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Abstract. The subgroups of the symmetry group of the gauge invariant
Lagrangian are studied. For given subgroup G the G-invariant gauge fields are
listed.

Let F(φ) be a G-invariant functional and let H be a subgroup of the symmetry group
G. It is easy to prove under certain conditions that every extremal of the functional
F(φ) considered only in the iϊ-invariant fields is an extremal of this functional on all
fields (see for instance [1]). This assertion can be used to search solutions of classical
field equations especially in gauge theories. In these theories the functionals under
consideration are invariant with respect to the group R generated by local gauge
transformations and spatial symmetries. To apply the assertion above one must
find the subgroups of the group R and for given subgroup G C R one must find all G-
invariant fields. In present paper we solve these two problems. Some results in this
direction were obtained earlier by Burlankov [2] and used in [9].

To facilitate the reading to physicists we have divided the paper in two sections.
The considerations of Section 1 used only notions familiar to physicists but in
Section 2 we use the geometrical language of fibre space theory (see for instance

[3]).
All manifolds and all maps under consideration will be supposed smooth.

Section 1

We denote by 0 the group of spatial symmetries. (This group acts on a manifold M
in physical applications usually M is three-dimensional or four-dimensional
euclidean space.) The group of local gauge transformations will be denoted by K^
and the group generated by K^ and 0 will be denoted by R. The group K^ can be
identified with the group of smooth functions on M taking values in the gauge
group K. The group R can be considered as the group of pairs (k(x),g) where
k(x)eKo0, ge G and the product of pairs (k^x), g^eR, (k2(x), g2)εRis a pair {k(x\ g)
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given by formulae

The groups K^ and 0 can be considered as subgroups of R consisting of pairs
having the form (k(x\ 1) and (l,g) respectively.

We shall study homomorphisms of fixed group G into the group R. For
simplicity we assume that G is a compact connected Lie group. Let τ be such a
homomorphism. This homomorphism transforms an element geG into the pair
(τg(x)9 ot(g))eR. It follows from (1) that α is a homomorphism of G into 0 and τg(x)
satisfies

Two homomorphisms τλ and τ 2 are called gauge equivalent iϊ τ2 = kτίk~ί where
k(x)eKO0. It is easy to see that corresponding homomorphisms of G into 0 coincide:
α i =oc2=α. The functions τ^1}(x) and τg

2\x) are related by formula

τf\x) = fc(x)τ^(x)fc- Mg~ λ)x) (3)

To list the homomorphisms of the group G into £ we must solve the Equation
(2). Let us fixe the homomorphism α of G into 0 and the point xoeM. It is
convenient to study (2) at first assuming that x in (2) run over the set JV(x0) of points
having the form oc(g)x0 where geG (in other words we consider this equation on
each orbit of the group α(G) separately). It is evident that (2) permits to express τg(x)
for all xeN(x0) through τg(x0); namely

τβ(x) = τ-1(xo)τβ i β(xo) (4)

where gγ satisfies x = oι,(g^1)xo.
Let H(x0) denote the set of elements heG satisfying oc(h)xo = xo (the isotropy

subgroup at point xoeM). One can check easily that τg(x) defined by (4) satisfies (2)
if and only if the function μ(g) = τg(x0) satisfies

μ(hg) = μ(h)μ(g) (5)

for every geG, heH(x0). It is sufficient therefore to study the Equation (5). Let ®J
denote the Lie algebra of the Lie group G, and J f denote the subalgebra of ®f
corresponding to the subgroup H = H(x0). The orthogonal complement of Jf in <&
will be denoted by Ψ* and the set of elements of G having the form exp(t ) where ve Ϋ"
will be denoted by V. There exists such a neighbourhood U of unity in G that all
elements geU have unique representation in the form g = h(g)v(g) where h(g)eH,
v(g)e V. It is easy to find the general solution of Equation (5) in U; namely

μ(g) = λ(h(g))σ(υ(g)) (6)

where λ(h) is an arbitrary homomorphism of H into K and σ(z ) is an arbitrary
function. [It follows from (5) that μ considered on H is a homomorphism and μ(g)
= μ(h(g))μ(v(g)).~] The proof that (6) satisfies (5) is straightforward. The appearance
of an arbitrary function σ(v) is a consequence of gauge invariance; it follows from
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(3) that the solutions of (5) are gauge equivalent if and only if corresponding
homomorphisms λί9 λ2 are conjugate, i.e. λ2 = kλίk~1

9 keK (see Section 2 for
details).

