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Abstract. This article deals with the structure and representations of Lie
superalgebras (Z2-graded Lie algebras). The central result is a classification
of simple Lie superalgebras over IR and C.

Introduction

"Graded Lie algebras have recently become a topic of interest in physics in the
context of supergauge symmetries relating particles of different statistics". See
the review [22] from which this quotation is taken and where there is a voluminous
bibliography. (See also the review [25].)

In this paper an attempt is made to develop Lie superalgebra theory. Lie
superalgebras are often called Z2-graded Lie algebras. We prefer the term "super-
algebra" inspired by physicists. In fact, a Lie superalgebra is not a Lie algebra
either graded or not.

We call superalgebra any Z 2-g r aded algebra A = AQ@AJ, i.e. if aeAa, beAβ,
α, βeZ2 = {0, ϊ}, then abeAa+β. A superalgebra G=GQ@GJ with product [,],
satisfying the following axioms

ae Gα, be Gβ,

is called Lie superalgebra.
Note that these axioms are satisfied by the Whitehead product in homotopy

groups. Lie superalgebras arise also in various cohomology theories, e.g. in
deformation theory.

In paper [4] Lie superalgebras are initially introduced as Lie algebras of some
generalized groups now called formal Lie supergroups. At present, there is a
satisfactory theory analogous to Lie theory connecting Lie superalgebras and
Lie supergroups, i.e. groups with functions taking value in some Grassmann
algebra, [5].
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Let us now enumerate in short the main points of finite-dimensional Lie
superalgebra theory. Let G be a Lie superalgebra of finite dimension. Then there
exists in G the unique maximal solvable ideal R (solvable radical). The Lie super-
algebra G/R is semisimple (i.e. G/R does not contain any solvable ideals). Therefore
finite-dimensional Lie superalgebras theory is in a sense reduced to the theories
of semisimple Lie superalgebras and solvable Lie superalgebras.

Note that the analogue of the Levi theorem stating that G is semidirect product
of R and G/R does not hold for Lie superalgebras.

The crucial point of solvable Lie algebra theory is the Lie theorem asserting
that any irreducible finite-dimensional representation over (C of a solvable Lie
algebra is one-dimensional. That is not true for Lie superalgebras. In this paper
there is given a classification of finite-dimensional irreducible representations of
solvable Lie superalgebras (Theorem 7). In particular we obtain a necessary and
sufficient condition for every representation to be 1-dimensional.

Further, it is known that a semisimple Lie algebra is a direct sum of simple
Lie algebras. This is far from being so in the Lie superalgebra case. However,
there is a construction which enables us to describe semisimple Lie superalgebras
via simple ones (Theorem 6). The construction is analogous to the one introduced
in the paper [21].

Thus we are driven to the fundamental problem of classification of finite-
dimensional simple Lie superalgebras. The general purpose of this paper is to
answer that question in case of an algebraically closed field of zero characteristic.
The main difficulty lies in the possible degeneracy of the Killing form, which
does not take place in the simple Lie algebras case. That is why the usual Killing-
Cartan technique is not applicable. The classification is divided into two principal
parts.

First, there is given the classification of Lie superalgebras of classical type.
A Lie superalgebra is of classical type if it is simple and if the representation of the
Lie algebra GQ in Gj is completely reducible.

This part is in turn divided into two parts, the Killing form being nondegenerate
or zero respectively. Vanishing of the Killing form is used to obtain strong limita-
tions on the indices of representations of Go in Gj.

The obtained classification of Lie superalgebras which are not Lie algebras
is as follows (Theorem 2):

a) 4 series A(m, n), B(m, n\ C{n\ D(m, ή) that are in many ways like the A — D
series of Lie algebras,

b) 2 exceptional Lie superalgebras, one being 40-dimensional F(4), the other
being 31-dimensional G(3),

c) a family of 17-dimensional superalgebras D(2, l α) that are deformations
ofD(2,l),

d) 2 "strange" series P(ή) and Q(ή).
In the second part there is given a classification of simple Lie superalgebras

of nonclassical type. For this purpose there is made a filtration G = L_1DL0J
L1J..., Lo being maximal subalgebra that contains Go, Li = {aeLi_1\\_a,L] C
A -i} f° r *>0 Then we give a classification of Z-graded Lie superalgebras with
the same properties that the associated graded Lie superalgebra Gr G has notorious-
ly (Theorem 4). In the proof are used methods developed by the author in his
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paper [11] for the classification of infinite-dimensional Lie algebras. Finally
there remains only to restore filtered Lie superalgebra G via Z-graded Lie super-
algebra GrG.

The finished classification of simple Lie superalgebras is as follows (Theo-
rem 5).

a) Lie superalgebras of classical type (enumerated above).
b) Lie superalgebras of Cartan type \\{n\ S(ή), H(ri), S(ή), where the first

three series are analogous to the corresponding series of simple infinite-dimensional
Lie algebras of Cartan type, and S(n) is deformation of S(ή).

Finite-dimensional irreducible representations of simple Lie algebras are
described by the highest weight theorem. The simple Lie superalgebra case is the
same (Theorem 8). Note that the complete reducibility of finite-dimensional
representations of simple Lie superalgebras generally does not take place.

In this paper there are also enumerated all finite-dimensional simple real
Lie superalgebras (Theorem 9).

Finally, there is made an attempt to extend Cartan's results on classification
of complete infinite-dimensional primitive Lie algebras to Lie superalgebras. In
this line we obtain only partial results (Theorem 10).

From this viewpoint one can see also the cause of finite-dimensionality of
Lie superalgebras of Cartan type. The latter, being Lie superalgebras of vector
fields in commuting and anticommuting variables, are finite-dimensional when
there are no commuting variables and so there is no analogue to contact Lie
algebra in the odd case.

The main results, i.e. Theorems 1,2,4—7 are formulated in [16].
All spaces and algebras discussed are over a field K which is usually considered

to be algebraically closed and of zero characteristic. Denote <M> the linear span
of the set M over K, © the sign of direct sum and ® the sign of tensor product
over K.

I am glad to express my deep gratitude to F. A. Beresin, E. B. Vinberg and D. A. Leites for numerous
discussions and constructive help. I am also very thankfull to Prof. I. Kaplansky for correspondance.
Due to his preprint [27] (about root systems for Lie superalgebras with nondegenerate invariant form)
some errors are eliminated that had slipped into Theorem 1 of my note [16] (see [24]).

I am obliged to D. A. Leites who translated the text.

Remarks. 1) This article is written for physicists. Consequently some proofs are
sketched or omitted. The complete proofs are contained in my forthcoming paper
"Lie superalgebras" submitted to the Russian journal Uspechi mat. nauk (see [31]).

2) The partial results of classification of simple Z2-graded Lie algebras were
independently obtained by Kaplansky, Freund, Djokovic, Pais, Rittenberg,
Nahm, Scheunert [26-30].

Chapter I. Classification of Simple Lie Superalgebras

§ ί. Superalgebras and Lie Superalgebras

1. Superalgebras. Suppose A = AQ@AJ is a superalgebra. Call subalgebra or ideal
of a superalgebra A a Z2-graded subalgebra or ideal. Call homomorphism the
one that preserves Z2-grading. Direct and semidirect sum of superalgebras is
defined as usual. The definition of tensor product is different. Suppose A = A0@A1
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B = Boζ&B1 are superalgebras. Call tensor product superalgebra A®B, the space
A®B, space A®B being tensor product of spaces A and B with the induced
grading and multiplication defined as follows

For a superalgebra A it is natural to define the commutator (bracket) by the
equation

[a,b-] = ab-(-l)desa'degbba. (1.1)

A superalgebra is called commutative if [α, b~\ = 0. Usually, permutability is
understood in the sence of (1.1). Associativity is understood as in the algebra
case.

Example 1. Assuming that M is abelian group, V= φ Vt is M-graded vector
ieM

space. Then the associative algebra End V is supplied with the induced M-grading
End V= 0 End; V, End; V= {aeEnd V\aVsC Vs+i}.

ieM

In particular, we obtain for an M = Έ2 superalgebra E n d F = E n d o F 0
EndΓ V.

Example 2. Denote Λ(ri) the Grassmann algebra of n variables ξ1,..., ξn. A(n) is

Z2-graded, if deg^ = T, i = l , ...,n. Call the obtained superalgebra a Grassmann

superalgebra. A(n) is a commutative associative superalgebra. Evidently,
A(n)®A(m) = A(m + n).

2. Lie Superalgebras. Suppose that G = GQ@GJ is a Lie superalgebra. Then GQ is
a usual Lie algebra, left multiplication defines GQ-module Gj and multiplication
in Gj defines homomorphism φ of Go-modules φ:S2Gj^Go. Therefore, a Lie
superalgebra could be defined by three objects, namely, a Lie algebra Go, a Go-
module Gj and a homomorphism of Go-modules ψ\S2Gj^G^ satisfying the
unique condition

φ(a, b)c + φ(b, c)a + φ(c, d)b = 0, a, b, ce Gj (1.2)

Example 1. Suppose A is associative superalgebra. Then bracket (1.1) defines the
Lie superalgebra structure on A. Denote this Lie superalgebra AL.

Example 2. Let G be Lie superalgebra, and let A(n) be a Grassmann superalgebra.
Then G®A(n) is Lie superalgebra.

The definition of solvable and nilpotent Lie superalgebras is the same as for
Lie algebras. A Lie algebra is called simple (semisimple) if it does not contain
nontrivial (resp. solvable) ideals.

3. Universal Enveloping Superalgebra. In [22] it is verified that the Poincare-
Birkhoff-Witt theorem holds.

Theorem(PBW). Suppose G = G Q ® G J is Lie superalgebra, aί9...,am being basis

of G$9b1,...,bn that of G j . Then elements of the form

a\\..a%rbh...bis, for fef>0, I ^ f 1 ^ . . . ^ i s ^ n

form a basis of the universal enveloping Lie superalgebra U(G).
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Define the diagonal morphίsm A: £/(G)->[/(G)(x) U(G) by the formula

A(a) = a®l+(-l)degal®a,aeG.

