.

The bound (26) is obtained by observing first that, in view of the derivation
relations (3') one has :

where the sums Σ and Σ" run over the sets B[ of B'v ..., B'm with respectively only
one point and more than one point.

Well-known low activity results [7-9] and straightforward adaptations of
these results for complex potentials ensure that for any z there exists R(z)>0 and
C\z) independent of Λ, m,X09 B'ί,...,B'm such that the function ρΛ(X0) in the right-
hand side of (27) is analytic with respect to the variables μfc5 fc=l,...,m, in the
region \μk\<R(z) if k is associated with a set of only one point and l lΓ'X^Ji <R{z)
otherwise, and satisfy in that region the bound

| ^ ( X O ) | < C ^ ) I ^ I . (28)

Moreover, R(z) and C"{z) can be chosen uniform in any region of the form HzII

< z0, and Max R(z) is arbitrarily large if z0 is chosen sufficiently small.
||z||<zo

The bound (26) then follows from a Cauchy formula expressing
(dm/(dμ1...dμm))ρΛ as an integral of ρΛ{X0) over contours \μk\ = λk chosen in the
region of analyticity described above, and from the definition of Jί.

Now Equations (25) and (26) ensure that the functions ρτ

Λ satisfy, when Φ ( 1 ) Ξ O ,
the following SCP:

o,B' l 9 ...,B'n;z,Φ(1) =

where δr is an arbitrary distance function.
By using Lemma 1 of Section 3 and noting that

for any tree 3~ constructed on Xo, . . . J M , Bl9...,Bn, one obtains from the
Equations (24) and (29):

M

ί = l

Σ Π « O , (30)
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where u(/) = e~{δ'~δ){^ and where the distance function δ' can be chosen arbitrarily
large.

Finally Lemma 3 of Section 3 and the fact that C(z) is arbitrarily small if HzII is
sufficiently small provide the announced result. Q.E.D.

5. Extension Theorems

The following theorem allows one to extend strong cluster properties from some
region where they are known to the whole domain of analyticity. It is a general
form of previous particular results given in [10,11] (in the case of "weak" decay
properties and of finite range interactions) and in [2]. Examples of applications
will be given later in this section. We note that the theorem follows from the study
of interpolating bounds for families of analytic functions and that the method can
be applied to more general problems.

Let ξ be a one-dimensional complex variable, which will be identified later for
applications with a complexified variable of a path variable in the space of real
potentials. Let % be a complex neighbourhood of a point ξ0 and let @ be a simply
connected domain in (C containing °U. Let ξ->t(ξ) be a conformal mapping from Θ
onto the unit circle | ί |< 1 chosen such that t(ξo) = 0. Finally let d>0 be such that
the domain \t\<d belongs to t(tf/). Then one has, either for the infinite system, or
alternatively uniformly in A if the assumptions are made uniformly in A :

Theorem 2. Let fτ(Xφ...,XM\ξ\ X{e05b i = 0, . . ,M 5 be a family of functions f
depending on a complex parameter ξ such that:

i) the functions fτ satisfy the SCP (7) for all ξ in °U (uniformly with respect to

ξ);
ίi) they are analytic with respect to ξ in @) and satisfy there bounds of the form:

M
I fτ(V V P\\ ^ ΓT n'(V \ Λ/YV V \

ί = 0

where the functions g\ are independent of M,X0, ...,XM.
Then the following bounds are satisfied for all ξ in Q) such that \t(ξ)\>d:

M

\fτ(X0,...,XM;ξ)\<^(X0,...,XM) Π g'l(Xi)Co(O

•exp
(32)

l o g d <^~υ> ' _

where C0(ξ) is independent of M,XΌ,...9XM and g"QC?) = Max(gβ^^ g'βCJ).

