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Abstract. We use the holonomic character of Feynman integrals to describe
their singularity structure explicitly in some simple cases. The results in §1 show
that under moderate conditions Feynman amplitudes can be locally expressed
essentially in terms of Legendre functions near the points where two positive-α
Landau-Nakanishi surfaces meet. Related topics such as hierarchical principle
in perturbation theory are also discussed in terms of holonomic systems
involved. In §4 we use the concrete expressions for Feynman amplitudes
obtained in § 1 to discuss the validity of Sato's conjecture.

Introduction

The purpose of this paper and subsequent ones is to investigate the singularity
structure of the Feynman integral by making use of the systems of micro-
differential ( = pseudo-differential) equations that it satisfies. In this paper we
confine ourselves to the case where all the relevant particles are massive. For
simplicity we also assume that they are spinless.

Since Sato [19] presented a very challenging conjecture that the 5-matrix
should satisfy a holonomic system ( = maximally overdetermined system) of micro-
differential equations whose characteristic variety is confined to the union of all
possible Landau-Nakanishi varieties1, many results have been established to
support his conjecture. See Kashiwara and Kawai [5], Kawai and Stapp [10], and
references cited there. Especially, Kashiwara and Kawai [6] has established the
fact that every Feynman integral satisfies a holonomic system of linear differential
equations whose characteristic variety is confined to the extended Landau-

* Supported in part by NSF MCS 75-2333
** Supported in part by NSF GP 36269
1 Sato [19] implicitly assumes that there is no accumulation of the masses of relevant particles
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Nakanishi variety2. However, the utility of this fact, i.e. the holonomic character of
Feynman integrals has not yet been fully demonstrated in these articles. This is
mainly because the structure of the holonomic system involved is, in general, too
complicated to analyze it explicitly, at least at the present stage of the theory of
holonomic systems.

In view of this situation, we confine our investigation to rather simple cases in
this paper and show how the holonomic character of the Feynman integral can be
effectively applied to the investigation of the singularity structure of Feynman
integrals in such simple cases. More concretely, our plan is as follows: In § 1 we
determine the singularity structure of Feynman amplitude near the points where
two positive-α Landau-Nakanishi surfaces meet. (See Theorem 1.1 for the precise
conditions.) Our results in this section and also in §3 will be of crucial importance
in the global study of Feynman integrals, such as the monodromy problem. (See
Speer and Westwater [22], §6. See also Regge [16,17] and Regge et al. [18] for the
related topics.) In §2 we discuss the hierarchical principle in the strict sense
(Landshoff et al. [11]) in terms of the algebraic structure of the holonomic systems
involved. The result in this section has a close connection with the result of
Kashiwara and Kawai [7]. As a by-product of the argument in this section, one
can understand the relationship between the hierarchical principle in the strict
sense and that in the weak sense in terms of the algebraic structure of the
holonomic systems involved. In §3 we determine the canonical form of the simple
holonomic system whose characteristic variety is the conormal set of the variety
which has the cuspidal singularity.

In the last section, we examine in some simple examples whether the
employment of the extended Landau-Nakanishi variety is necessary or not to
describe the characteristic variety of the holonomic system of micro-differential
equations that a Feynman integral satisfies. The result is dependent on the space-
time dimensionality. Our argument is closely tied with the results obtained in §1.

Throughout this paper we use the same notations as in Nakanishi [13], Sato et
al. [20] (hereafter referred to as S-K-K [20] for short), Kashiwara and Kawai
[6,7], and Kawai and Stapp [10] and do not repeat their definitions.

§1. Singularity Structure of a Feynman Amplitude at Some Positive-α Points

The situation discussed in this section is the following:
Let D be a (oriented and connected) Feynman diagram with n external lines, ή

vertices and N internal lines and let FD(p) be the Feynman integral associated with
D, that is,

Y\d%. (1.1)
1=1

1=1

2 This variety was introduced by Kashiwara and Kawai [6] and Kashiwara et al. [9] to describe the
singularity structure of the S-matrix and related functions. Hereafter, we will abbreviate it to "the
extended Landau variety" for short
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Here v denotes the space-time dimension [/: r] and [/: /] are incidence numbers
v - l

and kf = kff0— £ kf . By our assumption, mf>0. Except in §4, we always

assume v = 4.
Though the integral is a divergent one in general, it is often the case that FD(p)

makes sense as a microfunction, i.e. modulo regular functions (Sato [19]) and
actually it is well-defined in this sense in the case discussed in this section. In fact,
successive application of Corollary 2.4.2 and Theorem 2.3.1 of S-K-K [20],
Chapter I easily entails that FD(p) is a well-defined microfunction near the
uniquely reversible points defined below. Note that FD(p) has the form

/z)(p)<54( Σ [/' '-rliPr) if it i s well-defined. The function fD(p) is called the Feynman
\j>r I

amplitude.

Let Dγ be the Feynman diagram obtained by contracting exactly one internal

line of D, say the first internal line. We may assume that [/: ΐ]\j=ί z = 1 = — 1 and

[% l

Fig. 1. Example of D and Dγ

Let ifo(D + ) be the positive-α leading Landau-Nakanishi variety, that is,

if o(D+) = {(/?; - j / ^ ι / ) e j / ^ S * I R 4 " ; there exist strictly positive numbers αz

(/ = 1,..., N) and real four-vectors kt (I = 1,..., N) and ι̂ . (/ = 1,..., ή) which satisfy

the following Equations (1.2a)-(1.2e)}

!•=!

Σ P ~1

LJ ' Δ j

J = l

7 = 1

(1.2a),

(1.2b),

(/ = !,...,J (1.2c),

0 (/=1,...,N) (1.

(ί=l,...,iV) (1

In order to simplify the expression, we introduce the following notation.

a z > 0

Definition 1.1. We define j{r) [j+(l), j~(l), respectively] as the index j such that
[/: r] Φ0 ( [ ; : / ] = + 1 , [/': ΐ] = — 1, respectively). We also define εr by [/(r): r].
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If we use this notation, (1.2b) and (1.2c) are simplified as follows:

ur = εrvj(r) ( r = l , . . . , n ) , (1.2b')

vr(i)-υj-{i) = ocιkι (l=U . . , N ) . (1.2c')

Similarly one defines £^0(D^) by the following equation:

O, (1.3a)
j = l \ r = l 1 = 2

n N

Σ [/ : r]Pr+ Σ D':']^/ = 0 (/ = 3,... ,rc'), (1.3a')

u =F v (r — \ n) (λ *\h\
r ruj(r) V — x ? •> n) •> \L.JU)

n'

Σ C/ :Qt7J. = αlfcί ( / = 1 , . . . , N ) , (1.3c)

kf-mf=O (/ = 2,...,JV), (1.3d)

α t > 0 , α x = 0 (/ = 2,...,J/V). (1.3e)

It is clear that if o(D+) is a subset of positive-α Landau-Nakanishi variety if(D + )
associated with D. Recall that i?(D + ) is defined by

n N

Σ D' r]Pr+ Σ D' ']kι = 0 O ^ ^ ^OJ (l 4a)
r = l Z = l

ur = εrvjir) (r = l , . . . , n ) , (1.4b)

f] [;:/>,. = α ^ (/=l,...,iV), (1.4c)

α/(kI

2-rnI

2) = 0 (J=l,...,iV), (1.4d)

α > 0 (/=1,. . . ,iV). (l 4e)

We use the symbol .ίf(D) to denote the variety defined by Equations (1.4a)

through (1.4d). We denote by (if (D))c its complexification. A point (p0 — ]/— lu0)

of J£(D+) is called uniquely reversible after Kawai and Stapp [10], if and only if

the following condition is satisfied:

Equations3 (1.4a) through (1.4d) supplemented by the additional
condition that Reα, > 0 (/ = 2,..., N) define in a complex neighborhood / T T T ),

j (U KJ

of (po; — ]/ — 1M0) a variety which has the form i f x u i f 2 with non-
singular jέ7

1 and if 2 crossing normally and whose defining ideal is
reduced.