4. Derivations and Automorphisms of Super algebras. Call derivation of degree s
of a superalgebra A, seZ2, an endomorphism DeEndsA with the property

D(ab) = D(a)b + ( - l)sdegaaD(b).

Denote ders^4c Ends>l the space of all derivations of degree s, assuming that
der ,4 = dero^0derjv4. The subspace der ,4 c End^4 is closed under the bracket
(1.1), i.e. der A is Lie subalgebra of (End^) L . We call it the Lie superalgebra of
derivations of A.

Example ί. Suppose that G is Lie superalgebra. Then the Jacobi identity implies
that adα:£>—•[#, b~] is derivation of G. Derivations of this kind are called inner;
they form an ideal inner G in derG, because

[D, adα] = ad£>(α), where DederG.

Example2. It is easily verified that for any Pl9...9Pne A(n) there is unique derivation
De der A(n) satisfying D(£t ) = Pt. Denote derivations d/dξi via the formula dξj/dξi =
δij. The derivation wanted could be written in the form D= ^P^/δξj.

Note that if D is an even derivation of superalgebra A = AQ@AJ then expίD,
ίe K, is 1-parameter group of automorphisms. In particular, if A is Lie superalgebra
then exp(adα) is an automorphism of A for aeA§. The group generated by all
such automorphisms is called the group of inner automorphisms'.

5. Superalgebra l(V) and Supertrace. Let V = VQ®VJ be Z2-graded space. The
algebra E n d F has a Z2-grading (see Section 1) and becomes therefore an as-
sociative superalgebra. Denote l(V) or elsewise l(m,n) the Lie superalgebra
(EndF)L (cf. Section 2), where ra=dimFo, n=άimVj. The role played by l(V)
in Lie superalgebras theory is the same as that of GL in Lie algebras theory.
If the same decomposition of V = Vo + Vx is considered as Z-grading then there is
corresponding Z-grading of l(V) agreeing with Z2-grading: /(F) = G _ 1 © G 0 © G 1 .

Assume that ei9...,em, em+i9...,en is basis of V that is the union of bases of
VQ and Vj. Such a basis is called homogeneous. In this basis the matrix of an
operator ael(V) is written in the form (1); (2) and (3) being for even and odd
elements respectively;

(4) and (5) for G1 and G_x in Z-grading of l(V) respectively. One can see that
G0-modules Gx and G_x are contragredient, G0-module G1 being isomorphic
togl(m)®gl(n).

Call supertrace the function str on l(V),

stra= trα— tr<5 .

Note that the supertrace of the matrix of an operator a does not depend on
the choice of a basis. Hence, we can speak about supertrace of an operator.
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Let G= GQ@GJ be a Z2-graded vector space, / be a bilinear form on G. Call
/ agreed or consistent if f(a,b) = 0 for any αeGg, beGj, - and super symmetric
if / ( α ? b) = ( - i)(degβ)(degfc)y(&j fl) if G is a Lie superalgebra then / is called invariant

Proposition 1.1. a) Bilinear form (α, fe) = str(αfc) on /(7) is consistent, super symmetric
and invariant.

b) str([α,ft]) = 0/or fl//α,66/(7).

Proo/ Consistency of the form follows from the inclusion abel-{(V\ for <ze/o(7),
be/γ(7). Supersymmetry for a,bel(V) only the verification for a,belχ(V), and
that is done by simple computation, b) is the other expression for supersymmetry.
Invariance holds due to the Jacobi identity.

6. Linear Representations of Lie Super algebras. Let V=VQ®VJ be a Z2-graded
vector space. Call linear representation of Lie superalgebra G = G Q © G J in 7 a
homomorphism ρ:G-+l(V).

We shall often say more shortly that 7 is a G-module and write g(υ) instead
oϊρ(g)(v) for ge G, ve 7 Note that by definition GΓ(F,) C Vi+p ije Z 2 , and [h{, fc2]ι> =
M f t 2 i > ) - ( - i r e 2 M M ) . N o t e t h a t ad:G^/(G), (adflf)(Λ) = [gf, A] is a linear
representation of G, called adjoint representation.

We call submodule of a G-module 7 a Z2-graded submodule. A G-module
7 is called irreducible if it does not contain nontrivial submodules. Call Φ:V^>V
a homomorphism of G-modules if for some bijection φ:Z2—>Z2 Φ(Vt) C Vφ(ΐ).

The Schur Lemma. Let V= VQ® 7T, ffll be a irreducible set of operators of l(V\

C(W)= {ael(V)\la, m] = 0, mea«}.

2) dim7o = d i m 7 j , C(SDΐ) = <l , ̂ 4) where A is nonsingular operator in V
permuting VQ and Vj.

Example. Consider Lie superalgebra N = NQ@NJ with NQ =(e}, NΊ =(aί,...,an,
b{ ,...,bny, [ai,bj'] = δije and all other brackets vanishing.

Let us introduce a family of representations ρα, αe K* of a Lie superalgebra
N in the space Λ(n), setting

ρα(αf)M = δw/δ^ , Qa(b^u = aξtu , ρa(e)u = GCU .

The dimension of this irreducible representation is 2". Now, let us consider the
Lie superalgebra Nf = N@(c}, [JV, c] =0, [c, c] = e and the superalgebra Λ'(ή) =

Denote a family of representations ρ ,̂ αe K*, of the Lie superalgebra N' in
the space Λ'(ri), setting

ueΛ(ή), veK[έ], neN.

The dimension of this irreducible representation is 2" + 1 .
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It is natural to call N and N' Lie superalgebras of Geisenberg. Note that cases
1) and 2) of Schur's lemma hold respectively for ρa and ρ'a.

This example shows that in the Lie superalgebra case there are irreducible
representations of solvable Lie superalgebras in dimensions more than 1. The
Engel theorem still holds though, and the proof is the same as for Lie algebras
[10].

The Engel Theorem. Let Gd(V) be a subalgebra, all elements G being nilpotent.
Then there is veV, u + 0, annuled by each element of G.

§2. Z-Grading and Filtration

ί. Z-Grading. Call Lie superalgebra G Z-graded if it is decomposed into a direct
sum of finite-dimensional Z2-graded subspaces G = ( J ) G I , [_GbGj]cGi+j. Z-

ieZ

grading is called consistent or agreed (with Z2-grading), if GQ = θ G2 ί, GΓ = ® G 2 i + 1 .
If follows from the definition that if G is a Z-graded Lie superalgebra then Go

is a subalgebra and [G o, GJCG^. So, the restriction of the adjoint representation
to Go induces a linear representation of the Lie superalgebra Go in each Gt .

A Z-graded Lie superalgebra G= ®Gt is called irreducible if the representation
of Go in G_ 1 is irreducible. A Z-graded Lie superalgebra G=φGt is called transitive
if

for α e G i , ί ^ 0 , [ α , G _ 1 ] = 0 implies a = 0, (Tl)

and bitransitive if both (Tl) and

for α e G i , ί ^ 0 , [ α , G 1 ] = 0 implies α = 0. (T2)

2. Conditions for Simplicity. In this section we give some conditions for simplicity
of Lie superalgebras. Their proof is evident and usual.

Proposition 2.1. Necessary conditions for simplicity of the Lie superalgebra
G = GQ θ Gj are as follows

1) GQ acts faithfully in Gj,
2) IG-UG-Λ = G-O.

If the following additional condition is satisfied:
3) the representation of G in G is irreducible,

then G is simple.

Proposition 2.2. Necessary conditions for simplicity of Z-graded Lie superalgebra
^ . are as follows

1) G is transitive,
2) G is irreducible,
3) [G^GJ^Go.

// the following additional conditions are satisfied
4) {αeG 1 | [G o ,α] = 0}=0,
5) Gi = G\,i>Q,

then Lie superalgebra G is simple.

3. Filtration. The sequence of subspace L = L_1DL0D L1D ...is called a filtration
if [Li9 Lj]cLί+j and n L - 0 (i,jeZ).
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A filtered Lie superalgebra is called transitive if for any a e L t \ L i + 1 , z'^0,
there is an element beL such that [a, b~\^L{. This condition could be written also
in the form

Li={aeLi^\la,L\aLi^}, i>0. (Fl)

Let L be a Lie superalgebra, L o be a subalgebra of L, that does not contain
nontrivial ideals of L. Then (Fl) defines a transitive filtration in L. In fact the
first property of filtration is easily proved inductively via Jacoby identity.

r\Lt is ideal in L and therefore nLt being zero proves the second condition.
This filtration is called the transitive filtration of (L, Lo).
To a filtered Lie superalgebra L = L_1JLODL1D... there corresponds by

the usual way an associated Z-graded Lie superalgebra GrL = (+) GηL,
ί ^ - 1

GriL = Lί/Lί+i. Lt are Z2-graded spaces and so is GrL, Z-grading of GrL usually
is not agreed. The Z-graded Lie superalgebra G= Q) Gt has a canonical filtration

θ
A filtered Lie superalgebra L is transitive iff GrL is transitive. If GrL is simple

then so is L.

4. On Relations between L and GrL. Assume that in filtered Lie superalgebra
L = L^1 DLODL1 D... there are given subspaces Gs such that LS = GS@LS+1 and
[G/? Gj] C Gi+j. In such a case we say that the grading of L is agreed with filtration
or consistent. If L is of finite dimension and the grading is consistent, than L ~ Gr L.

Proposition 2.3. Suppose L = L__1DLODLXD... are transitive filtered finite-
dimensional Lie super algebras and G r 0 L acts irreducibly in Gr_ίL, Gr0L being
a Lie algebra with nontrivial centre. Then there is a grading of L agreed with filtration,
and henceforth L~ GrL.

5. Suppose L = LQ®LJ is Lie superalgebra, Lo being some own maximal sub-
algebra that contains LQ. Suppose Lo does not contain nontrivial ideals of L,

is transitive filtration of (L,L0). Let G r L = φ Gr, L be associated Zrgraded

Lie superalgebra. i=~1

Proposition 2.4. The described TL-graded Lie superalgebra GvL satisfies the
following conditions:

a) GrL is transitive,
b) Z-grading of GrL is agreed with Έ2-grading,
c) GrL is irreducible,
d) If the representation of LQ in Lj— is not irreducible then G r 1 L Φ 0 .