The proof is similar to that of the second work of [2] : one considers the series

expansion fτ = ]£ tnγn of fτ with respect to ί, whose convergence follows from the

analyticity assumption for |ί| < 1. Let rco(Xo,.. .,XM) be the first integer larger than
(l/\logd\)Lδ(X0, ...,XM). The coefficients yn are then directly bounded for n<n0 or
n ̂  n0, respectively, via a Cauchy formula, by using the bounds (7) of the hypothesis i)
and the analyticity for |ί| <d in the first case, the bounds (31) and the analyticity for
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|ί| < 1 in the second case. The resummation yields the result (32) with

Remarks, i) The bounds (32) are SCP at any point ξ in 0 , with <5'=((log|ί(ξ)|)/
\ogd))δ, if δ is of the form (5). If δ is of the form (6), they are SCP when e~δ' is
integrable, i.e., when (log|ί(ξ)|/logd)s>v.

ii) In the case of potentials that decrease like r"s°, the use of a domain Q) of
analyticity in the activity z alone cannot provide strong cluster properties, and
hence satisfactory integrability properties of the functions / Γ , at all points z of 2.
In fact, (log|ί(z)|)/logd)s0 always tends to zero when z comes close to the boundary
oί<3. However, the use of an analytic continuation in the space of potentials allows
one, in some situations, to link a given system that corresponds to a given z (and to
a potential decreasing like r~So), to a system whose interaction potential at small
values of \t(ξ)\ decreases much quicker than r~So. This in turn allows one in some
cases to reobtain SCP for the given system even at activities that were excluded
above: see example in [12], where corresponding results on the decay of
correlations for ferromagnets are given.

iii) The use of a series expansion in the proof of Theorem 2 in order to get
interpolating bounds can be alternatively replaced by the use of results on
subharmonic functions [13], or on holomorphy envelopes [14]. These methods
would provide analogous results. The method based on subharmonic functions
allows one to restrict the bounds (7) of the hypothesis i) to the points ξ of some
arbitrarily small arc in Ή, not necessarily closed. This extension is, however, not
required in applications in the present paper. The method of [14] yields on the
other hand an improvement of the constant C0(ξ\ but does not improve the rate of
decay.

iv) As a matter of fact, the rate of decay obtained in Equation (32) is, at least in
some situations, the best possible one, according to the assumptions. This can
easily be checked directly [14], when (l/\\ogd\)Lδ{X0,...,XM) is an integer, by
considering the analytic function

M
r(X X ) ΓT a"(X) x tLδ(%°> ->%My\i°&d\

Example of Applications. In physical situations, it is sometimes possible, being
given {z, Φ(1)}, to consider a family of potentials and activities ξ->{z(ξ\ Φ(1)(ξ)}
depending on a complex parameter ξ, ξe@ such that {z(ξ0), Φ{1)(ξ0)} = {z, Φ(1)} for
a given ξ0 and such that:

i) for small values of ξ, the system belongs to its low activity region, and the
results of Section 4 then ensure condition i) of Theorem 2

ii) for ξeS), certain properties of localization of the zeros of the partition
function under appropriate perturbations of the potential, or alternatively analy-
ticity properties and bounds on the correlations, are satisfied.

Various particular examples of such situations will be found in [10, 15, 16, 2,
17, 12]. In connection with ii) and hypothesis ii) of Theorem 2, we mention here
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some general results. It will appear in particular that bounds of the form (31) are
linked with the analyticity of the system with respect to perturbations of the
potential.

Let E{β) denote the space of potentials on the class Si {ΨeE(Oί)τ±Ψ{X) = O if
X$3ί\ let ξ-+Φ'(ξ) be an analytic path from [0,1] to E(SS) and let {Φ{ξ)} be the set
of potentials Φo + Φ'(ξ), where Φo is a given, arbitrary potential. Then one has:

Theorem 3. //, for all ξ real in the closed segment [0,1], allX0 in a given class £%0

and all A (respectively at A infinite if the derivation relations (A) hold), the functions
ρΛ(X0,Φ(ξ)+Ψ) are analytic with respect to Ψ in E(β) in the region \\ψ\\<ε(ξ),
ε(ξ)>0, and are bounded there in modulus by C(ξfXo\ then the functions
Q\{X0, BV ..., BM Φ{ζ)) are analytic with respect to ξ in some complex neighbourhood
°f [0,1] and satisfy there a bound of the form

\Qτ

Λ{X0,Bί,...,BM;Φ{ξ))\<.^{B1, ...,BM)C^DM, (33)

where C and D are independent of Λ,M,X0,B1,...,BM (respectively of M, Xo,

BU...,BM).