Here we consider the complexified equations in that every quantity is allowed to be complex
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Note that condition (UR) is satisfied for a point (p0 — ] / ^ T M 0 ) in
if o(D+)nif o(D 1

l") if the diagram D is external in the sense that at least one
external line is attached to each vertex of D 4 .

in N \

Now recall the well-known fact that (54 Γ̂ \j\f\pr+ £ {J'-UkA and ί/(kf
\r=l 1=1 J

— mf + ]/—10) satisfy a holonomic system of (micro-)differential equations whose
characteristic variety is confined to {(p,fc;w,w)e?*(C4"4

r = 1 i = 1

u = (uu...9ur,..., wπ) = c ( [ / : l ] , . . . , [/:r], . . . , [/:w])5

and

w = (w l ϊ . . . ,w I , . . . ,w i V ) = c ( D : l ] , . . . , D : α . . , U : N ] ) for ce<C-{0}}

and

^ for ceC-{0}},

respectively. Combining this fact with Proposition 4.2.4 of S-K-K [20], Chapter II,

§4, one can conclude that FD(p) satisfies a simple holonomic system of micro-

differential equations in a neighborhood of (p0, — ]/— lw0) whose characteristic

variety is confined to J£?(D)C, if (p0 — ]/—1M 0) satisfies condition (UR)6.

Furthermore, its order on (jSfo(D+))<l: and (jSfo(Z>^))c are given in this case by α(D + )

N d {D^) 2ή N= 2ή — -N and a{D^) = 2ή — -N— -. It is also easy to see by the same reasoning

that Feynman amplitude fD{p) satisfies a simple holonomic system of micro-

differential equations in a neighborhood of (p0, — | / ^ Ϊ M 0 ) whose characteristic

variety is confined to (if (D))c, if (p0 - | / ^ T M 0 ) is uniquely reversible. Since fD(p)

ί " 1
is well-defined only on M= \p = (pu... ,»M)G1R 4"; Y o = 0 , the Landau-

I r = l J
4 The assumption that D2 is obtained by contracting out only one internal line of D is crucial here. If
several internal lines of D are contracted out simultaneously, we should pay some additional attention
in connection with renormalization procedure. Note also that condition (UR) is satisfied in simple
contraction case if the following rank condition (J) is satisfied.

Define ajj = 1,..., ri\ br(r = 1,..., n\ cz(/ = 1,..., N), dfi = 2,...,N),eί and fv resp. by

Σ [/ •" Φ r + Σ [/ : ̂ K Ur ~ εrVj(r)> Σ U '' l^Vj ~ αΛ» <*βΐ ~ mil α i a i l d (^ϊ ~ ™\\ Γ e S

holds if Reα,(/ = 2,...,ΛΓ)>0
5 Here [/: r] stands for the four-vector (\J : r], [/: r], [/: r], [/: r]). This abbreviated notation is used
below, if there is no fear of confusions
6 See Sato [19] for the explicit calculation for external diagram D
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Nakanishi variety if(D) should be regarded as a sub variety of ]/— 1S*M by
introducing following convention (1.5) in considering Equation (1.4)

(p u) = (pf u') if and only if pγ = p'r(r = 1,..., w)

and ur — u'r = εrc hold for some ceIR4. (1.5)

It is clear that the order of the simple holonomic system that fD(p) satisfies is

smaller than that for FD(p) by 2, i.e. it is 2ri- -N-2 on (&Q(D + )f and 2ή--N

- 5- on (&0(D+)f.

In order to determine the singularity structure of Feynman amplitude, we first
prepare the following general theorems on the structure of (solutions of) holo-
nomic systems of micro-differential equations.

Theorem 1.1. Let s$l = $flf=$ffΊ be a holonomic system of micro-differential
equations defined in a neighborhood of {(x;ηco)eP*((£n); x = 0, 7/= (1,0,... ,0)}.
Assume that the characteristic variety V of W is the union of conormal bundles Vί

and V2 of two non-singular hyper surfaces H1 and H2, respectively. Assume that Hι

and H2 are tangent mutually exactly to the second order along non-singular
submanifold of codimension 2 in C". Assume furthermore the symbol ideal σ{/) of $R
is reduced. Let e1 and e2 be the orders of the generator f of 9Jί on V1 and V2,
respectively. Then, for a suitable coordinate system x = (xv... ,xn) on (C", ffll is
isomorphic to the following system 9ie i β2 by the correspondence g=Uf with an
invertible micro-differential operator U of order 0.

(1.6)

Proof. First we choose the local coordinate system so that H1 and H2 are defined
by x1 =0 and xx=-x2

2, respectively. Then by the assumptions of the theorem we see

that σ{/) is generated by xxηx+ ^2Ά2\*2Ά\ + ^Άi\Ά2^ΆZ->Ά^ ••• ,Άn because

Vί = {(x;ηco)eP*((En); xι=η2= ... =ηn = 0} and V2= <(x;/yoo)EP*((C"); x1 — x\

-η2 = η3= ... =ηn = Q\. Then 50ΐ is of the form

Here $f denotes the sheaf of micro-differential operators of finite order
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with micro-differential operators P (x, D) satisfying

-x2η2,

) , (1.7)

Here σ(Q) denotes the principal symbol of Q for any micro-differential operator of
finite order Q. For simplicity we will use the notation Dt in place of Dx( = 3/δxf).

Since we can find an invertible micro-differential operator U3{x,D) of order 0
so that U3P3U3

 x =D3 (see Theorem 2.1.2 in Chapter II of S-K-K [20]), we may
assume P3 =D3 by a transformation of the generator / of $R. Moreover we can
choose P (x, D) so that they have the form

P1(x,D)= L1Dί + \

Pk(x,D)=Dk+ Σ Rj

k(x2,...,xn,Dί)Di

2, fc = d + l , . . . , n ,
i=0

for d = 3 by using the same argument as in the proof of Theorem 5.1.2 in Chapter II
of S-K-K [20] by the aid of the preparation theorem of Weierstrass and the
theorem of Spath for micro-differential operators.

If we assume P 's have the form (1.8d) with d = 3, then we shall find

[DJ.,JR{]=0, i = 0,l; 7 = 3,...,d; Z = l , 2 , d + l , . . . , n , (1.9d)

with d = 3. In fact, if [D^Rf] or [Dy,R/] were not to vanish, we should have

σ([Dj,PJ)= Σ ri(x2^'-'^xn^r1i)rίί2 with a non-zero pair (ΓQ,^) of analytic func-
ί = 0

tions. On the other hand, since [ D ^ P J belongs t o / , its principal symbol vanishes
on V1\JV2. Here we find (r o ,r 1 ) = 0. This is a contradiction.