Proof a) follows from the transitivity of the filtered Lie superalgebra L. The
inclusion G r ^ L C ΐ G r L ^ - follows from the inclusion L Q C L 0 . The transitivity
of GrL and a induction implies b). To prove c) suppose the opposite. Then there is a
Z-graded subspace L c L containing L o that is neither L nor L o and [Lo, L] CL.
We have L - L o 0 K VcLΊ. L o }L 0 , so [ K F ] C L 0 . [L,L] = [ L 0 Θ K
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[Lo, L o ] + [L o, F] + [ V, V~\ C L in contradiction to maximality of L o . d) If Gr x L = 0,
then GT0L = LQ, on account of c), L-{ - is irreducible representation of L o .

§3. The Description of Classical Type Lie Super algebras

We say that a finite-dimensional Lie superalgebra G = GQ@GJ is of classical type
if it is simple and the representation of GQ in Gj is completely reducible.

1. Lie Superalgebras A(m, ή). The basic property of supertrace, i.e. str([α, b]) = 0,
implies that sl(m, ή)={ael(m, ή)\ str(α) = 0} is the 1-codimensional ideal in /(m, n).
7L2- and Z-gradings of l(m, n) induce the same gradings on sl(m, n). The Lie super-
algebra sl(n, n) contains a 1-dimensional ideal that consists of scalar matrices
λl2n. The Lie superalgebra sl(l, 1) is 3-dimensional nilpotent Lie algebra. Put

A(m,ή)=sl(m + l,n + l) for mΦn, m,n9 ^ 0 ,

A(m9 m)=sl(m + l,m+l)/Al 2 w +2 ? m > 0 .

Z-grading of s l(m+l, n+1) induces a Z-grading of A(m, n), ^(m, π)f being zero
for |

2. Lie Superalgebras B(m,ri), D(m9ri)9 C(n). Let f=]/—1, T denote the sign of
transposition, B be the matrix of order m + 2n;

0

0
0 1,

-U 0

Denote in l(m, In) the subalgebra osp(m, ή) putting osp(m, n)a= {ae l(m, n)\aB +
iaBaJ = 0, αeZ 2 } . Then osp(m, fi)o consists of matrices of the form

a being skew symmetric, c and d symmetric and b arbitrary, osp(m, n)j — consists
of matrices of the form

, x and y being arbitrary.

osp(m, ή) is called the orthogonal-symplectic superalgebra. Put

β(m,n)=osp(2m + l,2n),

D(m, π)=osp(2m, 2ή) 9

0

- j T

Xτ

x y

0

Another realisation of osp(m, ή) follows. Let VQ- be an m-dimensional space
with symmetric form (,) 0 , V-{ be an ^-dimensional space with skew symmetric
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form ( , ) l 5 both form being bilinear and nondegenerate (that implies n = 2k).
Then put

osp(m, /c)o = Λ2 Vϋ®S2 VJ, osp(m, k)-{ = Vϋ® V-{

with multiplication

[a Λ ft, c] = {a, c)ob- (b, c)oa, a A be A2 F D , ce VQ

la °ft, c] = ( f l , c ) 1 H ( i , c ) 1 α } a -be S2 VΊ , ce V-{ .

These brackets define brackets in Λ2VQ and S2Vj in the usual way:

lab, cd~] = lab, c]d + c[ab, d] .

Finally for a ® c, b ® de VQ ® Vj, put

[a(g)c,b(g)d']=(a,b)oc(g)d + (c,d)ίa A b.

Such a realisation admits an interesting agreed Z-grading, all osp(m, fe),-
vanishing for |/ |>2. Let Vj be the sum of isotropic spaces Vj = V'®Vf\ dimF' =
dimV" = k. Then the following decomposition is Z-grading:

osp(m, k) = S2(V')@(Vo® V')®(V' ®V"® A2 FD)Θ(Fo® V")@S2 V".

It is evident that G 0 ^ g l k © s o m , the representations of Go in G{ and in G_{ are
contragredient. The G0-module G1 is isomorphic to glfc(x)som, the G0-module G2

toS2g\k.

3. Lie Superalgebras P(n). Let G0 = sl(n+l), Gj (resp. G_x) be the space of all
symmetric (resp. skewsymmetric) matrices of order n + 1, n ^ 2 . The Z-graded
Lie superalgebra structure on P(n) = G^1®G0®G1 is introduced by formulae

[c, b~]=-cτb-bc, la, ft] = βft (note, that traft = 0),

a,aγeGγ, b,bίeG_1.

Z-grading is induced by Z-grading, i.e. P(Π)Q = G0, P(n)j =G_1ξ&G1. By simple
computation one verifies that P(n) is a Lie superalgebra.

4. Lie Superalgebras Q(ή). Let GQ and Gj be duplicates of sl(« + l), n^2. The Lie
superalgebra structure on Q(ri) is introduced by formulae

= ab-ba,

a, a1,a2e GQ , b,b1, b2e Gτ .

5. Lie Superalgebras F(4), G(3), D(2,1; α)

Proposition 3.1. a)There is unique 40-dimensional classical type Lie superalgebra
F(4), F(4)Q tem^f ίte Lf̂  algebra of type B3®A1 and F(4)j as F(4)Q-module is
isomorphic to spin7©sl2.
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b) There is a unique 31-dimensional classical type Lie superalgebra G(3),
G(3)Q - being the Lie algebra of type G2φΛι while G(3)γ as a G(3)o~rnodule is
isomorphίc to G 2 ® s l 2 . 1

c) There is a 1-parameter family of 17-dimensional Lie super algebras D(2,1 α),
aeK— {0, —1} that consists of simple Lie super algebras. D(2, l ; α ) δ - being Lie
algebra of type A1@A1®A1, D(2, l ;α) τ as D(2,1 ^-module is isomorphic to
sl2(χ)sl2(g)sl2.

The proof could be obtained by simple computation of epimorphism of
Go-modules S2GJ^GQ satisfying (1.2). On the other hand it follows from con-
tragredient Lie algebras theory, see §5.

6. Proposition 3.2. a) All Lie superalgebras Aim, n), B(m, n), C(n\ D(m, n), D(2,1 α),
F(4), G(3), P(ή), Q(n) are classical type Lie superalgebras.

b) The Go-module Gj is isomorphic in cases B(m,ή), D(m,n\ D(2, l α), F(4),
G(3) and Q(n) to the following one:

Table 1

G

B(m, ή)
D(m, ή)
D(2, l α)

G-o:

so 2 ,
S°2*
sl2 (

Gj

,+ i ® s p 2 n

, ® SP2«
x) sl2 (x) sl2

G

F(4)

G(3)

QW

G-O G Ϊ

spin 7 ® sl2

G 2 (x) sl2

ad sln + 1

c) Lie superalgebras A(m9 n), C(n\ P(n) admit the unique agreed ΊL-grading
of the form G_ι@G0@G1. The G0-modules G±1 are irreducible and in cases
A(m, n) and C(n) contragredient. They are enumerated below

Table 2

G

Aim

A(n,
C(n)
P(n)

,n),mή=n
ή)

Go

sln.
csp
Λ2

+ i Θ s l M + 1

f ! (x) s l π + 1

S 1n+ 1

(G.j)*

(G_ x)*
(G_i)*

S 2sl,+ 1

d) If G = G Q © G J is α simple Lie superalgebra, the representation of GQ in
ί/zβ same as one of a), then G is isomorphic to one of these superalgebras.

7. The Two Cases in the Classification of Classical Type Lie Superalgebras. Let
G = G Q ® G J be a classical type Lie superalgebra. Then Go = G'o0C, Gg being
semisimple Lie algebra, C being the centre of Gg.

/. Case. The representation of GQ in Gj is irreducible. Then GQ is semisimple.
In fact, it being not so implies the existence of a central element ze GQ such that
[z,g~\ =g,geGj. lG-ί,Gj'] = G0- hence [z,g] = 2g, geGΘ. That is contradiction.

1 Here by spin7 is denoted the spin representation of B3, s\n, spn, son stands for standard representa-
tions of these Lie algebras, csp is sp plus the 1-dimensional centre, ad slπ stands for the adjoint representa-
tion of sL and asteric denotes the dual module



42 V. G. Kac

//. Case. The representation GQ in Gj is reducible. Let us consider some own
maximal subalgebra L 0CG, such that GQCL0. Let us consider the transitive
filtration corresponding to Lo. The following proposition is easily deduced from
Proposition 2.4.

Proposition 3.3. Suppose G = GQ@GJ is classical type Lie superalgebra, Gτ being
the space of reducible representation of GQ. Then there is filtration of G,G = L_1J
L0DL1, such that GrL = G r _ 1 L © G r 0 L © G r 1 L is simple Έ-graded Lie super-
algebra, G r ± 1 L being spaces of faithful and irreducible representations of Gr 0 L,
( G r L ) o = G r 0 L ^ G o and the representations of GQ in Gj is equivalent to the one
of Gr0L in Gr^1L@Gr1L.

§4. Classification of Classical Type Lie Superalgebras

1. Definition of the Killing Form and Its Properties. Call the Killing form of a
Lie superalgebra G the bilinear form

(α,fc)=str((adαXadfc)),

str being supertrace on l(G). Properties of supertrace (cf. Prop. 1.1) imply the same
properties for the Killing form:

Proposition 4.1. The Killing form on Lie superalgebra G= G Q Θ G J — is consistent,
super symmetric and invariant, i.e.

(a,b) = 0 for αeG

(a,b) = (-l)d**a dt*b(b,a)

The following proposition is proved as the analogous one in the Lie algebra
case (cf. [10]).

Proposition 4.2. Lie superalgebra with nondegenerate Killing form is decomposed
into the direct sum of simple Lie algebras each having nondegenerate Killing form.

Recall, that which each representation ρ of a Lie algebra GQ is connected the
invariant bilinear symmetric form on GQ :

(α,fc)κ = tr(ρ(α)ρ(fc)).

In particular, ρ being ad, we obtain the Killing form (, ) 0 . If Go is semisimple then
(, ) v is always nondegenerate. If G is simple then (, ) v = lv(, )0, lv being a positive
rational number. lv is called the index of the representation of G in V. The index
of a direct sum of representations is evidently equal to the sum of indices.