Before giving the proof, we first state:

Corollary 1. If the partition function ZΛ(Φ(ξ) +Ψ — λδXo) is different from zero for
any ξ real, £e[0, l ] , ΨeE(β\ \\ψ\\ ^ε(ξ), Xoe@o and \λ\<oc{ξ\ where a is some
strictly positive function, then the functions QT

A(XO, Bv ..., BM Φ(ξ)) satisfy the same
properties as in Theorem 3.

Remark. If the analyticity properties oϊ ρΛ(X0), or the localization properties of the
zeroes of ZΛ are known only in the region \\gΨ\\ <ε(ξ), the same conclusing still hold

M

in Theorem 3 and Corollary 1 except that an extra factor {"] g(Bi) has to be

included in the bounds (33). This type of condition is the one that arises as a matter
of fact in some situations, for instance from the results of [17].

Proof of Theorem 3 and Corollary 1. We first prove Theorem 3. Let ξ0 be a real
point in [0,1] and let us consider

where ξ can be complex.

The assumption of the theorem ensures that the functions ρΛ(X0 Φ{ζ0) +
are analytic with respect to the variables λt and ξ in the domain:

M

Σ <ε(ξo)(ί-η),

\\φ(ξ)-Φ(ξo)\\<ε(ξo)η,

where 0<//<l .
From the second domain, it follows that the functions ρJ(X0,jB1? ...,BM;Φ(ξ))

are analytic with respect to ξ in some neighbourhood of ξ0. From the first one a
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bound of the type (33) follows for all ξ in the previous neighbourhood of ξ0,
through the derivation relation (3), or the derivation relation (A) if one works only
with the infinite system, and through a Cauchy formula and the use of the
definition of Jf.

The compacity of the segment [0,1] then allows one to obtain Theorem 3.
Concerning Corollary 1, analyticity follows directly from the hypothesis and

hence the result follows from Theorem 3 if the needed bound on ρΛ(X0 Φ(ξ) -f Ψ)
can be proved.

The partition function ZΛ(Φ(ξ0)+ Ψ — λδXo) can be written [see Eq. (4)] in the
form aeλ + b, where a and b depend on Xo, Φ(ξ0), Ψ and A, and ZΛ is by
assumption different from zero when \λ\<a. Since ρΛ(X0;Φ(ξ0)+Ψ) is the
derivative of \ogZΛ(Φ(ξ0) + Ψ — λδXo) with respect to λ at λ = 0, it can be rewritten
as:

ρΛ(X0;Φ(ξ0)+Ψ)=±- § - 4 ^ τ y , β < l , (34)
2Λ% μ| = εα ae +b λ

where we have used:

Let λ0 be chosen such that e λ°^= —b/a, \lm(λ — λo)\^π. One has (aeλ/aeλ

= (l/l-e(λo~λ)). On the other hand ZΛ(λ0) = aeλ° + b = 0 and hence |
Equation (34) therefore provides a bound on ρΛ(X0 Φ(ξ0) + Ψ) that is clearly
independent of Xo, Φ, Ψ, A and depends only on the distance of λ in the
integration contour to the boundary of the domain |A|^α, that is (l—ε)a(ξ0).

6. Strong Cluster Properties and Analyticity—General Results

In the previous Sections 4 and 5, SCP were proved in various situations. We intend
here to show that conversely strong cluster properties at a real point or in the
physical region imply analyticity of the system with respect to the potential or to
classes of perturbation of the potential. They moreover imply SCP in appropriate
neighbourhoods of the physical region. These results will then lead to statements
of equivalence between analyticity and SCP.