Thus we see that P 4 depends only on (x2,:x4,... ,xn,D 1,Z) 2,D 4). Therefore we
can find an invertible micro-differential operator U4{x1, x2, x 4,.. ., xn,
D l 5 / ) 2 , D 4 , . . . , D n ) of order 0 so that U4PAU~1=D4r. Since [/4D3[/4

 : = D 3 , we
may assume that P. equals Dj for j = 3,4 by a transformation of the generator of 501
and, moreover, that (1.8d) holds also for d = 4.

Repeating this argument we finally find that (1.8n) and (1.9J may be assumed.
Furthermore Theorem 3.2 in Oshima [14] shows the existence of an invertible

micro-differential operator U^x^ x2,D^ D2) so that U1P1 U± x =x1Dί +-x2D2 + α
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with a complex number α. Hence we may assume

1
1 + 2 X 2 2 + α>

1
(1.10)

Since the order of R\D2 + R2 *s n o t larger than 1, it has the form

j=o j=o

Then we have

1 da,

j=o

j = o 2

Since the operator [P 1 ? P 2 ] + P 2 belongs t o / , we can prove that it must be zero by
the same argument as that employed in the proof of (1.9).

Therefore we have

for 7 = 0,1,2,.... This immediately implies that bo = 2β with a complex number β
and that α0 = αx = a2 = ... = b1 = b2 = ... = 0.

Thus we have proved that 9JI is isomorphic to the system

1 \
Dί + -x2D2 + oc g-

by the correspondence g — Vf with an invertible micro-differential operator U of
order 0. Since the correspondence of the generators of the system keeps their order

invariant and since the order of g on Vx and that on V2 are α — β — - and α + β — 1,

respectively, as is shown by the direct application of the definition of the order (see
Definition 4.2.3 in Chapter II of S-K-K [20]), we obtain the theorem, Q.E.D.
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The canonical form 9teii<,2 found in Theorem 1.1 can effectively used to find the
concrete form of the solution of the system 9JI, as we see in Theorem 1.2 below. In
order to simplify the presentation of our results, we first prepare the following
notations:

U ^ (1.11)

(1.12)

G{a,β,γ ,z)=^F(oί,β,γ;z). (1.13)

Here and in the sequel F(a,β,y;z) denotes the hypergeometric function, i.e.

Γ(y)
Γ(y + n) n!

Ueι,e2),β(e1,e2U; ~ = = Λ (1.14)
z Xj + y —10/

^,i

•Fl α ( e i , e 2 ) , )?(<?!, e 2 ) i ; — "

( L 1 7 )

Γίαίe e) ) Γ α ( e i , e 2 ) + -
v(eve2)= W e i ' e ^ M ( g e ) + _ L ^ ^-u2(ei,e2), (1.18)

We consider the analytically continued function outside {ze(C; zeIR, z ^ l
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1
Γ , , xx exp α ( e 1 ? e 2 ) + -

v(ev e2) = « ( e e) +

2Γ[β{el9e2)+-\ Γ(β(el9e2))Γ[-φl9e2)+-\
\ λi \ λί (1.20)

Before stating the theorem, we list up some important properties of hyper-
functions u1(e1,e2) etc. First we examine analytic solutions of ^Rei β 2. The
equations

entail that gf is of the form

with ί = X2/ î Since

DXI + \ Dx) DX2 + 2βDx)χ-«h(t)

1

c Γ α ,((x2DX2)
2 - (^DX2) + 2(xJDXι)(x2DX2)

+ 4βx2

2DXι~2aχ-1x2

2(x2DX2)-4aβχ-1x2

2)h(t)

= ^ - (4(ίD()
2 - 2(ίD() + 4t( - tDt)(tDt) + 4βt{ - tDt) - 4αί(ί£>() -

the function /i(ί) is equal to

with constants Cx and C2. Hence u1(eί,e2) and w2(£1?e2) are hyperfunction
solutions of 5L, , .
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If — αeN={0,1,2,...}, then u1(eί,e2) is an analytic function. Therefore the
microfunction

, β), e2(a +t, β))~ M l ( β l ( α , β), e2(α, β))

is a solution of Wβl(α + fί/Oίβ2(α+fϊ/?).
 τ h i s proves that -j^-(eve2) = ύ1{e1,e2) is a

microfunction solution of 9leue2.

In the same way we can prove -r-^(e l 5e2) = M2(
ei?e2) ^s a microfunction

Ί da
solution of 9ΐe i β 2 when - α - - e M

In passing, if we set Λ2 = {(x, I/^T^OO)G l/^ΪS*(RΛ); XX =X§, η2 + 2x2ηi =0,
>0, x2<0}, then in a neighborhood of Λ2, we have

1

2-«-t

10,,f( _A|. B.ί;1_̂
and

sp (Mjίej, e2)) = sp x2(xt

\,β+\,*

/xj\-
l \x

Here sp denotes the map from J* to π^. See S-K-K [20], Chapter I, § 1.5 for details
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l
/χ2\~j

x{~11—Since x2x{~11— =—x1

 2 in a neighbourhood of A2, we have

if — 2α^N. The hyperfunction v(eί,e2) [v(el9e2), resp.] also enjoys the same
property when — α e N ( — α — ^-eN, resp.).

Note also that sp{υ(eu e2)) can be extended to a microfunction with holomor-
phic parameters eλ and e2 (e1;e2e(C) so that it coincides with sp(£>(el5e2))
[sp(0(e1?e2)), resp.], if — α e N ( — a — | G N , resp.). We surmise that this property of
v(eί,e2) would be closely tied with the renormalization procedure of the Feynman
amplitude: in fact, hyperfunction v(eve2) cannot enjoy such a property and it
means that some "infinite regular function term" appears if — α e N o r - α - ^ e M
We hope to discuss this point somewhere else.

We have so far confirmed that sp {u^e^ e2)) etc. are microfunction solutions of

9leί g2. On the other hand, a suitable quantized contact transformation (S-K-K

[20], Chapter II, §3.3) transforms 9ΐe i j e 2 into the following system 9Ίeue2 near

(O j/^ϊώqoo):

(1.21)

Since it can be shown by the aid of the results of Kashiwara and Kawai [5] that

the dimension over (C of the microfunction solution space

^m^ei,e2^){Q;V^idx1oo) °f ^ei,e2 considered in a neighborhood of

(0; ]/—lώqoo) is equal to 2, we can easily find that sp(w1(β1,e2)) etc. form the

basis of «^^(5Rβlje2,^)(θ;/^idxioo) M o r e precisely, we have the following:

If -2α(e1?e2>£]N, then s p ^ ^ e ^ e ^ ) and
sp(u2(e l 5e2)) form the basis of

If — α(β1?e2)GN, then sp(w1(β1,β2)) and
sp(uΊ(e1,e2)) form the basis of

If — α(e l 5e2) — ^ G N , then sp(w1(e1,e2)) and
sp(u2{eί,e2)) form the basis of

By the same reasoning we also find that the dimension of the space of
microfunction solutions of ?t e2 with the additional condition that their support
is disjoint from A2 is 1 and that sp (v(el9 e2)) (sp (v(eί9 e2)) and sp (S(e1? e2)), resp.) is its
basis if — 2α(e1,β2)^]N [if - α ( e 1 , e 2 ) e K a n d if —<x.(e1,e2)—2eN, resp.].

Now we state our main result.