Let G = G Q ® G J be a Lie superalgebra. There are two bilinear forms on G:

(a, b)0 = tr(adGQ a adG_ b), (α, b) ι = tr(adGτ a adG τ b). (4.1)

From the definition of the Killing form

(a,b) = (a,b)0-(a,b)ί, a,beG-Q. (4.2)

If Go is a direct sum of Lie algebras G'Q and Gg, G'Q being simple, then

(a,b) = (l-l)(a,b)0 (4.3)
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for a9beGfr I being the index of the representation of GO in Gj. This follows

from (4.1), (4.2).

Proposition 4.3. A simple Lie superalgebra G = GQ®G-{ with a nondegenerate
Killing form is of classical type.

Proof The unipotent radical N of a subalgebra G is contained (cf. [9]) in the
kernel of the form (a,b)v. Thus, for aeN, beG, formula (4.2) implies (a,b) =
(a, b)0-(a, b)i =0. Hence, a is contained in the kernel of the Killing form of G.
This fact in turn implies that JV = 0. Thus G is of classical type.

With the use of the Killing form the Jacobi identity could be written in a very
suitable form. Assume that G = GgφGj is a Lie superalgebra with a nonde-
generate Killing form. Pick some basis u{ in GQ and its dual vt with respect to the
restriction to GQ of the Killing form. Let α, b, ce G. Then

[a, b~]=Σ(xivί, α£ = ([α, b] , w£) = - {a, [ui9 b~\).
I

Hence [α, b~] = — Σ(a, [ut, b])^ . The Jacobi identity implies:

X (α, [ui9 b ] ) ^ , c] +(b, [Mi9 c])[ϋ i9 α] +(c, [uf, α]) |>, b] = 0. (*)

2. The following lemma is quite usefull in the classification of Lie superalgebras
of classical type.

Lemma 4.4. Assume that ρ is faithfull irreducible finite dimensional representation
of semisimple Lie superalgebra G in V. Let A be the root system of G, L be the
weight system of the representation ρ, A being the highest weight. Then
a) if 2AeΔ, then the G-module V is isomorphic to spn,
b) if for any μeL one has A — μeA, then the G-module V is isomorphic either to
sln or spn,
c) if for any μeL, μ=^—A, A — μeΔ then the G-module V is isomorphic to one
of slM, spn5 soΛ, spin7 or G2 (1-dim. module of G2).

3. Proposition 4.5. Let G=G§®G-{bea simple Lie superalgebra with nondegenerate
Killing form, and let the representation of GQ in Gj be irreducible. Then G is
isomorphic to one of B(m, n\ D(m, ή) for m - n φ l , F(4) or G(3).

As was shown in Section 3.7 the Lie algebra GQ is semisimple. Let H be a
Cartan subalgebra of GQ, and let Δ be the root system. Assume that L is the
weight system of the representation of GQ in Gj, G x = © Vλ being the weight
decomposition. Evidently λ

(vλ,vμ) = 0, λ+-μ (4.4)

if λe L then

-λeL and (vλ,V_λ), υλeVλ (4.5)

N

Let GQ = ® G(Q] be the decomposition of Go into a direct sum of simple
s = l

components. The summands are orthogonal with repsect to (,) and (, ) 0. Denote
by (, ){Q} the restriction of (, )0 to G(

o

s). Denote ls the index of the representation
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of G(

o

s) in G τ . Assume that hί9...,hr is a basis in the Cartan subalgebra H, and the
union of bases of Cartan subalgebras HnGff. Let hu...,hr be the dual basis with
respect to (,) and /zlv..,/zr be the dual basis with respect to ( , ) 0 . Section 4.1
implies that

£,. = (1-/,)&,., h ^ . (4.6)

We prove the following lemma first.

Lemma 4.6. s) If λeA,2λφA, then

ou)= Σ ou^α-ω-^o.
s = l

b) If λ,μeL, λ±μeA,then

Proof Consider the following basis of G: {ui} = {eoc,aeA\O,hίJ=l,.../}, { ϋ j =
{β_α, αez l\0 ,/ i f , i = l , . . . , r } being its dual with respect to ( , ) .

Prove a). Assume λeL, a = c = vλ, b = v_λ, (vλ,v_λ)=l. (Such vλ does exist
due to (4.5).) Let us write

the identity (*) for α, b, c in chosen bases {wj and {υj.

With respect to (4.4) we obtain £ λ(h^Λ(/zt ) = 0.
The formulae ( A ^ H X ^ M ^ ) and (λ,iu)o = XA(ft/)//(Λ/) together with (4.6)

imply a).
b) As in a) put a = υλ, b = v_λ, c = vμ.

Proof of the Proposition 4.5. If the Lie algebra GQ is simple then (λ, A)o + 0, so
after Lemma 4.6a) λeL implies 2λeA. Lemma 4.4a) implies then that the GQ-
module Gj is isomorphic to sp^. It follows from Proposition 3.2d) that G is
isomorphic to J5(0, n). Let now GQ be semisimple but not simple. Decompose GQ
in the direct sum of G'o and GQ G'o (resp. G'ό) being simple components of G with
positive (resp. negative) numbers 1 — lt. Let Λ = Λ' + Λ" be the highest weight of a
representation of GQ in Gj (the upper index denoting on the restriction of the
weight to the corresponding direct summand). Consider the weight μ = μ'+Λ"
where μ'Φ ±Λ'. Note that

Λ + μφA (4.7)

Furthermore, (Λ,μ) = (Λf, μ') + {Λ\Λ") = {Λ\μ') + {Λ,Λ)-{Λ\Λ'). As 2ΛφΔ then
via Lemma 4.6

(Λ,μ) = (Λ'9μ')-(Λ'9Λ')= Σ HA, μ)os)-(Λ, AY^l-Q-1 . (4.8)
s

The sum in (4.8) is taken with respect to simple components of G'o. As A is the
highest weight, (Λ, Λ){Q] ^(μ, μ)(

o

s) for every s. Therefore, after using the Cauchy-
Bounjakovsky inequality, all summands of (4.8) are nonpositive.

Hence,

(Aμ) + 0. (4.9)
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According to the Lemma 4.6.b) it follows from (4.7) and (4.9) that Λ—μeΔ\
so if μ'Φ ±Af then A' — μΈΔ'. The same is true for G'ό With respect to the Lemma
4.4 this means that the linear representation of GQ in Gj could be equivalent only
to a tensor product of two standard representations of Lie algebras each being
spn, n^.2 or slπ, n^.3, or soπ5 n ^ 3 or spin7 or G2. As the representation of GQ in
Gτ admits an invariant nondegenerate supersymmetric bilinear form, than one
multiple of tensor product admits an invariant symmetric form while the other
an invariant skew form. Thus, only the three possibilities remain: 1) spπ®som,
2) spπ(χ)spin7, 3) sp n ®G 2 . In the case 1) G is isomorphic to B(m — l)/2,n/2), m
being odd and m > l or D(m/2,n/2), m being even, m>2, cf. Proposition 3.2d).
In cases 2 and 3 the identity (/I, /l) = 0 implies n = 2. Hence, by Proposition 3.2d)
we find that G is isomorphic to F(4) and G(3) respectively.

3. The proof of the following proposition is the same as that of Proposition
4.5.

Proposition 4.7. Let G = G _ 1 φ G 0 © G 1 be a simple Lie superalgebra with con-
sistent TL-grading, and let the representations of Go in G_1 and G1 be faithful and
irreducible and the Killing form be nondegenerate. Then the Lie superalgebra G
is isomorphic either to the Lie superalgebra A(m, ή), m + n or to C(n).

The following theorem is a corollary of Propositions 3.3, 4.5 and 4.7.

Theorem 1. A simple finite-dimensional Lie superalgebra G=GQ®GJ with non-
degenerate Killing form is isomorphic to one of the following: A(m,ri), mή=n;
B(m9 n\ C(n\ D(m, n)9m-n*l9 F(4), G(3).

4. The classification of Classical Type Lie Superalgebras is as Follows.

Theorem 2. A classical type Lie superalgebra with Gj φ 0 is isomorphic to one of
the following: A(m9 n)9 B(m9 n\ C(n)9 D(m9 n)9 D(2,1 α), F(4), G(3), P(n)9 Q(n).

The Theorem 2 is proved because the Proposition 4.8. holds and the Killing
form is either nondegenerate or zero on a simple Lie superalgebra.

Proposition 4.8. A classical type Lie superalgebra with zero Killing form is isomor-
phic to one of the following Lie superalgebras: A(n, n\ D(n + 1, n\ D(2,1; α), P(ή),
Q(n).

Proof From (4.3) it follows that the index of the representation of Gjf on Gτ is
equal to 1 because (a,b) = 0. In particular, the index of G[f in every irreducible
component of Gj is no more then 1. All irreducible representations of simple Lie
algebras having index :gl are listed in [1]. The proof is based on this list and
results of Section 3.7.

§5. Contragredient Lie Superalgebras

1. Lie Superalgebras G(A,τ). Let A = (aij) be a matrix of order r with elements
from K, and let τ be a subset of the set /={1,.../}. Denote by G(A,τ) the Lie
superalgebra with generators ei5/fJ/zi5 iel and the following defining relations:

faf^δtjht, lhi9hj]=o

[hi9 ej] = aijej, \hi9 fj] = - a^fj

d e g Λ f = 0 ; d e g e ^ d e g / ^ 0 , i φ τ ; d e g e f = d e g y j = T , ίeτ.
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By the methods of [11] it is possible to demonstrate that setting deget =
— deg/ f =l, deg/z—0, iel, we obtain a Z-grading of Lie superalgebra G(A, τ) =
© G;, {ej, {/)}, and {ΛJ being bases of the space G1, G_x and Go respectively.

Let J be the unique maximal Z-graded ideal in G(A, τ) satisfying J n ( G _ x ©
G o ©G 1 ) = 0. The Z-graded Lie superalgebra G(A, τ) = G(A, τ)/J=®Gi is called a
contragredient Lie superalgebra, the matrix A is called the Carton matrix of G(v4, τ)
and r is called the rα/t/c of G(A, τ).