For simplicity, we shall consider in the following the case when ^ 0 is the class
of all subsets in Έv with JV points or less, and 0ί is the class of all subsets with p
points, p ^ N or is the union of such classes. Otherwise the results would hold for
the correlations ρ(X0), Xoe^o and for partly connected correlations
ρΓ(X 0,X 1,...,XM),X 0e^ 0,X ίe^,ί=l,...,Mbuttheywouldnotnecessarilyholdfor
all correlations.

Let g0, g be functions defined on J*o, J* and let E($, g) be the Banach space of
potentials Φ defined on 3#, including possibly the chemical potential, and
satisfying: \\φ\\g^=\\Φg\\m<oo. Then one has:

Theorem 4. Let Φo be a given potential
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1) If the correlations have a thermodynamic limit at Φo and if the partly
connected correlations ρ\ satisfy at Φo for all A a SCP of the form (8) with respect to
£$Q, 3§, then the correlations have a thermodynamic limit in some complex neigh-
bourhood of Φo in {Φ0-\-E(&,g)} and this limit is analytic with respect to the
potential in this neighbourhood.

2) // the correlations of the infinite system satisfy the derivation relation {A) in a
real neighbourhood of Φo in {Φ0 + E(^,g)} and verify there a SCP with respect to
3$0,£$, then the correlations are analytic with respect to the potential in some
complex neighbourhood of Φo in {Φ

Proof We first prove Part 1 of the theorem. We consider the series expansion

QΛQC0;Φ0 + Ψ)= Σ i Σ

'QΛQ£o>Bi>->Bn;Φo) (35)

which, as already mentioned, follows from the derivation relations (3). Lemma 3
ensures the absolute convergence of that series and the analyticity with respect to
Ψ of ρΛ(X0 ;Φ0 + Ψ) in the region II ψ\\m g <ε for all finite A ε is strictly positive
and independent of A.

It follows, on the other hand, from the hypothesis that the functions
QΛIXQIBX, ...,Bn;Φ0) have a thermodynamic limit ρτ for all X 0 , J B 1 ? ...,JBW, Bte^.
The SCP at Φo then ensure again the absolute convergence of the series at the limit,
and one checks, in view of the definition of analyticity on Banach spaces [5] 2 that
this series defines also an analytic function in the region WψWgg g<£.

Finally, one shows that ρΛ(X0 ;Φ0 + Ψ) tends indeed in the τl->oo limit to the
function defined by the sum of this latter series at A infinite. In fact, for any given α,
the SCP and Lemma 3 allow one to choose ££ and M0 such that, for each one of
the series obtained at A finite or infinite, the sum of all terms corresponding either
to n>M0 or L(X0,Bv...,Bn)>J£, where L(XO,BV...,BO) is the distance between
all points of the setsX0, Bί,..., Bn, is less than α/4. On the other hand, the difference
of the respective sums of the remaining terms, whose number is finite, is bounded
in modulus by α/2 for A large enough, by virtue of the convergence of ρτ

Λ to ρτ at

Φo
These results hold so far for the correlations ρ(Xo\Xoe J*o. They can be proved

in a similar way for the functions ρτ{X0,Bv ...,Bn)9Xoe$tO9 Bte^. The relations
between the correlations and partly connected correlations then yield the results
for all correlations.

The second part of theorem is obtained as follows. Let us consider the
expression:

Σ i Σ f\Ψ{Bi)Qτ<X0,...,Bn;Φ0). (36)
M ^ O n - Bι,...,Bn i= 1

^ Bm

2 Being given a formal series ]Γ —Λ n(Ψ, . . ., Ψ) where each An is a multilinear continuous

functional Ψv ...,Ψn-+An(Ψv ...,Ψtι), this series defines an analytic function in a neighborhood of

^ = 0 if IUJI <Cnn\, where IUJI = Sup \An(Ψγi..., Ψn)\
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The SCP at Φ o and Lemma 3 imply, as previously, its absolute convergence when
II ψ\\m^g<&, and the analyticity of the function thus defined. On the other hand the
derivation relations and the SCP in a real neighbourhood of Φo ensure, in view of
the Lagrange version of Taylor series [18], applied here to ρ(X0, Φ0 + λΨ\ that the
expression (36) is equal to ρ(X0 ;Φ0 + Ψ) on the real.