We have solved the Equation (5) only locally. In Section 2 we shall see that in the
case when μ(g) is a solution of (5) which is continuous on G corresponding
homomorphism λ(h) of H into K must satisfy certain topological conditions. Here
we consider only the case G = SO(3\ H = S0(2) we prove that in this case the
homomorphisms λ and λ~* must be homotopic (two maps are called homotopic if
one can connect they by continuous family of maps). To check this assertion one can
use the parametrization of SO(3) by means of Euler angles φv θ, φ2; in this
parametrization μ(φ1 ? θ, φ2) = λ(φ1)σ(θ,φ2) and the function μ is continuous on
50(3) if and only if A and σ are continuous, σ(0, φ) = λ(φ\ σ(π, φ) = λ( — φ). Hence the
function σ(θ, φ) can be considered as a continuous deformation connecting λ(φ) and
λ(-φ).

We consider now the G'-invariant Yang-Mills fields Aμ(x) where G' = τ(G) is the
image of G by the homomorphism τ of G into R. (The description of G'-invariant
fields of matter is easier and we shall omit it.) It is evident that the G'-in variant field
A (x) in all points of the orbit N(x0) can be expressed through Aμ(x0) and Aμ(x0)
must satisfy the condition

\(*o) = KK VoMvCxoKCxo) - τΰ \xo)dμτh{xo)) (7)

where hμ is the Jacobian matrix of transformation a(h) at point x0, heH.Ύo describe
the G'-in variant fields we must find all Aμ(x0) satisfying (7). At first we shall
eliminate the last term in (7) by means of the gauge transformation (this is possible
because this term vanishes in the case when dσ(v) = O for v = 1). Let us define two
representations of the group H by means of formulae

Aha = λ{h)aλ-1(h)

[here λ(h) = τh(x0), the representation Λh acts on the Lie algebra JΓ of the group K
and Γh acts on the tangent space Jt^Q to manifold M at the point x 0 ] . One can
consider Aμ(x0) as a linear operator A mapping Ji(x^) into JΓ the equality (7) can
be written in the form Ahλ = AΓh (i.e. the operator A intertwine the representations
Ah and Γh). Now all Yang-Mills fields satisfying (7) can be listed by means of Schur's
lemma.

We have considered above the Equation (2) on the fixed orbit N(x0). Our
considerations can be immediately generalized to study this equation on a α(G)-
invariant set Mί if the isotropy group H(b) depends continuously on beM1 and the
set of orbits MJa(G) is homeomorphic to the convex subset Tof euclidean space. In
this case one can select continuously one point of each orbit in such a way that
isotropy groups in all these points coincide in other words there exists such a map q
of Tinto M 1 that H(q(t)) does not depend on te Tand pq(t) = t where p is the natural
projection of Mx onto M1/α(G) = T (see [4]). The solution of (2) on M1 can be
written in the form

τg(x) = μ~1(g1 (x))μ(g x (x)g)



82 A. S. Schwarz

where g^ix) satisfies 0L(gγ{x))xEq(T) and μ{g) is a solution of (5). The G'-invariant
Yang-Mills field can be expressed through Aμ(q(t)\ te Tand the possible values of
Λμ(q(ή) can be listed by means of Schur's lemma. It is important to note that all gau-
ge invariant quantities can be expressed through Aμ(q(t)\ te T iϊM1 is an open sub-
set of M having full measure (i.e. M\M1 is a set of measure zero). Such a choice of
M1 is always possible (see [4]). It is convenient therefore to consider the fields only
on M1 where the invariant fields can be described completely (the fields on M1 are
in general discontinuous on M but this is not essential if the basic physical quanti-
ties are finite).

Let us indicate now how our considerations can be used to study spherically
symmetric fields in three-dimensional euclidean space E3. In this case G = SO(3) or
G =5(7(2) and α is an identity map 50(3)^50(3) or a covering map 5 (7(2)-^50(3). If
we delete the origin of coordinates from E3 we obtain a manifold Mί = £3\{0}. The
set q(T) where Tis a ray 0 < t < oo, q(t) = (0,0, t) intersects each orbit of α(G) = 50(3)
in a unique point and h = H(q(t)) does not depend on t [namely H = S0(2) or
H = 1/(1)]. The type of spherical symmetry is characterized up to gauge equivalence
by a homomorphism λ of H into K. The possible values of spherically symmetric
field on positive z-axis can be described by means of Schur's lemma and gauge
invariant quantities can be expressed through these values.