If τ = 0 we obtain contragredient Lie algebras; their theory is developed

in [11].
Some propositions concerning contragredient Lie algebras from [8] and [11]

are valid in the superalgebra case (with the same proof, too).
We quote only what is needed in the following.

Proposition 5.1. The centre C of the Lie superalgebra G(A, τ) consists of elements
Σdihi9 where Σciija^O.

Proposition 5.2. Let G(A, τ) be a finite-dimensional contragredient Lie superalgebra
with the centre C. The Lie superalgebra G(A, τ)/C is simple iff the Carton matrix
satisfies the following conditions :

(m)
for any ijel there is a sequence iί9...,irel,
such that aihaiii2...airjφθ.

With the concept of contragredient Lie superalgebras the proof of existence
of exceptional Lie superalgebras becomes easy.

We will demonstrate the example of D(2,1 α). Let us take the matrix

- 1 2 0 , α φ θ , - l ,

and put τ = {1}. Let us find a basis of the contragredient Lie superalgebra G(Dα, τ) =
ΘG;. Note that iϊgeGi9 ί^l, then #Φ0 iff [g, G_ 1 ]φ0. Therefore we obviously
have G2 = <[e1,e2],[e1,e3]>, G3 = <[[e1,e2],e3]>, G 4 =<[[[e 1 ,e 2 ],e 3 ],e 1 ]>,
G£ = 0for i>4.

The case ί < 0 is treated in the same way. From the above it is clear that the
representation of G(Da, τ)o in G(Da, τ)j is sl2®sl2®sl2-

Note that £(2,1;-1) = D(2,1).
For the F(4) and G(3) cases it is necessary to pick the matrices

0 1 0 0

- 1 2 - 2 0

0 - 1 2 - 1

0 0 - 1 2

0 1 0

- 1 2 - 3

0 - 1 2

andτ={l} .
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Theorem 3. Let G(A, τ) be a finite-dimensional contragredient Lie superalgebra
with a Carton matrix A satisfying (m) and with a centre C. Then G(A, τ)/C is one of
classical type Lie super algebras A(m, ri), B(m, ri), C(ή), D(m, ri), D(2,1 α), F(4), G(3).

2. Properties of the Root Decomposition of a Classical Type Lie Super algebras.
We define a Cartan superalgebra of a finite dimensional Lie superalgebra G =
GQ © GT to be a Cartan subalgebra of Go. It is evident that any inner automorphism
of GQ continues to an automorphism of G. It is known that Cartan subalgebras are
conjugate in G. Hence, Cartan subalgebras of Lie superalgebra G are conjugate
too.

Let G be a classical type Lie superalgebra, H being its Cartan subalgebra.
Then we have a root decomposition G= Q) Ga where Ga={aeG\[h,d] =

aeH*

a(h)a, heH}. The set A = {αe//*|Gαφ0} is called the root system. It is evident that
Δ=AQKJΔ1 where Ao is the root system of GQ and Δι is the weight system of the
representation of GQ in GT. Call Ao and Δγ the even root system and the odd root
system respectively. The root system Π= {α l v..,α r} is called a simple root system
if there are vectors e feGα., //GGα. such that [eiifj~] = δijhieH, vectors e{, f being
generators of G.

The consideration of classical type Lie superalgebras together with the usual
reasonings from Lie algebra theory give directly the following information about
the root decompositions.

Proposition 5.3. Assume that G is a classical type Lie superalgebra, and that G=φGa

is its root decomposition with respect to the Cartan subalgebra H. Then

a) G0 = H except in the Q(n) cases.
b) d i m G α = l when αφO except for the A(l,1), P(2), P(3) and Q(n) cases.
c) There is unique (up to scalar multiple) nondegenerate invariant symmetric

(in "super" sense) bilinear form (,) on G except in the P(ή) and Q(n) cases.
d) // G is not one of A(ί91), P(n) or Q(n) then

2) (Ga,Gβ) = 0foraΦ-β,
3) [eα, e_J = (eα, e_α)/ια where ha is nonzero vector defined by (ha,h) = a(h\

heH,
4) (,) defines a nondegenerate pairing of Ga and G_α,
5) Δo and Aί are invariant under the action of the Weil group W of GQ,
6) if oteΔ (resp. Δ0,ΔJ then —oteΔ (resp. A0,AJ
7) fcαezi when αφO, fcφO, ± 1 iff aceAl9 (α, α)Φ0. In this case k=+2.

3. Dynkin Diagrams of Finite Dimensional Contragredient Lie Superalgebras.
Suppose G is one of Lie superalgebras sl(m + l, n + ΐ), B(m, ri), C(ri), D(m,n),
D(2,1 a), F(4) or G(3). Suppose that H is a Cartan subalgebra, and that Π is one
of the simple root systems. Let e{ and f be vectors defining Π. Then the vectors
ίeί>fί] = hi a r e a basis of H. We defined Z-grading on G by putting deg^ =
— degyj=l, deghi = 0. It follows from the simplicity of G (module its centre Q
that G is a contragredient Lie superalgebra. Its Cartan matrix is A = (ocj(hi)),
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τ = {ie /, αfe A ί}. It follows from Theorem 3 that these examples exhaust all simple
(mod. Q finite dimensional contragredient Lie superalgebras.

It is not difficult to enumerate all such pairs (A, τ) up to equivalence. Here we
list only pairs of rank 1 and 2 with indecomposable Cartan matrix, corresponding
pairs (A, τ), and Dynkin diagrams (Tables 3 and 4) and the "simplest" Dynkin
diagrams for arbitrary G (Table 5).

Nodes O, ® and are called white, grey and black respectively. The contra-
gredient Lie algebras of rank r are denoted by diagram consisting of r modes,
the i-th node white, if ίφτ and grey or black if ieτ and aH = 0 or 2 respectively.
Given two distinct nodes i-th and j-th do not join them if aij = ajl = 0, otherwise
do so as in Table 4.

Proposition 5.4. Each of Lie superalgebras A(m, n\ B(m, n\ C(n\ D(m9 n\ D(2,1 α),
F(4), G(3) could be represented in the form G(A, τ)/C, (CφO only in the A(n, ή) case)
where τ consists only of one element.

The corresponding diagrams are enumerated below with the coefficients of
the decomposition of the highest root with respect to simple roots s being the
number of exceptional nonwhite node, r being the total number of nodes.

Table 3

G(A,τ)

A,
sl(l,l)

B(0,1)

Table 4

G(A, τ)

Λ2

B2

G2

-4(1,0)

B(l, 1)

B(0,2)

-4(1,0)

B(ί, 1)

A

(2)
(0)
(2)

A

ί2

Ul
(2

1-2
ί2

1-3
ί2

1-1
ί2

l-i
ί2

1-2
ί°
l-i
ί°
1-2

τ

0

{1}
{1}

-Λ
2)

- ι )
2 /

2)

0)

~2)
0)

~l)
2)

o!

2)

diagram

O
Θ
Φ

τ

0

0

0

{2}

{2}

{2}

{1,2}

{1,2}

dim.

3
3
5

diagram

o—o

o—®

o<=®

® — ®

dim.

8

10

14

8

12

14

8

12



Sketch of Superalgebra Theory 49

Table 5

diagram

A{m, ft)

B(m, ft), m > 0

β(0, ft)

C(ft),ft>2

D(m, ft)

o—o-
2 2

o—o-
2 2

O — O τ

- O — ( x ) — ... — O
2 2 2

- O — ® — . . . — O =
2 2 2

-o—o=>
§ ) — O — ...— O — O < ^ O

2 2

o—o-
2 2 2

- Θ — o — . . . — o :
o i

m + 1 fti+ft+1

D(2,1 α)

F(4)

G(3)

OI
2 3 2 1

2 4 2

£6. Carton Type Lie Superalgebras

1. Definition of W(n). Let Λ(n) be the Grassmann superalgebra, ξι,...,ξn being its
generators. Denote by W(n) the Lie superalgebra derΛ(n). Recall that any De W(ή)
could be written in the form D= ^P^/dξ^ Pteyl(n), derivations d/dξi being
defined by dξj/dξ^δ^.

Put d e g ^ = l 5 Z=1, . . . ,H. Then we obtain an agreed Z-grading of the super-
algebra Λ(ή). This Z-grading induces an agreed Z-grading in the Lie superalgebra
W(n)= 0 W(n)k, where

The Z-graded Lie superalgebra W(ή) is naturally filtered.
W(ή) has the following universal property.

Proposition 6.1. Let L = L_XD L0D LίD... fee α filtered transitive Lie super-
algebra, dimL/L0 = n, L 0 D L Q . 77zβn ί/ierβ is a monomorphism a:L->W(ή) that
preserves filtration. If β is some other monomorphism that preserves filtration,
then there exists unique automorphism Φ of W(n) induced from Λ(n) such that

The proof follows almost literally from the one in [20], the corresponding
definitions being changed for those of Section 1.3.

Proposition 6.2. Let L = L_1JLOJL1J... be a subalgebra of the Lie superalgebra
W(n) with induced filtration, and let άimL_1/L0 = n. Then any automorphism of
L preserving filtration is induced by an automorphism of Λ(n).

This is a corollary of Proposition 6.1.

2. Superalgebras Δ(ή) and Θ(ή). Denote by A(n) an associative superalgebra over
Λ(n) with even generators δξi,...,δξn; ξ1,...,ξn being generators of Λ(ή). Let Δ(ή)
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be a commutative superalgebra, i.e. δξi°δξj = δξj°δξi and ξrδξj=δξj-ξi. Define
the differential δ on Δ(n) of degree T:δ(ξf) = %

Proposition 6.3. Differential δ has the following properties
a) <5(α °j8) = (δa) °j8 + ( - l ) d e g α α °((5j8), α , β

c) δ2 = 0.
d) ylrcy derivation D of Λ(n) is uniquely extendable to a derivation D of Δ(n)

commuting with δ.
e) Any automorphism of Λ(n) is uniquely extendable to an automorphism of

Δ(ή) commuting with δ.

The following analogue of the Poincare lemma holds.

Proposition 6.4. // a differential form aeΔ(n) is closed, i.e. δa = 0, then a is exact,
i.e. a = δβ for some βe Δ(ή).