Finally the result is extended to all correlations as in the previous
case. Q.E.D.

We now consider a distance function δ' of the form (5) or (6) and the Banach
space E{β, g, δf) of potentials ψ on the class & such that: IIΦII m g δ, = II ΦgeLό' II < oo.
Then one has:

Corollary 2. Let Φo be a given potential and let the hypothesis of Part 1 or of Part 2
of Theorem 4 hold. If moreover the function u{i) in the SCP is of the form
u(ί) = e~δ^\ then for all distances δ' such that

there exists a neighbourhood % of Φo in {Φ0-\-E(^,g,δf)} and a constant C such
that, for all A finite and infinite, resp. for A infinite, the functions ρτ

Λ satisfy for all Φ
in °U the SCP:

M

,xu Φ)\ <go(Xo) Π
ί = l

Proof This result is proved by the same methods as Theorem 4. It is sufficient to
remark that, in the domain considered, one can first extract a common factor

e-Lό,(Xo,...,XM) of a | ] t e r m s o f t k e s e r i e s > Q.E.D.

We are now in a position to state the equivalence theorem between SCP and
analyticity that follows from the results of Sections 4 and 5 and the previous
results of this section.

For simplicity we shall restrict our attention to exponentially decreasing
potentials, the corresponding distances δ being of the form (5). As already
mentioned, the functions involved below can, on the other hand, be chosen with
slow increase [more precisely \g(B)\<C(\B\)eLδ"{B) where δ" is a distance function of
the form (6)].

Let Φo be a real exponentially decaying potential, i.e., such that IIΦoe
Ldll <oo

for a certain δ of the form (5). Let 3% be a class of sets of TL\ N(β) = N < oo. Let δ be
a real subset of the space of potentials such that, for all Φ in δ, there exists an
analytic path ξe[0, ϊ]-*Φ(ξ)eδ satisfying:

ii) Vξoe[0,1], there exists a complex neighbourhood %(ξ0) of ξ0 and a
distance function δξo of the form (5) such that, for any ξ in %(ξ0), \\Φ(ξ)eδξo\\ < oo.

(The most simple example of such a set δ is the set of potentials {(1 +λ)Φ0}
where λ belongs to a real open segment including [0,1].)

Then the following equivalence theorem holds, either uniformly for all A finite
or infinite, if the hypothesis hold uniformly for all finite A and if there exists a
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thermodynamic limit of correlations on S, or alternatively only for the infinite
system if the hypotheses hold only for the infinite system and if the derivation
relations (A) are satisfied in S.

Theorem 5. The two following properties i) and ii) are equivalent:
i) for all Φ in the real set <f, the functions ρτ satisfy a SCP with respect to the

classes &tφ 0β
ii) a) the functions ρτ satisfy a SCP at the point Φo with respect to the classes

b) there exists g\ g'o such that, for all Φ in <#, the correlations ρ(X, Φ+Ψ) are
analytic with respect to Ψ in a region II Ψg'W <ε(Φ), ε(Φ)>05 in E(β,g'\ and satisfy
there for Xo e J*o the bound \ρ(X0 ;Φ+Ψ)\< g'0(X0).

Remark. If $ intersects a region where strong cluster properties have been proved
(such as the low activity region), then condition a) of property ii) is automatically
satisfied and can be removed from the statement of the theorem.

Proof The proof follows from previous results or from simple adaptations of these
results and we therefore only briefly outline it.

Property i) contains condition a) of property ii) and it implies condition b) of
property ii) in view of Theorem 4. The bounds on correlations are obtained by a
resummation of the series used in the proof of Theorem 4.