Theorem 1.2. Letf{x) be a hyperfunction defined near the origin ofW1. Assume that
its spectrum sp(/) satisfies a simple holonomic system 501 of micro-differential
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equations which satisfies the conditions imposed in Theorem 1.1. Assume that the
hypersurfaces Hί and H2 used there are real. Assume furthermore that S.S.f is
confined to the union of

and Λϊ={(x; ]fZlnαo)e ]/
ηί>0, x 2 > 0 } . Finally assume

(1.25)

Then f(x) has the form described below for some analytic functions

C a s e ! 2α(e 1,e 2)-2#N,
Subcase (la) 2α(e1,e2)£Z = {0, ± 1 , ±2,. . .}

f(x) = φo(x)υ(ev e2) + φx{x)υ(e1 - 1, e2) + φ2(x),
Subcase (Ib) <x(eve2) = ̂

f(x) = φo(Φ(βί9 e2) + φί(x)v(eί - 1, e2) + φ2(x)
{ = φo{x)v(e1,-e1-2ή + φ1(x)v(eί-l, - e λ - %) + φ 2(x)),

Subcase (Ic) — α(β x, e2) e N

/ W = Ψo(x)v(eι, e2) + Ψi(xΆei ~ h e2) + φ2{x\
Subcase (Id) - α ( β l 9 e 2 ) - | G N

f(x) = φo(x)0(el5 e2) + <PiM%i - 1, e2) + Ψi(x\

Case II. α ( e l 9 β 2 ) e N + = {1,2,3,...}

Caselll . α ( e 1 ? β 2 ) - i

Remark. Assumption (1.25) is imposed to eliminate the trivial case where the
singularity spectrum of/(x) contained in Av

Proof of Theorem 1.2. First we prepare the following:

Lemma 1.3. Let g be the generator of the system 9lei>e2 (cfi (1.6)y> and let P(x,Dx) be
an arbitrary micro-differential operator defined in a neighbourhood of
{(x η oo)e P*((C") x - 0, η = (1,0,..., 0)}. Then P{x, Dx)g has the following expression
with analytic functions ψo(x\ tp1(x) and ψ2(x) according to the classification used in
Theorem 1.2.
Case I. P(x,Dx)g = Ψo(x)g + ψ1(x)DX2D~ι

1g.
Case II. P(xίDx)g = ψo() ί ) ^ ^

Caselll. P(^Dx)g = Wo(x)g + Wl(x)DxD^g + xp2(x)DX2Dx^ ' g.

Before giving the proof of Lemma 1.3, we show how Theorem 1.2 follows from
Theorem 1.1 combined with Lemma 1.3. Since the arguments for Cases I and III
are the same as that for Case II, we shall discuss Case II. (Actually, the argument
for Case I is a little easier, technically speaking.)
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By virtue of Theorem 1.1, we know that U(x,Dx)sp(f(x)) is a microfunction
solution of $leue2 supported by AίuA2~. Therefore we can find a non-zero
constant C o such that

x, Dx)Cosp (υ(ev e2))

holds. On the other hand we have the expression

\ 1 D ; ^ (1.26)

by Lemma 1.3. Furthermore D~jg (resp. DX2D~^g) is a generator of the system
9tei-jte2-.j (resp. 9 ϊ e i _ l j e 2 ) . Therefore we have

+ ψ2(x)C2 s p O ^ - α(e l 9 e2), e2 - oc{eve2)))

for some constants C1 and C2. This implies that the hyperfunction f{x) — ψo{x)
'CpV(el9e2)-ψ1{x)C1v{e1-l,e2)-ψ2{x)C2v(--β(e1,e2)--%, β{eve2)-l) is ana-
lytic, because its singularity spectrum is empty. Hence f(x) has the required
form. Moreover we note that tpo(0)Φ0 in (1.26) since U{x,Dx) is an invertible
micro-differential operator of order 0. This completes the proof of Theorem 1.2.

Now we prove Lemma 1.3. Again we give the proof only for Case II. The proof
for Cases I and III are the same. By the Spath-type division theorem for micro-
differential operators (S-K-K [20], Chapter II, Theorem 2.2.1) we have

P(x,DJg= Σ a<j(x29...,xJD^g+ £ bJ(x29...9xn)D2D^^g. (1.27)

Here α?(x) and bj(x) are analytic functions satisfying

lir-x,- ...-xX1 (1.28)

with positive constants C and r. Here A ^> B means that A is a majorant series of B.
Using the equations

and

we can inductively determine analytic functions akj(x) and bkj(x) in Case II as
follows:

j=0

jΦ0,α
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Σ ty*)[\ +J-α) \X^D^\χiDi)D*Dΐ 1~J)9

OgjΦα-l

>r>+ Σ o

f e ϊ + 1 ( Λ

where

L — δί > α ) ( l — α ) "

-4j8(l+2/-2α)-1i>*(x)x2 for φO.α,

ί ) t

0 (x)+i( l -δ 1 > β χ i-α)- 1 α* 1 (x)χ 2 (1.29)

for ^ l .

Hence there exists a positive constant M such that if formal power series c*(x)
satisfy

for7 = 1,2,... and/c=0,1,2,..., then

for 7Φ0,α,

Define c*(x) by

C^+ 1j!(x1 + . . . + x n ) ' t ( ε - x 1 - . . . - x π ) - 1 - ' t (1.32)

for a positive number ε. Then we have
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and

M(xx + x2 + x2

2)(ck

j+ t(x) + φ ) ) = M(Cj+2(j

Now we fix a positive number ε so that ε < r and that

(x1+...+xn){s-x1-...-xny
1>M(C+l)(x1+x

2

This implies that ck(x) defined by (1.32) satisfy (1.30). Here we note that ck{x) are
analytic functions on

7={(x 1 , . . . , x Ϊ I )6C n ; | x 1 |+ . . .+ |xJ<ε/3}

and satisfy

2ε

Hence it follows from (1.29) and (1.31) that ak

0{x\ ak{x\ ak{x) ( l ^ z φ α ) , bk

0{x) and
bk(x) ( l^ j ) converge to analytic functions ψo(x), ψ2(x)^0, φx(x) and 0 on V,
respectively, as k tends to infinity. Thus we have

P(x, Dx)g = ψo(x)g + Ψl(x)DX2D

This completes the proof of Lemma 1.3.

§2. Strict Form of the Hierarchical Principle
and the Structure of Simple Holonomic System

As Kashiwara and Kawai [6] has shown, the holonomic system of (micro)-
differential equations that a Feynman amplitude satisfies will, at least in principle,
determine the analytic structure of the amplitude at the point far away from the
physical region, e.g. its sheet structure. In order to exemplify this expected
principle, we discuss the strict form of the hierarchical principle formulated in
Landshoff et al. [11] (see also Eden [3], Landshoff et al. [12], and Branson [1])
from the view point of the algebraic structure of holonomic system involved. See
Kashiwara and Kawai [7] for some related topics.

We first recall the strict form of the hierarchical principle: originally it claims
that the discontinuity attained by encircling any higher-order singularity does not
contain the lower-order singularity (Landshoff et al. [11], p. 446). In view of the
micro-local discontinuity formula (Kawai and Stapp [10]), we reformulate this
property in terms of holonomic systems as follows:

Let (po; — ]/— lw0) be a point in ifo(D + )nif o (D ; + ), where Df is obtained by
contracting out some internal lines of D. Consider the holonomic system %JlD of
micro-differential equations that the Feynman integral FD(p) satisfies near (p0

— |/— lu0) and that is the strongest one at (p0 — ]/— lu0) in the sense that 9JlD is a
collection of all the micro-differential equations that FD(p) satisfies in a neigh-
borhood of (p0 — ]/— iu0). Then yjlD admits a quotient Module whose characteris-
tic variety is contained in (ifo(D + )c).
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Note that this formulation needs no reference to the codimensionality of the
Landau-Nakanishi variety projected to the base manifold.