Denote by Θ(n) the associative superalgebra over Λ(ri) with generators
θξ1,...βξn and defining relations

In fact, Θ(ή) is commutative superalgebra.
Define a differential θ of degree 0 on Θ(n) via

θ(ξά = θξi9 θ(θξd = Q, ί=K.,n.

Proposition 6.5. The differential θ has the following properties:
a) θ(ω1 A ω2) = θ(ωί) Λω2+ωι A θ(ω2),

b) θ(f)=Σθξr^,feΛ(n),

c) Any derivation D of A(n) is uniquely extendable to a derivation D of Θ(ή)
such that D(θ(f)) = θ(Df\ feΛ(n). If Θ2D(^ ) = O, i=l,...,n, then Dθ = ΘD,

d) Any automorphism Φ of A(ή) is uniquely extendable to an automorphism Φ
ofΘ(nlΦ(θ(f)) = θ(Φ(f)).

Note that θ 2 φ 0 . For example, Θ2(ξίξ2) = 2θξ1 Aθξ2. It is not also true for
every DeW(n) that [Z>, θ^\ = 0. Nevertheless, c) gives us something of an action
of W(n) on Θ(ri).

3. Forms of Volume, Hamiltonian Forms and Lie Super algebras S(n% S(ή), H(ri)
and H(n). We call a form ω of Θ(n) of the kind ω = fθξί Λ ... Λ θξn, feΛ(n)^,
f(0) φθ, form of volume.

To ω there corresponds a superalgebra 5(ω) C W(n\ S(ω)={De W(n)\Dω = 0}.
From all these we pick out two: for every n S(n) = S(θξί A ... Λ θξn) and for n = 2k

ξ1...ξMi*...ΛθξJ. D= ΣΛ ̂ eS(ω) iSΣdfPJdξ^O. Hence,

S(ω) is spanned by

da d da
. -
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S(ω) has the filtration induced from W(ή) and S(ri) the induced Z-grading, too.
Call Hamiltonian form a closed differential 2-form ω of Δ(ή), ω= Σcϋijδξi °δζp

ωijEΛ(n)ϋ9 ωij = ωjί, det(ωo (0))φ0, δω = O.
To a Hamiltonian form ω there corresponds the subalgebra H(ω)= {De W(n)\

Dω = 0}. Denote H{ω) = [H{ω),H{ω)], H(n) = H(Σ(δξi)
2% H{ή)=\H{ή),H{ήj\.

4 i f f 4-Σ°>itPt+ίΣ°>jtpt=0'
°ζj t GQi t

Denote by (ωo ) the matrix opposite to (ωf</). H{ω) consists of all elements of
the form

and [Dpi),] = %,, , , where {^} = ( - l ) d ^ ^ " ^ | .

In particular, H(n) consists of elements of the kind Df= Σ ^ F ^ F ' feΛ(n),

/(0) = 0 with Poisson bracket

W(ή) induces filtration on H(ω) and Z-grading on H(ή) and H(n).

4. Properties of Cartan Type Lie Superalgebras.

Proposition 6.6. a) Assume that G= 0 Gf is one of W(ή), S(n), H(ή), H(n). Then

G is transitive, Gk=G\, fe^l, and the G0-module G_x is isomorphic to glw, sln, son,
son respectively.

b) If G'— 0 Gj is α transitive TL-graded Lie superalgebra and G'0-module
ί£ - 1

G'_i is isomorphic to one of gln, sln, or son ί/zβft there is an monomorphism of G' in
W(ή), S(n), or H(ή) respectively, TL-grading being preserved.

c) The Lie superalgebras Win), S(n), S(ή), H(ή) are simple when n^2, n^3,
n^4,n^4 respectively

d) Any automorphism of a Lie superalgebras W(n), n ̂  3, or S(ω), n ̂  3, or H(ω),
n^.5 is induced by an automorphism of A(n) that multiplies the form by an element
ofK.

Proposition 6.7. Let L = L_ t 3 Lo D L1 3 ... be a filtered Lie superalgebra.
a) // GvL~S(ή) then L~S(ή), n being odd, and L~S(ή) or S(n), n being even.
b) // GrL~H{n) or Gr L~H(n) then L~H(n) or H(ή) respectively.

Proof Due to Proposition 6.1 we assume that LcW(ή). Due to the Levi and
Malcev theorems the semisimple part of LQ (which is isomorphic to sln or soπ

for a) and b) respectively) is included in W(n)0. One easily deduces that L~ GrL
in b) case and Lo= 0 S(rc) in a) case, which in turn implies L~S(ή) or S(n).
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Corollary, a) Some automorphism of A(ή) reduces any form of the volume to the
form (oc + βξ1...ξn)θξ1 A ... Λ θξn, n being even if

b) Any Hamίltonian form is reduced to the form ]Γ (δξi)2 by an appropriate

automorphism of Λ(n). ι = *
5. Call W(n) for rc^3, S(n) and S(n) for n^4 and H(n) for n^5 Cartan type

Lie superalgebras. [There are the following identifications W(2)~A(l,0)~C(2);

§ 7. Completion of the Classification of Simple Lie Superalgebra

L Proposition 7.1. Let G=@Gi be a finite dimensional bitransitive Lie superalgebra
with consistent Έ-grading, the following properties being fulfilled:

a) Go is semisimple Lie algebra,
b) representations of Go in G_1 and Gx are irreducible,
c) representations of Go in G_ x and Gλ are not contragredient,
d) G_ι®GoφG1 generates G.
Then G is isomorphic (as a Έ-graded superalgebra) to one of the following Lie

superalgebras: S(ή) or H(n) for n>4 or P(n).

In the proof, the technique of [11] is used.

2. Classification of TL-Graded Lie Superalgebras G= (£) Gt. We produce two
- 1

constructions of transitive Z-graded Lie superalgebras.
Any Z-graded Lie superalgebra could be extended with the use of the even

derivation z defined by [z, x] = kx, xeGk. Denote Gz=QGz

i, GZ = G^ z'ΦO and
GQ = G 0 Φ < Z > , the extended Lie superalgebra. If the Z-graded Lie superalgebra
is transitive and the centre of G is trivial then, evidently, G is transitive.

The another construction is as follows. Assume that the Lie algebra H does
not contain the centre. We put if ί = G _ 1 0 G o Θ G 1 where G_1 = ξH, G0=H,
Gί = (d/dξy, the commutators being defined as follows

Id/dξ, ξh]=h9 Kή l 9 ή 2 ] = ξίhuh2-] , [d/dξ, ft] = 0.

It is evident that Hξ is a transitive Z-graded Lie superalgebra.
Proposition 7.1 yields the following theorem.

Theorem 4. A transitive irreducible Lie superalgebra G= φ Gt with consistent

TL-grading such that Gί φ θ is isomorphic as a Έ-graded superalgebra to one of the
following Έ-graded Lie superalgebras

I. A(m,n),C(n),P(n);
II. W(ή),S(n),H(ή),H(n);

III. Hξ, H being a simple Lie algebra
IV. Gz, G being a Lie superalgebra of type I-III, Go having trivial centre.

3. The Following Theorem is the Main Result of the Paper.

Theorem 5. A simple finite-dimensional Lie superalgebra G = Go©Gχ, GγΦ0,
over an algebraically closed field K of zero characteristic is isomorphic to one of
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the following: A{m,n), B(m,n), C{n), D{m9n), D(2,l;α), F(4), G(3), P(w), Q(n\
W{n\ S{n\ S(n\ H(n).

Proof. Assume that L = LϋQLj is a simple finite-dimensional Lie superalgebra
over K, and that the representation of L$ in Lj is irreducible. Then by the
Theorem 2, L is one of the following: B(m, n\ D(m, n\ D(2,1 α), F(4), G(3), Q(n).

If, on the contrary, the representation of L δ in L τ is reducible then by Proposi-
tion 2.4. there is a filtration L = L_1DL0J... such that Gr L = 0 Grf L satisfies

ί ^ - 1

Theorem 4. Therefore GrL could be isomorphic only to one of the Lie super-
algebras of the mentioned type I-IV. Evidently iϊGrL = Hξ, then L is not simple,
so type III is impossible.

Proposition 2.3 yields L ^ GrL if the centre of G r 0 L is not trivial. Hence type
IV is impossible as all Lie superalgebras of this kind are not simple. If GrL = W(n)
then by Proposition 2.3 L~W(ri).

lϊGrL~A(m, n\ C(n) or P(n) then the representation of LQ in L-{ is the same as
the one of GrL. Thus, Proposition 3.2d) yields L ~ GrL, i.e. L is of the type I.

If GrL^S(π), H(ή) or H(ή) then due to Proposition 6.7 either L~GrL or
L~S(ή). Hence, the H(ή) case is impossible for it is not simple and the only pos-
sibilities left are S(n)5 S(n), H(ri). The theorem is proved.

Chapter II. Further Development of the Theory

§ 1. The Description of Semisimple Lie Superalgebras via Simple Ones

1. Definitions. Let A = AQ®AJ be a superalgebra, der^l be the Lie superalgebra
of derivations of A, and let L c der^ be some subset. Lie superalgebra is called
L-simple if A does not contain nontrivial ideals which are invariant under all
derivations from L. If a superalgebra A is der^-simple and ^ 2 φ 0 then A is
called a differentiable simple superalgebra.

Denote operators ls and rs on A, se A via formulae

ls(a) = sa , φ) = ( - l) ( d e g α ) ( d e g s ) αs .

It is easily seen that if De άεvA then

Denote by T(A) the associative superalgebra spanned by all ls and rs, seA.
T(A) is a subalgebra of L(A\ L(A) being the superalgebra of all endomorphisms
of A.

2. Differentiably Simple Superalgebras. Arguments of paper [21] if repeated
literally with the substitution of the corresponding definitions by the definitions
of item 1 above give the following proposition.

Proposition 1.1. Let G be finite-dimensional differ entiably simple superalgebra.
Then G~S®A(n\ where S is simple superalgebra and A(ή) is the Grassmann
superalgebra.
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3. Description of Semisimple Lie Super algebras. Recall, that a Lie superalgebra
is called semisimple if ^ 2 Φ θ and A does not contain nontrivial solvable ideals.
In [21] from the description of differentiably simple algebras follows the descrip-
tion of semisimple Lie algebras over an arbitrary field. The same reasoning holds
for Lie superalgebras.