Conversely, let Φ be a point in $ and let ξ-*Φ(ξ) be the path previously
introduced in the definition of S. The assumption a) of property ii) implies, in view
of Corollary 2 of Section 6, that the functions ρτ satisfy a SCP at all points Φ(ξ\
\ζ\<s for some ε >0. On the other hand, Theorem 3 ensures, in view of assumption
b), the analyticity of the correlations with respect to ξ in a complex neighbourhood
of [0,1] and appropriate bounds on the functions ρτ. Theorem 2 then allows one
to obtain property i).

7. General Remarks

A) The strong cluster properties yield also, as a matter of fact, the analyticity of
the pressure and not only of correlations.

B) At phase transition points, it can be checked that strong cluster properties
cannot hold uniformly in A with respect to sets of the class J* corresponding to the
perturbations of the potential which are at the origin of the phase transition.

On the other hand, the strong cluster properties with respect to sets of this class
might a priori still hold for the infinite system itself in pure phases. If the derivation
relations hold for the infinite system at least in a given part of a neighbourhood of
a phase transition point (e.g., on a given side of the phase transition region), a
slight adaptation of the previous results then would again yield analyticity
properties at the phase transition point considered and hence the existence of
analytic continuations through the phase transition regions. Whether such
analyticity properties hold or not is today an open question.

C) An open question of interest in the framework of the present paper is to
know whether the strong cluster properties of the totally connected correlations
imply the strong cluster properties of partially connected correlations. If this was
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true, the strong cluster properties of totally connected correlations, which are
linked with analyticity with respect to the one-body potential, or magnetic field
(see [2] or Theorem 4 of the present paper), would be sufficient to yield analyticity
with respect to the potential. This question is related to a result of [10], according
to which analyticity with respect to the activity is sufficient, under certain con-
ditions, to imply also the analyticity with respect to the reciprocal temperature β.

We show in Appendix 2 that the strong cluster properties of totally connected
correlations do imply the strong cluster properties of partially connected cor-
relations when all subsets Xl9 ...,XM are disjoint (XinXj = 0 if ίφ j , ij = 1, ...,M).
When the subsets Xv ...,XM are not disjoint, we do not know, however, so far if
the same result holds in general, although it can still be checked in some particular
cases. The absence of the precise bounds (7) or (8) in these situations prevents one
from deriving corresponding analyticity properties.

Acknowledgements. We are glad to thank M. Duneau and P. Renouard for useful discussions. One of us
(B.S.) is also indebted to the Theoretical Physics Division of CERN where part of this work has been
done.

Appendix 1

We present here the proof of the following Lemma, which has been obtained by
M. Duneau and one of the present authors (B.S.).

Lemma. The number N(pv ...,pq) of trees on q sets of respectively pv ...,pq points is

given by the formula:

N(pl9...;pq)= Π
ί = l \ ί = l

Proof The proof is obtained by induction on the number q of sets. lfq = ί, Nip^ is
set equal to 1 by convention. This is compatible with Equation (37). If q = 2, the
result is trivially checked.

The following induction relation then holds:

N(p09pl9...9pq)= Σ PolYίPi
lC{l,...,q) iel

I Φ 0

(38)
iel

It is obtained from the definition of trees, taking apart the sets i, iel which are
connected to the first set of p0 points directly by a line. Since 7#=0, there are at
most q blocs in the factor N in the right-hand side of Equation (38).

Let M = Σ Pt then :
ί = 0

jel l jed {iel
JΦ0

q

IC\i\ = kCj
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On the other hand:

\I\=k

Hence:

N(Po,...,Pll) =

= (ΠP.

Appendix 2

The totally or partially connected correlations in the following lemma are
considered at a given, common, potential Φo that will be left implicit. For
simplicity we consider only the case of exponential decay. The possible index A is
left implicit.