The hierarchical principle formulated above can be most neatly dealt with by
following.

Theorem 2.1. Let yjl = $)f// be a holonomic system of micro-differential equations
whose characteristic variety V satisfies the following conditions:

V=V1KJV2, where Fj(/ = 1,2) is non-singular. (2.1)

Vλ2 = Vλc\V7 is non-sinqular and of codimension 1 in12 i 2 y J ( 2 2 )

V1 and V2, respectively.

Vx and V2 cross normally along F 1 2 , i.e.

Tp* Vί2 = Tp* Vx n Tp* V2 holds for any p* in V12.

Here TpcV denotes the tangent space to V at p*.

The symbol ideal σ{f) of f is reduced. (2.4)
Let e1 (e2, respectively) be the order of W on V1 — V12 (V2 — V12,

respectively). Then following three claims are equivalent mutually.

There exists a quotient Module $RX of ΪR whose characteristic variety
is contained in Vl9 that is, we have the following exact sequence

where the characteristic variety of 90^ is contained in Vv

There exists a subModule $R2 of ΪR whose characteristic variety is (2.6)

contained in V2.

(2.7)

Remark. We can also re-formulate the hierarchical principle in the weak sense
(Landshoff et al. [11]) in terms of holonomic structures as follows (cf. Kashiwara
and Kawai [7] and Regge [16]):

There exists a subModule Wd2 of 9JI whose characteristic variety is confined to
V2, that is, we have the following exact sequence

where the characteristic variety of ΪR2 is contained in V2.

In fact, this property of SDΪ is equivalent to the property that there exists a
micro-differential operator Q(p, Dp) which transforms the generator of 9JI to that of
ΪR2. In other words, the Feynman integral associated with the daughter diagram
of D can be expressed as Q(p, Dp)FD{p). This is the version of the hierarchical
principle formulated in Kashiwara and Kawai [7].

Now, in view of Theorem 2.1 we see that the hierarchical principle in the strict
sense formulated in terms of holonomic structure is equivalent to the hierarchical
principle in the weak sense formulated above on the condition that the symbol



114 M. Kashiwara et al.

ideal of Wft is reduced. Of course, the hierarchical principle in the weak sense does

not necessarily imply the strict one, if 9JI has a multiplicity (Kawai and Stapp [10]

and Kashiwara and Kawai [8]).

Proof. By a quontized contact transformation, we may assume Wl is

91,
'01,02 "

-x2DX2+

(2.8)

DXjg(e1,e2) = 0 j =

Now we set

( 2 9 )

Then we have the following lemma by direct calculation.

Lemma 2.2. 1) 9l e i e 2 and 9ί e i + 1 e2+1 are isomorphic under the correspondence

2) If e2 — e1^F-, then ϊ i e i j β 2 and ϊ l e i + 1 > β 2 are isomorphic under the cor-

respondences g{ex +1, e2) — sD~^g(el9 e2) and

9(e1,e2)=-ίe1-e2Λ-
\ *-/

Assume (2.7). Then it follows from Lemma 2.2 that we may assume ex — e2 = - .
In this case the surjective homomorphism

= 29...9n

implies (2.5).
Conversely assume (2.5) or (2.6). Then we have an exact sequence

with a suitable system $ft2 or <ίΰl1. Hence both condition (2.5) and condition (2.6)
hold, as the multiplicity of $R along F, is one, and is equal to the sum of that of 9Ji1

along Vj and that of 9Jl2 along Vj (j=l, 2). On the other hand, by making use of
another suitable quontized contact transformation, we may assume $R is equal to

(2.11)X2Dx2 ~ ei + e2 + 2) 0'(el> e2) = 0 ,
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where

and

Let /:(Cn-+C be a map defined by the correspondence (x l 5 ...,xn)^->x1. We de-

note by w the canonical projection of <C"XP*C to P*(C. Set

9l1=wή:J^ms (^c"->c^i) Then 9ίl1 is a system of micro-differential equations
with one variable whose characteristic variety is the conormal bundle of the origin.
Then Theorem 5.3.1 of Chapter II in S-K-K [20] claims that

Since the right hand side is clearly non-vanishing at (0 ]/— ldxί oo), there exists a

non-zero microfunction solution g(x) of 50115 which is also a microfunction solution

of yi'eue2 whose support is contained in {(x; ]/— l^oo)e ]/— 1S*IRW; x1=η2

= η3= ... =ηn = 0, ^ ! > 0 } . On the other hand, any microfunction solution of

9l'e ei has the representation

with constants C1 and C 2 at (0 ]/r^Λdx1 oo) in ]/^ΪS*(IR") z/ex - β2 - -φ N and

if eλ — e2 — -G M Therefore the existence of g(x) with the support property implies

eί-e2--eH Q.E.D.

§3. Structure of a Simple Holonomic System whose Characteristic Variety
is the Conormal Set of a Hypersurface with Cuspidal Points

An important result due to Chandler and Stapp [2] and Pham [15] asserts that
the positίve-α Landau-Nakanishi surface (= the projection to p-space of Landau-
Nakanishi variety) enjoys a nice manifold property. Especially, it ensures that
there is no cuspidal point in π(ifo(D+)) for any Feynman diagram D. Here π
denotes the projection from the cotangent bundle to the base manifold. However,
it is also known that cuspidal points are really present in π(i?0(D)) if positive-α
assumption is omitted. See Westwater [23] and references cited there. Note that
π(j£?0(D)) may contain singular points even if JS?0(D) is non-singular. For example,
c£fo(D) is non-singular if D is external, although π(j£?0(D)) is known to contain a
cuspidal point for the crossed square diagram:
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Fig. 2

In view of the physical importance of such cuspidal points in connection with
the study of Madelstam representation (Eden [4] and Landshoff et al. [12]), we
show the following:

Theorem 3.1. Let $Jl be a simple holonomic system of micro-differential equations.
Assume that its characteristic variety V is non-singular and that its order is e.
Assume furthermore that π(V\ the projection of V to the base manifold X by
π :P*X-+X, is of codimension 1 and that x°eπ(V) is a cuspidal point in the strict
sense of Westwater [23], i.e. π(V) can be described by the equation x\ = x\ for a
suitable choice of local coordinate system in a neighborhood of x°. Then 9JΪ is
isomorphίc to the following system %le:

w. Λ

2

Proof. First note that the characteristic variety of the system 9K is given by

{η2β)2-x2{η1/2)2 = η3=... =ηn = θ\ in a neigh-

bourhood of the point (0;(l,0, ...,0)oo) if we use a local coordinate system
(xl9..., xn) of X such that π(V) is defined by x\ = x\. Then the rest of the proof of
Theorem 3.1 is given in the same way as in the proof of Theorem 1.1. We leave the
details to the reader.