Let us consider for example the case K = SU(n) then every homomorphism oϊH
into K is conjugate to the homomorphism having the form λ(φ) = exp(imaφ)δab

where in the case G = 50(3), H = 50(2) the Euler angle φ runs over interval [0 2π]
and ma are integers [in the case G = 5(7(2), H= (7(1) the angle φ satisfies O^φ ^ 4 π
and 2ma are integers].

The possible values of spherically symmetric Yang-Mills field Aμ on the z-axis
are antihermitian matrices satisfying Af = 0 if \ma — mb\ φ 1, Af = i sgn(mα — mb)Af,
Af = O if maφmb. If the scalar fields φ = (φab) transform according adjoint
representation of SU(n) then on the z-axis the spherically symmetric fields obey
φab = 0 if ma Φ mb. [In general if the scalar fields φiφ1,..., φn) transform according the
representation ρ of the group K the values of spherically symmetric fields on the z-
axis satisfy ρ(λ(h))φ = φ for every heH.~]

One can prove that the energy of spherically symmetric Yang-Mills field in
euclidean space with usual metrics can be finite only in the case when the
homomorphism λ can be extended to the homomorphism of G into K but every
spherically symmetric Yang-Mills field has finite energy in some spherically
symmetric metrics in E3. The proof of these assertions will be given in a separate
paper [5]. This paper contains also an analysis of spherically symmetric solutions of
field equations in particular the solutions having magnetic charge are studied.

Section 2

Let us consider a manifold E and a compact connected Lie group K acting on E on
the right. If e/cφe for every eeE, keK, fcφl this action determines a principal
fibration ξ(E, M, K, p) with the space E = Eξ, the group K, the base M = E/K and the
projection p. It is well known that Yang-Mills fields can be considered as
connections in principal fibrations. (It is sufficient usually to regard Yang-Mills
fields as connections in trivial fibration but in some questions non-trivial fibrations
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occur see for instance [6,7].) A map φ of E onto E will be called an automorphism
of principal fibration if φ(e)k = φ(ek) for every eeE, keK. Each automorphism φ
determines a transformation of the base M = E/K; we shall denote this transfor-
mation by π(φ). The group of automorphisms of the principal fibration ξ
determining an identity transformation of the base will be denoted by K^ the
group of automorphisms satisfying π(φ)eθ where 0 is a fixed group acting on M
will be denoted by Rξ. It is easy to verify that in the case of trivial fibration the
groups K% and Rξ coincide with the groups K^ and ,R defined in Section 1.

We shall fixe a compact connected Lie group G and a homomorphism α of G
into 0. The set of homomorphisms τ:G-+R satisfying π(τ(g)) = a(g) for every geG
will be denoted by s/(ξ, α). A homomorphism τes/(ξ, α) determines an action of the
group G x K onto Eξ namely the transformation corresponding to a pair (g, k)
maps eeE into τig'^ek. The isotropy group of this action at eeE [i.e., the set of
pairs (g,k)eGxK satisfying τ(gf~ 1)̂ fc = e] can be described as set of pairs (h,λ(h))
where heH(p(e)) and λ = λτ e is a homomorphism of H(p(e)) into K depending on τ
and e [here iϊ(b) is the isotropy group at beM i.e. the set of elements toe G satisfying

If p(e) = p(e1) then the homomorphisms λ = λτ^e and A 1 =λ τ > e i are conjugate;
really λx =k~1λk where keK satisfies eλ =ek. If the homomorphism τ'ejtf(ξ,a) is
gauge equivalent to the homomorphism τe^/(ξ, α) where yeKξ^ then the homo-
morphisms 2 = /Lt,>eand /L = >iτ,eare conjugate. [To check this assertion one must
note that λτ,te=λXiye and p(e) = p(ye).~]

We consider firstly the simplest case when the group α(G) acts on M transitively.

Theorem 1. If beM and λ is a homomorphism of H{b) into K then there exist a
principal fibration ξ(λ)(E(λ\M,K,p(λ)) and a homomorphism τλe^/(ξ(λ\a) satisfy-
ing λ = λτχefor certain eeE(λ).

To construct ξ(λ) we define the action of H(b) on G x K assuming that heH(b)
transforms (g,k)eGxK into (hg, λ(h)k). The coset space oϊGxK with respect to this
action will be denoted by E(λ) and the identification map of G x K onto E(λ) will be
denoted by ψ. The right action of K on G x K induces the right action of K on E(λ)
which determines a principal fibration ξ(λ) (E(λ\ M, K, p(λ)). For every geG we
define τλ(g) as an automorphism of ξ(λ) satisfying τλ(g)ψ(y,k) = ψ(yg~ι,k) for all
(γ,k)eGxK. It is evident that τλe^{ξ{λ\a) and λ = λXλ ewhere e = ψ(l, 1).