Lemma. // the totally connected correlations ρτ(X) = ρτ(x1, ...,xN) satisfy the
following S C P :

\ρτ(X)\<C^e~χL{x^-XN) (39)

when all points xl9 ...,xN are different from each other, then the partially connected
correlations satisfy, for any given χf<χ, the bounds:

M
Σ \Xι\

when the subsets X 1? ...,XM are disjoint. [The constant C in the bounds (40) may
depend on the choice of χ' but is independent ofXv ...,XM and M.]

The bounds (40) are SCP in the sense of Section 3 when the subsets Xv .. .,XM are
disjoint 3, if we restrict for instance our attention to subsets X. whose maximal
number of points is less than some fixed integer N. The functions gt are then equal to
CN.

Proof The partially connected correlations can be expressed as follows in terms of
totally connected correlations when the subsets Xv ...,XM are disjoint:

ρτ(Xv.. .,XM) = Σ Π QT(x(πj)) ( 4 1 )

where the s u m £ in the right-hand side runs over all partitions π 1 ; . . . , πk of the set4

(J Xt into subsets X(πx),.. .,X(πk) that are connected with respect to the given

3 We recall that one has in this case ^V(Xl9 ...,XM) = 1
4 | J I j ί s the set of all points of the lattice that belong to one of the subsets Xt



Analyticity in the Potential 151

subsetsX ί 9.. .9XM

5 the functions ρτ(X(πj)) are here totally connected with respect
to the points of the sets X(πj).

Being given any positive ξ, Equation (41) can be likewise written in the form:

ξΣlX'lρτ(X1,...,XM)= Σ [][»/«]. (42)
{nu...,nk)ηXu...,XM j=l

Hence:

Vxx

\ξ ρτQC1,...,XM)\< X e j
(πi,...,πic)c/Ii,...,lM

• Π \Qτ{X{πyL{X{πj))ξWπj)][\. (43)
. 7 = 1

In Equation (43), L{X(π^)) is the minimal length between all points of the set
X(πj) as defined is Section 3, and it can be checked that for any partition πv . . . ,π k

that is connected with respect to Xv ...5XM, one has:

)^e-Z'L(x1,...,xM)ϊ (44)

Hence it follows from Equation (43) that

Y k
π i , . . . , π k j = l

where the remaining sum Σ has been extended, as is possible, to all partitions of

(JX . To prove the bounds (40) it is therefore sufficient to show that, for an

appropriate choice of the constant ξ, this sum is bounded by C"Σ^Xι\ where C"

is independent of Xv ...,XM

 a n < ^ ^

The proof of this last result can be obtained by using a method communicated

to us by H. Kunz. Let us put below for simplicity X— {JXt and f(Y)

= \ρτ(Y)eχ'L{Y)ξW\. One has:

Σ Π/αr(π,))^ Σ i Σ/Wf (46)
n πkj=i t i l κ : rex J

^ X iflXΊSupΣ/dOf, (47)

where the sums X in the brackets of (46) and (47) run over all subsets Y of points of
the lattice that are included inX or contain a point x. The fact that all points oϊX
are different from each other has been used.

5 I.e. such that a connected diagram of M vertices is obtained when each Xt is identified with one
vertex (ί = 1,..., M) and when Xtχ, Xt2 are joined by a line whenever one (or more) xti in Xtι and one (or
more) xt2 in Xt2 belong to a common πj{j=l, ...,k)
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The SCP (39) ensure for any given integer n that

Sup £ pτ(v\oχ'L(Y)
X Y3X

\Y\=n

where C" is independent of yv ...,yn and of n and depends only on C and on the
choice of χf<χ. Hence, if ξ is chosen such that C'"ξ<l, one obtains:

Sup £ /(Y) S X (C'"ξγ = * . (48)
x Y3X n^o 1 C ζ

The announced result follows from the remark that the right-hand side of (47)

is exp[|X|Sup £ f(Y)\ which leads to C = ξ~ι exp ^ w
[ x y 9 X j [1 — C ς

in Equation (40).
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