§4. Discussion on the Extended Landau Variety

The purpose of this section is to examine whether the extended Landau variety is
the smallest possible one as a characteristic variety of the holonomic system that a
Feynman amplitude satisfies. Since this problem is too subtle and difficult to
discuss in general, we content ourselves here with examining some simple cases
where we can determine the singularity structure of the Feynman amplitude
explicitly by making use of the results in §1. Our results suggest that the extended
Landau variety should be the smallest possible one for generalized Feynman
amplitude (Speer [21]) but that it might not be the case for the true amplitude
considered in the 4-dimensional world. Note that the space-time dimension plays
an important role in our discussion through the order of the holonomic system
involved. Note also that the irreducible component of the extended Landau



Feynman Integrals 117

variety we are interested in here is Lagrangian (i.e. involutory variety with
maximal codimension) and intersects with positive-α Landau-Nakanishi variety
along a subvariety which has codimension 1 in that component. Hence the
investigation of this component is crucially important from the view point of
holonomic systems.

The examples we shall discuss are the Feynman amplitude fD(p) (j=U 2, resp.)
associated with the diagram D (/= 1,2, resp.) given below:

Fig. 3. Dί: The mass associated with Lγ may be arbitrary. D2: 3m = 2M. The masses associated with
L1 and L2 are arbitrary

Because of the energy-momentum conservation (5-function at the vertex F 4,
fDί(p) has the following form:

where D and D' are specified below:

D

Fig. 4 P2

Note that pί+p2

:=P3 holds due to the over-all conservation of energy-
momentum. It is also clear that fD2{p) has the form f^(pl9 P 2 )/D'(P3) w u ^ n & specified
below:

Fig. 5
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It is well-known that the positive-α Landau-Nakanishi variety projected to the
p-space takes the following form described in Figure 6 below, near (p1+p2)

2

= 4M2, for a suitable choice of local coordinate system x = (x1,..., xn). (See Eden et
al. [4] for example.)

*2Λ

Fig. 6. The (x3,..., xj-axes are omitted

Here n = 2v, where v stands for the space-time dimension. In Figure 6, the
hypersurface {x = (xί,x2,... , x j ; xx=x\, x 2 >0} corresponds to π(ifo(D + )) and
the hyperplane {x;x 1=0} corresponds to the lower order singularity of D l 5 i.e.,
the part of positive-α Landau-Nakanishi variety projected to p-space correspond-
ing to the contraction of L1. The hypersurface {x;x1=0} also corresponds to
π(J£0(D' + )). Note also that the extended Landau variety associated with

Dί considered near (p1+p2)
2 = 4M2

consists of the union
where Λ* is the complexification of Λ3 = {{x;

]/ — \ηoo)e γ—lS*W; x1^x2=0, η3= ... =ηn = 0}. Having this geometry in
mind, we first prove Theorem 4.1, which we will use to assert that the component
A 3 mentioned above does not appear in the characteristic variety of the holonomic
system of micro-differential equations that is satisfied by Feynman amplitude
fDί{p) considered in four-dimensional world.

A\ by {{x;]/^ησo)e]/~^S*W; x ^ O ,Theorem 4.1. Define A\ and

*/2=-=>/» = 0> *?i>°} and {(x; ] / ^ ]
η3 = ... =ηn — 0, ηί>0}, respectively. Denote their complexifications by Af and A2,
respectively. Let 9JΪ = $fIf f 91 = SfIf, respectively) be a simple holonomic system of
micro-differential equations whose characteristic variety is contained in A^_KJA2 (A\,
respectively). Let f (g, respectively) be a hyperfunction such that sp/
respectively) satisfies 9JΪ (91, respectively). Assume that S.S.fcA^uA2 ,
and that S.S.g = A±. Then sp (fg) satisfies a holonomic system 9JΪ of micro-differential
equations whose characteristic variety is confined to the union of three components
Λf, A2 and A3, where A3 is, by definition, the complexification of

(4.2)

Furthermore, it is contained in A^uA2, if

- {oΐάΛ 1 (9M) + ord^ ί (91) + 1) e IN

holds.
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Corollary. Consider fDι(p) in the four-dimensional world. Then fDι(p) satisfies a
holonomic system of micro-differential equations whose characteristic variety is
confined to ( ^ D τ ) f u ( i f 0 ( D / + ))(C.

This corollary immediately follows from Theorem 4.1 with the aid of the
formula given in Kawai and Stapp [10], §2.

Proof of Theorem 4.1. First we prepare the following.

Lemma 4.2. The hyperfunction g in Theorem 4.1 has the form:

Case(i):

if - e o - - e N ,

Case (ii): g = + j / ^ 1(x) + ψ2(x)log(xί + j/^ΪO)

Here e0 = orάΛig and ψj(x) (j = 0,1,2) is an analytic function and t/;o(0)Φ0.

Proof First we note following two facts a) and b):
a) There exists an invertible micro-differential operator V(x, Dx) of order 0

such that the system ϊ l is transformed into the form

by the correspondence g = V{x,Dx)g' [cf. (4.2.3) of Chapter II in S-K-K [20]].
b) For the generator g' of 9leo and any micro-differential operator Q(x, Dx) of

order 0, Q(x, Dx)gf has the form

Case (i): Q(x, Dx)g' = ψo(x)g',
_ i _

Case (ii): β(x, Dx)g' = ψΌ(x)g' + Ψl{x)D~* ~e°g'.

In fact, by the application of Spath-type division theorem for micro-differential
operators we find

Then, for example, in Case (i) it suffices to set

oo / j / I \ ~ 1 \

j=θ\v=θ\ Z J J

Hence the rest of the proof of Lemma 4.2 is the same as that of
Theorem 1.2, Q.E.D.
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Lemma 4.3. Let Wi(λ) be a system of differential (micro-differential, resp.) equations
with a holomorphic parameter λ. Assume that the characteristic variety of^ΰl(λ) does
not depend on λ and denote it by V. Let /(x, λ) be a hyperfunction (micro-function,
resp.) solution ofyjl(λ) with the holomorphic parameter λ. Then (df/dλ)(x9 λ) satisfies
a system of differential (micro-differential, resp.) equations whose characteristic
variety is contained in V.

Proof The assumption implies that /(x, λ) — /(x5 μ) satisfies a system 50l(A5 μ) with
the characteristic variety V, where λ and μ are holomorphic parameters. Therefore
{df/dλ)(x, λ) satisfies the system m{λ, λ\ Q.E.D.

Lemma 4.4. Set e0 = oτdΛo(91), eι = oxάΛχ(W) and e2 =

+ + ^ J d L t

2(SK) and set
b e t h e hyper~

function solution of 9le i e 2 (cf. (1.6)J whose singularity spectrum is contained in

A1uA2. Then h(x) = (x1 + ]/— 10)y/(x) is a hyperfunction solution of the system

D + D

(4.3)

w/ί̂ i ί/ϊe characteristic variety /l^

Proof. The lemma immediately follows from the following equations:

D2D~1(x1D1 + ί)-(γ+ \)x2D2 + 2βx1D1- 2βγ) h(x)

-2β[U2D2+a-γ)-2βy\h(x)
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Proof of Theorem 4.1. The results in § 1 and Lemma 4.2 show that fg has the
representation

fβ = .Σ j(*Ί(*)

\ 2 2 2 xx + i/^To,

with analytic functions αj.(x) and 6j (x). We note here that

1\

and that

or

and ^ = 1 ^ - ^ + 1

and jδf= - [e2~
eι+ * + ^

Moreover,

αι

3(χ) = 0 if y^N,

ί>ι

3(χ) = 0 if — α f^N

and

bI

5(x) = 0 if - α f - - ^ N .