Theorem 2. 37z£ homomorphism τes${ξ,v) is gauge equivalent to τfes/(ξ,a) if and

only if the homomorphisms λ — λτe and λ' = λτ, e are conjugate for some eeEξ.

If τ G jtf(ξ, α) and ee Eξ we can construct a map v = v τ e o f G x K onto Eξ by means
of formula v(g,k) = τ(g~1)ek. It is evident that v(hg,λ(h)k) = τ(g~1)τ(h~1)eλ(h)k
= v(g, k) and therefore v determines a map v of E(A) onto E l The map v commutes
with action of K on £(A) and Eξ and hence it can be considered as an isomorphism of
principal fibrations ξ(λ) and ξ. It is evident that τ(g)v = vτλ(g).

Let us consider homomorphisms τ e j/(ξ, α) and τ' e <stf(ξ, α) generating conjugate
homomorphisms λ = λue and λ' = λτ^e. lϊλ' = k~xλk then Aτ e = λτ,tβ,9 where e' = ek.
Now the element ye i^ i satisfying τ' = yτy ~x can be obtained by means of formula
y = v/v~1 where v = vτ e and v/==vτ, e, are isomorphisms of ξ(A) and ξ constructed
above. (The isomorphisms v and v' induce the identity map of the base M hence
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We see that τ and τ' are gauge equivalent; this proves one of assertions of
Theorem 2. The second assertion was proved earlier.

Theorem 3. The homomorphism λ of H(b) into K can be represented in the form λτ>e

where τ is a homomorphism of G into R satisfying π(τ(g)) = cc(g) if and only if the
composition ρλσ of the maps σ:M-+BH and Qχ' BH^>Bκ is homotopic to zero [here
σ\M^>BHisa classifying map of the principal fibration (G, H, G/H) and the map ρλ is
induced by the homomorphism λ:H-^K~\.

We have mentioned above that the group R is isometric to the group Rξ{0) where
ξ(0) is a trivial fibration. It follows immediately from Theorems 1 and 2 that λ = λτ e

where τe <stf(ξ(O\ α) if and only if the fibration ξ(λ) is trivial. One can verify that ρλσ is
a classifying map of the fibration ξ(λ); this proves the theorem.

In the case when G/H(b) is a topological sphere Sm the Theorem 3 can be
reformulated as follows. Let φ :Sm~ί -^H(b) be a characteristic map of the principal
fibration (G, H, G/H). Then λφ: Sm~* -+K is a characteristic map of the fibration ξ(λ)
and therefore this fibration is trivial if and only if the map λφ is homotopic to zero.
In the case H=U(1) the degree of the characteristic map φ-.S^-^Uiί) is equal to 1
hence ξ(λ) is trivial if and only if the map λφ is homotopic to zero. If G = SO(3),
H = S0(2) the degree of characteristic map φ:S1-*SO(2) is equal to 2 and ξ(λ) is
trivial if and only if the map λ :S0(2)-+K is homotopic to the map A"1 :S0(2)-+K. In
the case G = SO(4\ H = S0(3) the characteristic map φ:S2-+SO{3) is homotopic to
zero and ξ(λ) is always trivial.

We have completely analysed the case when α(G) acts on M transitively. One can
perform such analysis also if the isotropy subgroup H(b) depends continuously on
the point beM using some results of transformation group theory. In the last case
all isotropy subgroups are conjugate and the action of α(G) on M generates a
fibration of the space M onto orbits of α(G); this fibration is associated with the
principal fibration with the group N(H(b))/H(b) where N(H(b)) is the normalizer of
H(b) in G. (Main results of transformation group theory used in present paper can
be found in [4].) For brevity the complete analysis of this case will be omitted we
shall impose an additional condition that the coset space B = M/a(G) is contractible
(then the fibration of M on orbits is trivial). One can prove that Theorems* 1-3
remain correct in the case under consideration. The proofs require only minor
modifications. In particular by the proof of Theorem 1 the space E(λ) must be
defined as the coset space o f β x G x K with respect of action of H(b) transforming
(m,g,k)eBxGxK into (m,hg,λ(h)k).