Denote by inderS the set of inner derivations of a superalgebra S.

Theorem 6. Let S1,...,Sr be finite-dimensional simple Lie superalgebras, let nγ,...,nr

be whole positive numbers, and let

S=φ>Si®Λ(ni).
ί = l

Then

r

S= inderS= 0

= 0 ((der S) ® Λ(n;) φ 1 ® der Λ(n$ .
1 = 1

Let L be a subalgebra in derS containing S. Denote by Lt the projection of
L on 1 (x) der A(n^). Then

a) L is a semisimple Lie superalgebra iff the superalgebra A(n^ is L-simple for
each i.

b) All finite dimensional semisimple Lie superalgebras arise in the way described
above.

c) The superalgebra derL coincides with the normalizer of L in derS provided
L is semisimple.

Example. Let S1,...,Sr be simple Lie algebras, V a linear space with basis e1,...,er,
LCF*asubspace, not belonging to any kernel of ei9 i=l,...,r. Define Lie super-
algebra with agreed Z-graduation by setting

...,S/,L) = G_ι®G0®Gί=L®[®Si)®[®eiSί),
\ i = l / \ ί = l /

where [ G _ l 5 G _ J = [G 1 ? G{\ = [G0, G_{] = 0, and the other brackets are:

lΣsi,Σeisi~] = ΣΦi>s'ίl [ ^ Σ ^ J = Σ ϋ * ( Φ i T h e n G(Sl9...9Sr;L) can not be
expanded into a direct sum and is a semisimple (but not simple) Lie superalgebra.

4. Description of Lie Superalgebras G=GQ®GJ, for which the Representation
of GQ in Gj is Completely Reducible. Let a Lie superalgebra G = G®V be a,
semidirect sum of an ideal G and an odd commutative subalgebra V =t=0, and let
[Gj, F ] = 0; then G will be called an elementary extension of G.

It follows from Theorem 5 and 6 the

Proposition 1.2. Let G=GQ®GJ be a Lie superalgebra, with semisimple GQ.

Then G is an elementary extension of a direct sum of the following Lie superalgebras:
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simple Lie algebras or one of Lie super algebras A(n, ή), B(m, ή), D(m, ή), D(2,1 α),
F(4), G(3), P(n), Q(n), derβ(rc) or G(Sl9...,Sr;L).

The description of Lie superalgebras with completely reducible GQ is analogous
(though more complicated).

§2. Irreducible Finite Dimensional Representations of Lie Superalgebras

1. Induced Modules. Let G be a Lie superalgebra with universal enveloping U(G).
Let H be subalgebra of G, let V be an //-module. Note that V is also a U(H)-
module. Consider the Z2-graded space U(G)®U{H) V, i.e. the factor space of U(G)®H
by the Z2-graded subspace spanned by gh®υ — g®h(υ), geU(G), heU(H). The
space V(G)®U{H)V is a G-module, g(u®υ) = g(u)®υ, geG, ueU(G), veV. Denote
Ind# F = U(G)®U(H)V and call it the G-module induced from H-module V.

The following simple properties of induced modules follow from the Poincare-
Birchoff-Witt theorem.

Proposition 2.1. a) Let G be a Lie superalgebra with subalgebra H, let V be a simple
G-module, W be an H-submodule of the H-module V. Then V is a quotient of lnά% V.

b) IfH2CH1CG are Lie superalgebras, and W is an H2-module then

c) Let HCG be Lie superalgebras, G0CH, gί,...,gt be odd elements of G such

that their images under projection onto G/H is a basis and let W be an H-module. Then

\nάG

HW= 0 g h . . . g i W
1 ^iγ<...<is £t

is a direct sum of subspaces, therefore dim Ind§ W= 2X dim W.

Proposition 2.1c) combined with the Ado theorem for Lie algebras imply the
following theorem.

Ado Theorem. Any finite dimensional Lie superalgebra admits a faithful finite-
dimensional representation.

2. Representations of Solvable Lie Superalgebras. Let G= G Q © G J be a Lie super-
algebra. Call a linear form /eG* distinguished if /([Go, GQ]) = /(GT) = O. Denote
by 5£ the space of distinguished linear forms, J5fo the space of linear forms /
satisfying /([G, G]) = Z(GT) = O and by 5£γ the subgroup of the additive group G*
spanned by linear forms which give 1-dimensional quotients of the adjoint
representation of G. It is evident that i f 3 if0 D i f 1.

Let ρ be a representation of the Lie superalgebra G in V and let Jί be a sub-
group in 5£0. Define the representation ρ via ρ(g)v = ρ(g)v + λ(g)v. Representations
ρ and ρ are called ^-equivalent, if λeJi. Let /G i f a be distinguished linear form
considered mod J£o. Set Gι = {geG\l([g,g1~]) = 0 for any g^eG). Obviously, G is
a subalgebra of G containing Gδ and l{\_Gb Gι]) = 0. PcG is called a subalgebra
submitted to the linear form I if GtcP and /([P, P]) = 0. These definitions* are
correct.

We pick out the important class of solvable Lie superalgebras, namely com-
pletely solvable Lie superalgebras with all irreducible quotients of the adjoint
representation being 1-dimensional. By the Engel theorem a nilpotent Lie super-
algebra is completely solvable and i f 1 = 0 . Denote by {H, 1} the 1-dimensional
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//-module defined by the linear form le J2?o through the formula h(v) = l(h)v. Now
we are able to describe finite-dimensional irreducible representations of solvable
Lie superalgebras.

Theorem 7. Let G = GQ@GΊ be a solvable Lie superalgebra.
a) // V is an irreducible finite-dimensional G-module then all irreducible

quotients of the G^-module V are 1-dimensional and the corresponding linear
forms (extended by zero on G-{) belong to the samelve£?l<£0.

b) Let 7ej£?/J2?0, P be the maximal subalgebra submitted to 7, {PJ} be the
1-dimensional submodule defined by lei. Then the G-module V=lnd${Pj} is
finite-dimensional and irreducible, andlv=l Such G-modules Vγ and V2 are JSf0-
equivalent iff 7X =7 2 .

c) Each finite-dimensional irreducible G-module V is isomorphic to one of the
modules Indp{P,/} with lelv, P being a maximal subalgebra submitted to I.

d) // G is completely solvable then it is possible to replace <£0 by £^1 in the above
propositions. In particular, when G is nilpotent we have the bijection V\->ΊV of the
set of classes of isomorphic finite-dimensional irreducible G-modules and the set
££ of distinguished linear forms.

The following two propositions are corollaries of Theorem 7.

Proposition 2.3. Let V— VQ® VJ be the space of irreducible finite-dimensional rep-
resentations of the solvable Lie superalgebra G = GQ®GJ. Then either dimFo =

Fϊ and d imF = 2s, 0 < s ^ d i m G T , or

Proposition 2.4. All irreducible representations of the solvable Lie superalgebra
G = Gϋ®G-{ are 1-dimensional iff [G-uG-{] C [G o, G o ]

Example 1. It follows from Theorem 7 that the families of representations ρa and
ρ'a of Geisenberg superalgebras of Section 1.1.6. contain all their nontrivial finite-
dimensional irreducible representations once each.

Example 2. G = /(l, 1) is a completely solvable Lie superalgebra with basis

z = [ o i)> h=[o oj' e = [ o oj M i o,
The family of irreducible representations of dimension not equal to 1 are

parametered by a=l(h) and β = /(z)φθ; P=(z,h,e):

β 0\ . /α 0 \ (0 β\ . (0 0

β)' ^ ( θ β - l J ^ ( θ OJ' ^ ( l 0

When β = 0, we obtain the 1-dimensional representation /zκ>α; z9e,ft-+0.

Remark. It is possible also to give a classification of infinite-dimensional repre-
sentations of completely solvable Lie superalgebra, more exactly the primary
ideals of the enveloping superalgebra. There is a 1 — 1 correspondence between
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^-equivalent primary ideals and the set of ./-orbits in i?/J^o> where J> is the
closure of AutG 0 in the Zarisky topology of GL(G0), J ' = {/GG*|/(G 1 ) = 0} .

3. Representations of Simple Lie Superalgebras

Theorem 8. Let G be one of the contragredient Lie superalgebras (enumerated in
Table 5), and V let be a finite dimensional G-module. Then there exists (unique up
to multiplication by a scalar) a vector υΛeV, ΛeH*, such that ei(vΛ) = 0, hi(vΛ) =
A(ht)vA. Two G-modules V1 and V2 are isomorphic iff Λ1 = Λ2. The set of numbers
at = Λ(hι)e K, i=ί,...,r9 of the highest weight A of an irreducible finite-dimensional
module are described by the following conditions (we consider as>s+ ί=rl,if aSs

 = ®) :

1) aieΈ+ ifi + s;
2) keΈ+, where k is done in Table 6.

Table 6

G

Jf (0, n)
B(m, n\ m > 0
D{m, ή)
£>(2,1 α)
F(4)
G(3)

/c

α π - α M + 1 - ... - α ,

fln-«π+i- ••• - 1 /

(l+α)" 1(2α 1-β 2-
lβ{2aί-3a2-4a3

l/2(fl1-2fl2-3α3)

B + f l-1-l/2fl l f l H
/2(αw + n _ 1 + α m

-αα 3 )
- 2 α 4 )

-«

+ n)

0
m
m
2

4
3

3) if k<b (from the table) then there are additional conditions:
B(m,n) an + k+1 = ...=am + n = 0,
D(m,n) an+k+1 = ...=am+n = 0if k^m-2; a^^^a^Jf k = m-l,
D(2,l;α) αf = 0 if k = 0; (α3 + l)α= ±(α 2 + l) if k=l,
F(4) at = 0 if k = 0; kφl; a2 = a4 = 0 if k = 2; a2 = 2a4 + l if k = 3,
G{3) αί = Oι/fe = O;fc+l ;α 2 = Oι/fe = 2.