Hence the theorem follows from Lemmata 4.3 and 4.4 and the following lemma.

Lemma 4.5. Set

—10
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Then the following hyperfunctions (i)-(iv) (j = 0,1) all satisfy holonomic systems with
the characteristic variety ΛfuΛ2.

(i) hJμ9β,y;x)forγ-a + βeH
(ii) dhj/dy(u, β, y x) for y - a + β e N, y e N,

(iii) dhj/dφ,β,y;x)for y-ot + βeH - α - ^ e N ,

(iv) d2hj/doidy(ot,β,y x) for y-α + βe N, - α - J- e N,ye N.

Proo/ Since /z/α,β,γ;x) = hβ,a,y-a + β;x) = x\~a + βhβ,oc,0;x) and ft/jg,α,0 x)
is a solution of 9i_ e i _ 1 > e 2 [cf. (1.6)], the hyperfunction (i) satisfies a holonomic
system with the characteristic variety %

By direct calculation we have

and

for C 1 ? C2e(C and I G N . Hence the hyperfunction (ii) satisfies the following
holonomic system with the characteristic variety Λ^

(( ^ ) + 20?+

Combining the above result with Lemma 4.3 and the equations

_dhj . dht

t = o 8(χdt

and

ί = 0dtdy

we obtain the rest of the lemma because dhj/dβ(a,β,y;x) is analytic if

[, Q.E.D.
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In order to discuss the necessity of the conditions given in Theorem 4.1, we
suppose the following conjecture of ours should be true in order to avoid some
technical difficulties. We hope our results could be obtained without resorting to
this conjecture.

Conjecture. Let 9JΪ = S^Iβ be a holonomίc system of micro-differential equations
whose characteristic variety has the form VγκjV2 (Vί9 resp.), where V1 and V2 are
non-singular and intersect normally along non-singular variety Vί2. Assume that 50ΐ is
simple both on Vί-V12 and on V2-V12 (Vί-Vί2, resp.). Then 2Ϊί is isomorphic to a
system Sf/f with σ\f) reduced.

All the results given below depend on this conjecture at the present stage. The
results depending on the conjecture stated above are indicated as C-Theorem etc.

C-Theorem 4.6. Assume the same conditions on f and g as in Theorem 4.1. Suppose
the following conditions :

y (4.4)

^1 y l 2 ^ Z = { 0 , ± l , ± 2 , . . . } 1 0 . (4.5)

Assume that (4.2) is not fulfilled. Then sp (fg) never satisfies a holonomίc system of
micro-differential equations whose characteristic variety is confined to A^KJA^.

Proof The result in § 1 and Lemma 4.2 show that the hyperfunction fg has the
representation

x)(xί+]/^Ϊ0)Me1 - I, e2)

+ (p3(x){xί + j / ^ Ϊ 0 ) y + φ4(x)w{eu e2) + φ5(x)w(eί - 1, e2) + φ6(x),

where φfx) are analytic functions (/=1, ...,6), and w(el9e2) and w(e1 — l,e2) are
hyperfunction solutions of 9leι ei and 9le i_ t β 2 of (1.6), respectively, and

(ί
y= — —hord^Sft) . Moreover φ 1(0)φ0 and S.S.w(eve2) is not contained either

in Ax nor in A2. In this situation we have the following lemmas:

Lemma 4.7. There exists a linear differential operator P(x, Dx) such that

e, ~ 1, e2)}

1 0 Here ordΛι ($Jl) denotes the order of ̂ i on the generic point of Λv Conditions (4.4) and (4.5) are
imposed here to avoid technical difficulties. See Remark 4.10 below
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C-Lemma 4.8. The system of micro-differential equations <ϋl(a(e1,e2\ β{e1,e2),
y{eve2)) in Lemma 4.4 has no quotient module whose characteristic variety is equal
to A\\JA\ if γ - a + βφ^ and yφU

First we show how Theorem 4.6 follows from these two lemmas.
Suppose sp (fg) satisfies a system of micro-differential equations whose charac-

teristic variety is equal to Λ^Λ2. Since sp((xx + ]/— 10)y), sp(w(e1,e2)) and
sp (w(e1 — 1, e2)) satisfy systems of micro-differential equations whose characteristic
varieties are contained in ΛfuΛ2, so does

Therefore Lemma 4.7 proves that sp ((xί + ]/ — 10)yw(e1? e2)) also satisfies a system
of micro-differential equations whose characteristic variety is contained in ΛfuΛξ.
Then the system is a quotient module of the system 9W(α, β, γ) and the assumption
that S.S.w(el5 e2) is not contains either in Ax nor in Λ2 entails that its characteristic
variety should coincide with A\KJΛ2. This contradicts to Lemma 4.8.

In order to prove Lemma 4.7 we prepare the following.

Lemma 4.9. Let Θ be the ring of the germs of analytic functions at the origin o/C".
SetX = 2x1DXί+x2DX2. Let / be an ideal of Θ satisfying X/ C / and let φ be an

00

element of β. Then, if φ has the form ]Γ φ. withXφ.=jφp φ. is contained in β for
j = o

any j .

Proof Assume that φ- = 0 for j < k and that φk Φ 0. Set

Then φ{l) uniformly converges to φk in a neighbourhood of the origin as / tends to
infinity, because (j—k— 1)!/((/ — k—l— l)Ul^2j. Since any ideal of Θ is closed, /
containes φk. By the same argument for φ — φk, we have φk+1ε/. Hence we can
inductively conclude that φ is contained in β for j = 0,1,2,....

Proof of Lemma 4.1. Since φ1(0) φθ, we may assume Φ 1 ( X ) Ξ 1. In this case we have

(X + 2α - 2γ)((x1 + ]/^Tθ)y\φi?έ?2) + φ2(xX^! + \/^ίO)yw(e1 - l,e2))

= ((X + I)ψ2(x))(x1 + ] / — 10)>'vy(β1 — l,e2)

and

7 w(β 1 — l , e 2 )

(XXXJL + y — 10)yw(e1 — 1, ^2))

: = 2 x 1 D J c l + x 2 D X ; i . S e t
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It is clear that / is an ideal of 0 and t h a t X / c / . Set φ2(x)= £ φij) withXφ 0 )

oo J = 0

=jφU). Since (X + l)φ2(x) = Σ (j+l)φ{j)ef, Lemma 4.9 proves that φij)ef for
j=o t

any j . Therefore φ2(x)ef, because f is closed and because £ φij) converges φ2(x)
j=o

as / tends to infinity. Thus we have proved the existence of a linear differential
operator

such that Q(x,Dx)φ2(x) = φ2(x). Thus the differential operator 1—

- 2y - 1)J(X + 2α - 2y) is a required one, Q.E.D.

αJ (x)(X + 2α

Proof of Lemma 4.8. Assume 9Jl(α, β, y) has a quotient module 91 whose character-
istic variety ΛfuΛξ. Since the multiplicity of 90ΐ(α,jβ5y) along ylf, that along /If
and that along Λ^ are 2,1 and 1, respectively, either one of the following two cases
happens:

Case 1. The multiplicity of 91 along Λf and that along A\ are 1.
Case 2. The multiplicity of 91 along A\ is 2 and that along A 2 is 1.
First consider Case 1. Then the conjecture and Theorem 1.1 show that 91 is

isomorphic to 9le,ue,2 of (2.8) with constant numbers e\ and e'2. We use the same
notation as in the proof of Theorem 2.1 in the sequel. The assumption implies the
existence of a micro-differential operator P(x, Dx) such that the correspondence
g(e'u e'2) = P(x, Dx)h defines a surjective homomorphism of sJJΪ(α, β, y) onto 5fte'1>ê .