Let us return to the general case. It is well known that orbits having minimal
isotropy subgroup (non-singular orbits) fill in an open dense subset M x CM and
H(b) depends continuously on beMv One can find an open dense subset M 2 C M1 in
such a way that M2/oc(G) is contractible. It was noted in Section 1 that one can
consider all fields on M 2 only, but to study fields which are continuous at all points
of M one must regard the automorphisms of principal fibrations with the base M.
These automorphisms can be described in the most interesting case when the coset
space M/α(G) is one-dimensional. Then the space M/α(G) is homeomorphic to one
of (a) a circle, (b) on open interval, (c) a half-open interval, or (d) a closed interval
(see [8]). In cases (a) and (b) the subgroup H(b) depends continuously on beM (all
orbits are non-singular). In the case (c) there exists one singular orbit. We shall
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consider the case (d) for definiteness. In this case we identify M/α(G) with the closed
interval [0 1] the identification map of M onto M/α(G) = [0 1] will be denoted by
q. The orbits q ~ ί(t) are non-singular if 0 < t < 1 and singular if t = 0 or t = 1. One can
find such a map/of [0 1] into M that qf(t) = t, the isotropy subgroups H(f(ή) = H
don't depend on t if 0 < ί < l , H(f(0)) = HoDH, H(f(l)) = H1jH (see [8]). Every
homomorphism τes/(ξ,cc) where ξ(Eξ,M,K,p) is a principal fibration determines
an action of GxK onto Eξ; the coset space of this action is also M/a(G) = [0; 1].
Using once more the results of [8] we obtain such a map / of[0; 1] into Eξ that
pf = f and the isotropy subgroups of G x K at points f(t)eEξ don't depend on t if
0< t < 1. The homomorphisms Ao = ̂ τ>/(0) 'H0^K and Ax =2Tfy!(1) ://1 ->X coincide
on H, namely λo = λ1=λ where λ — λτ ^t):H-^K, 0<t< 1. These homomorphisms
depend on the choice of/ the family of pairs (λ0, λx) obtained by various choice of/
will be denoted by Λ(τ). [It is easy to verify that by means of change of /one can
replace the pair (λ^λ^ by the pair {λ'0,λ\) if there exists such continuous function
k(t)eK that λ'o = k(0)λok~ ̂ 0), λ\=k{\)λγk~ \\) and k{t)λk~ \t) does not depend on
t for 0<ί<l.]

Theorem Γ. For every homomorphisms λQ:H0^>K, λ±\H1-*K coinciding on H one
can construct such principal fibration ξ(Eξ,M,K,p) and such τes/(ξ,a) that
(λ0Λ)εΛ(τ).

Theorem 2'. The homomorphisms τ, τ' es^{ξ,oί) are gauge equivalent if and only if
Λ(τ) = Λ{τ').

The proofs of these theorems are analogous to the proofs of Theorems 1, 2.
Theorem Γ, 2' can be used in particular in the case M = Sn,

G = SO(k)xSO(n+l-k).
If the space M/α(G) is homeomorphic to a half-open interval [the case (c)] then

the situation is simpler.
Let H = H(b) be an isotropy subgroup at the point beM belonging to the

singular orbit. Using the results of [8] one can construct for every homomorphism
λ.H-^Ka. principal fibration ξ(λ) (E(λ),M,K,p(λ)), a homomorphism τejrf(ξ(λ),a)
and a point eeE(λ) in such a way that λ = λτtβ. If τejtf(ξ,ot), τ'ejtf(ξ,cή where
ξ(E,M,K,p) is a principal fibration and the point eeE satisfies p(e) = b then the
homomorphisms τ and τ' are gauge equivalent if and only if the homomorphisms
λτ e:H^>K and λτ, e:H-^K are conjugate.

We see that the geometrical language is very convenient to describe the
subgroups of the symmetry group of the gauge theory. The invariant Yang-Mills
fields (the invariant connections in principal fibrations) also can be studied by
means of geometrical considerations. Probably it is most useful to combine the
analytical approach of Section 1 and the geometrical approach of Section 2.

In particular the results of Section 2 can be used to describe the continuous
invariant Yang-Mills fields on M in the case when M/α(G) is one-dimensional. For
example if the spherically symmetric Yang-Mills field on £3\{0} can be con-
tinuously extended on E3 the homomorphism λ:H-^K determining the type of
spherical symmetry can be extended on G [here H = 50(2) orH= 1/(1), G = SO(3) or
G = S17(2)].
Acknowledgement. I am indebted to D. E. Burlankov for sending his papers before publication.
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