Set Q(x,DJ = D];7aP(x5DJC)Dj1

(e/l + e ' 2 + i ) and v= \[e>2-eΊ + ^)" T h e n t h e correspon-

dence /ι(α, β, y) = Q(x, D Jw(v) defines a surjective homomorphism of the system

to the system

(st + 2v)w(v) =

Here s and ί are operators defined by (2.9).
We may assume Q is of the form

Λλ + k

ί,k
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by the theorem of Spath for micro-differential operators. Here Qik(x') and Q. k(xr)
are analytic functions with the variables x 3,. . ., xn and A is a complex number. The
equations

and

entail that

and that

w(v) = 0

+ k

0 = XlDXi+l-x2DX2,Q(x,Dx)

= -(Σ(λ
i.fc

because [DXι, Q(χ, Dx)] and ^ ^ 4 - - ^ D

β(x, DJ. Hence <2(x, Dx)w(v) is of the form

β(x,/>>(v)= Σ Σ
i = l j=0

are of the same form as

with constants C£ and Ĉ  such that either Cm or C^, is different from zero. If

— 2vφN (2v — 1 ̂ N , resp.), we may replace v by vH h2 v — —, resp. and

Q(x,Dx) by

j — 1

(-2v-/c)Σ
j=0

'
i = l

because 9 ίl_ v_iV_ 1 is isomorphic to

91 m' 5 m' /5R m l m ,
-*-τ- I,v+ τ +l ^ -v+^-^v-^-!'

by the correspondence w(ϋ) = s m + 2 w i ) + — + 2 ίm w

Lemma 2.2). Hence we may assume from the first that

— , resp. (cf.

Q(x,Dx)= (4.6)
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or

Q(x,Dx)= f Cψ, (4.7)
j-m\

where m ^ 2 and C m i Φθ, C m 2 Φθ, C'm,*0 and C^ΦO.
Suppose (4.6). By the equation

1 \ 7

s t\tst — (β + y)t + 2(α + β)st + 4α^)sιw(v)
2 I

= -\ (st3 - 2(s2 - (β + y + l))ί2 - 2(2α + 2β + l)sί - δαjSJs^ίv)
2

= ((ί -2v + 2α)(z - 2v + 2)8)si - \- ( - 2v(2v + l)(2v + 2) + 3i(2v)(2v + 1)

l)(2v)(2v +1) - 3i2(2v) - (4j8 + 4y + l)i(2v) + i3 - 3i2 + 2i

we have

0 = Σ
i = m i

- - ( i + 2jS + 2y-2v)( ί-2v)( i-2v- iy~ 2 |w(v) .

Hence we have

ί CW2(m2 + 2α - 2v)(m2 + 2β - 2v) - 0,

l C r o i K + 2^ + 2y - 2v)(m1 - 2v)(m1 - 2v - 1) = 0.

Here we note that m2 — m1 is a non-negative even integer. Therefore it follows from
the assumptions Cm i φ 0, Cm 2 φ 0, y ̂  N and β + y - α ̂  N that

-2v = m 1 -2v = 0 or

In this case, since 2v is a positive integer and

ί2 vs2 vw(v) - sί(sί + 1 ) . . . (si + 2v)w(v) = 0,

we have slw(v) = 0 for z^2v on A^— A\ where t is invertible. Hence βw(v) vanishes
on Λf — Λf, which contradicts the fact that ft(α,/?, y) = βw(v) defines a surjective
homomorphism of 9t(α,/?,y) to 5R_ v_i ? v_i
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On the other hand, suppose (4.7). Then by the same argument as in the case
where (4.6) holds, we have

Σ Cf

j\l)t
2(j-

and

- 2β + 2v) - 0.

This contradicts the assumptions C^ΦO, C^2Φ0, y^N and /? + y — α^N because
m'2 — m'x is a non-negative even integer. Thus we have proved that Case 1 does not
occur

Next study the possibility of Case 2. Then the kernel 9Γ of the natural
homomorphism from $0l(α5j8,y) to 91 is a simple holonomic system whose
characteristic variety equals /If. Hence the same argument as in Case 1 proves that
there exists a micro-differential operator Q(x, Dx) of a fractional order such that
the correspondence w = Q(x, Dx)h(<x, /?, γ) defines an injective homomorphism of the
system

to the system 9l(α, β, y) and moreover that we may assume Q has the representation

T1(t'))-(S2(s')+ T2(φ't',

where S, and 7J ( i=l,2) are polynomials with one variable satisfying Tj(0)
= Γ2(0)=0 and where s' = x2D*t and t' = DX2D~ί

i. Then the equation

s') + T2(ί'))s'ί'}

^s^s'y+(τ1(tyt')s't'+TS'W - dT^tydf

+ S2(s')s's't' + (T2(t')/t')s't's't' + (T2(f')/ί')s'ί'

-(dT2(t')/dt')s't'

and the equation

s't!sft'h{u, β9 y) = I - - ί/2s'ί; + {y - α + l ) ί / 2 - 2(α + j8)s'i' - 4αβj Λ(α5 jS, y)

entail that

tfydt + (γ-a + l)t'T2(t') - 4otβT2(f)/f = 0

~ tΎ2(f)- 2(α + j3)T2(O/£' + T2(ί')/ί'-
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because s'Qh(oc,β,y) = 0. Hence S1=S2 = 0 and

' (t'd/df - 1 ) ^ ( 0 + {Aaiβ - (y - α + ί)t'2)T2(t') = 0,

Therefore we have

i t ' + 2 α - 2y - 3)ί'2T2(ί') + (ί'd/dί' + 2 α - l)(ί'd/dί' + 2y5- l)Γ2(t') = 0.
2'

Since T2 has a representation

m'

ΐ = 0

with constant numbers Cf satisfying C o φ 0 and Cm, +0, we have

Therefore

l - 2 α e N , ye IN (4.8)

or

l-2j8eN, β + γ-aelN. (4.9)

This contradicts the assumption.

Thus we have proved Lemma 4.7 on condition that our conjecture is true.

C-Remark 4.10. We consider the case when Condition (4.5) does not hold in
Theorem 4.1. In §1 we proved that the hyperfunction / is a sum of an analytic
function and multiplications of hyperfunctions of the forms (1.14)—(1.16) and (1.17)
by analytic functions. If / is represented as a sum of an analytic function and
multiplications of hyperfunctions of the forms (1.14) and (1.15), then Theorem 4.6
holds without Condition (4.5) because the same proof as that of Theorem 4.6 with
Condition (4.5) is valid.

C-Corollary. The characteristic variety of any holonomic system of micro-
differential equations that the Feynman amplitude fDί(p) considered in two-
dimensional world contains Λ^ as its components. The same statement holds for
fDJjp) considered in four-dimensional world.

This corollary immediately follows from Remark 4.10 for fDl(p) or from
Theorem 4.6 for fDl(p). Note that the formula of the order a(D) of the holonomic
system in question (Kawai and Stapp [10]) must be changed to

in the v-dimensional world.
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