Remark. The analogous theorem is valid for all simple Lie superalgebras (cf. [7]).
Now let G be a simple finite-dimensional contragredient Lie superalgebra,

and (,) be some non-degenerate invariant bilinear form in G. Let ρ be a difference
between the halfsum of positive even roots and the halfsum of positive odd roots;
then ρ(ha) = ((xi, αf)/2. Define the Kasimir's operator (from the center of enveloping
superalgebra):

Γ=γj(-\)άe^uiu
i (2.1)

where {wj and {u1} - dual bases in G.
Let V be a finite-dimensional irreducible G-module with the highest weight A.

Then

Γ(u) = {Λ,Λ + 2ρ)u , ue V . (2.2)

The form of the supertrace is defined as usual: (α, b)v= strαb. Then

(a, b)y = lv(a, b), where lveK .
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The two ways of computing strΓ, using (2.1) and (2.2) give:

ίκ(dim Go - dim Gτ) - (dim FD - dim VΊ )(Λ,Λ + 2ρ).

From this formula it follows that the form of the supertrace is nondegenerate
iff (under the condition dim GQ φ dim Gj)

d i m F D φ d i m F τ and (Λ9Λ + 2ρ)*0.

§3. Classification of Simple Finite Dimensional Real Lie Superalgebras

At first, we introduce some examples. Let R c C c H be the usual inclusions.
Henceforth let z = j / ^ T , let stroke be the usual conjugation in C or H, and let
T denote the matrix transposition.

a) The special linear Lie superalgebra sl(m, n; k), fc=R, C, M. Let l(m,n;k)
the space of all matrices of order m + n over fc,

α 0

0 δ

α being an m x m matrix, etc. The brackets are defined as usual.
Define the special linear superalgebra si (m, n k) to be the real subalgebra of

l(m, n; k) defined as follows:

sl(m,n;fe)={αe/(m,^;fc)|str(α) = O} for fe=R or C

sl(m, n; H ) = {αe l(m, n; H) | Re str(α) = 0}

where str is for the supertrace.
Let us introduce the following matrices of order m + n:

P

0 -

0

0

m-p

0

0

0

- i

0 - 1 Λ - J

0

0

- ! „ -

T

T

-
0

0

0 Ί

0

0

0

0 l r

b) The special unitary Lie superalgebras su(m, n;p,q):

su(m, n p, q)s = {aes\(m, n\ C J J S " 1 ^ ^ ^ -Pα}

c) Orthosymplectic osp(m, n p JR):

osp (m,n p R) s = {αe si (m, π R) s | T~ V Tp = - Pα}

d) Quaternionian orthosymplectic hosp (m, n; p):

hosp(m, w; p) s = {αesl(m, n; H ) J Λ ~ 1 5 T J R P = - /sα}
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e) D(2,1 α; p). For every p = 0,1, 2 there is representation of

so(4,4-p;IR)®sl(2,IR) in

which defines forms of D(2,1 α).
f) F(4;p). Each algebra so(p, 7 - p R), p = 0,1,2, 3, has spinor representation

spinp 7 _ p that is real form of the B3 — module spin 7 . For each of the four Lie
algebras spin p ,7-^® sl2 there is a unique algebra F(4;p), p = 0,1,2, 3

g) G(3;p). The standard representation of the real form G 2 p,p = 0,1 of the
complex Lie algebra G 2 is 7-dimensional. Therefore by Proposition 3.2b) there
is the unique real Lie superalgebra G(3;p),p = 0,1, which is a real form of (7(3).

h) UQ(n;p). Let GQ and G j be duplicates of su(p, n+\ — p). Define a Lie
superalgebra structure on UQ(n, P) = GQ®GJ by

[ α 1 ; a2~\ = a1a2 — a2aί, α τ e G o , α 2 e G s , seΈ

i) if Q(n) = Go © G τ, the latter being duplicates of si (n + 1 , H)( = si (n +1,0 H)).
The structure of a Lie superalgebra is defined on HQ(n) by formulae

, a2eGs, seZ2

k) definition of P(rc IR), Q(n IR), ̂ (rc IR), S(n IR) and S(n R) is evident.

Assume that G=GQ®GJ is a real Lie superalgebra. There corresponds a Lie
superalgebra G' that is the form of G® (C. We put [α, fe]; = — [α, fo] for a,beGj and
[α, ^ ' ^ [ α , fo] in other cases. Lie superalgebras G and G' are called dual.

The classification of simple real Lie algebras implies the following theorem.

Theorem 9. A simple finite dimensional real Lie superalgebra is isomorphic up
to duality either to one of complex simple Lie superalgebra considered as real
(of double dimension) or to one of following ones:

A) sl(ra, rc IR), su(ra, n p, q) for m, n ^ l , π + m^2, sl(ra, n M) for m, rcΞ>l (when
m = n algebras of this series have 1-dimensional centre, we must pass to the
quotient) ;H(4,p;R)
B) osp(m, n p R) for m being odd, m ^ l , π ^ 2
C)osp(2,n;p;IR),hosp(l,n;p)forn^2

D) osp(m, π p IR) form being even, m^4, ^z^2hosp(m, n;p)for m^2, D(2, l α p)

forp = 0,l,2

F)F(4,p)forp = 0,l,2,3

P, Q) P(π R) for rc^3; Q(π IR), UQ(n;p) for n^3;HQ(n) for rc^
S(n;IR),S(n;IR), n ^ 4 ; H(n p IR), π ^ 5 .

^4. On the Classification of Infinite Dimensional Primitive Lie Superalgebras

A Lie superalgebra L with maximal subalgebra Lo is called primitive, if Lo contains
no nonzero ideals of L.
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In this section some partial results are given on classification of infinite-
dimensional primitive Lie superalgebras.

1. Two Algebras of Differential Forms. Denote by Ω(m) the superalgebra of dif-
ferential forms with coefficients in the polynomial ring K\_x1,..., xm], i.e. Ω(m)
is the associative superalgebra over K [ x 1 ? . . . , xm] with generators dxί9... 9dxm9

defining relations being dxi A dxj = — dxj A dxt, deg dxt = T, i, j = 1,..., m.
On Ω(m\ there is a well known differential of degree Ί,d:d(xί) = dxi,d

2 = 0.
Put A(m,n) = Ω(m)(g)A(n) and Θ(m,n) = Ω(m)®Θ(n). Differentials δ and θ

could be extended to A(m,n) and Θ(m,ri) via δ = d®l + l®δ9θ = d®l + l®θ.

The properties of δ and θ analogous to those of Section 6.2 and are easy to
prove. Put Λ(m, n) = K[xl9... ,xm\®A(ή). If we put deg χ . = degξ f =l, Λ(m,n)
becomes Z-graded (the grading does not agree with Z2-grading).

Any derivation D of degree s of Λ(m, ή) is uniquely extended to a derivation
oϊA(m, n) or Θ(m, n) by the formula [D, 0 ] / = [D, δ ] / = 0, /e^l(m, n).

2. Six Series o/ Infinite-dimensional Lie Superalgebras. We introduce the fol-
lowing forms:

v = dx1A ... Λdx m Λ0ξ 1 . . . AθξneΘ(m,n),

h = 2 Σ dXiAdxk+i+ f (5ίi)
2e^l(m,n),m = 2fe,

k = dx2k+1+ ^ W^fc+i-^fc+/^i)+ Σ ξiδξίeA(m,n),
i=ί i=l

m = 2k+l.

Denote six series of infinite dimensional Lie superalgebras (m > 0):

I. W(m,ή)=deτΛ(m9ri)
II. S(m,π)={DeR /(m^)|Dt; = 0}

IΓ. CS(m, n)={De W(m, n)\Dv = λv, λeK}
III. i/(m,rc)={De^(m,rc)|D/z = 0}

ΠΓ. CH(m, n) = {De W(m9 n)\Dh = λh9 λeK}
IV. K(m9 n)={De W{m9 ή)\Dk = uk, ueΛ(m9 n)} .

Note, that for m = 0 the well-known Cartan series are obtained.
Z-grading of Λ(m9 n) induces Z-grading in W(m9 ή) (that does not agree). In

more detail it could be described as follows. Each element De W(m, n) has the form

D= Σ Pfi/dx^ Σ Qjd/dξjiPiiQjeΛfan) (4.1)

Z-grading is defined by degx f = d e g ^ = l , degδ/δx— degδ/δ<^f= — 1, so
W(m,n)= 0 Wfaήii.

ί^ - 1

There is a canonical filtration corresponding to this grading with distinguished
subalgebra 0 W(m9 w)f. The filtration and the distinguished subalgebra induce a

filtration on each subalgebra L C W(m, n) and give a distinguished subalgebra
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The Lie superalgebra S(m, n) consists of all operators (4.1) that satisfy

divD= Σ f

Hence, S(m9 n) is the linear span of

da d da d da d da δ

dξj 6xt d%i dξj

Lie superalgebra H(m, n) consists of the following elements

„ " δa δ * (da δ δa
D«= Σ τζM

 + Σ fe^: - ^
a,Db-] = D{a:b), where

Furthermore, CS(m,n) = S{m,n)® ( ^ ξfi/dξι+

Finally, /ί(m, n) consists of the elements D'a,

da da
Xίdξj δξi ' fr \\δxm

 Xί + dxk+

~ X ]r _μ —

δa

Z-grading of W(m,n) induces a Z-grading of the form G= 0 Gf. For
i ^ - 1

Lie superalgebras of series I—III.
This is not so in the K(m9 ή) case. We obtain Z-grading though if we put

degx^deg<!;,.= - degδ/δx— - d e g 3 / 5 ^ = 1 , l ^ i ^ m - 1 , l ^ j ^ n ,

d e g x w = - d e g δ / δ x m = 2.
Such Z-grading of W (̂m, n) induces a Z-grading on ϋί(m, n) of the form: G = φ Gf.

ί^ - 2

Note, that the G0-modules G_x are isomorphic to the following standard
representations of linear Lie superalgebras: l(m,n) for W(m,ή) and CS(m,n),
sl(m, n) for S(m,ή), osp(n, m) for H(m,ή)9 csp(n,m) for CH(m9ή), csp(n,m—l)
for K(m, n).
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3. On the Classification of Primitive Lie Super algebras. Suppose that L is an
infinite-dimensional primitive Lie superalgebra, Lo being the distinguished
subalgebra.

Let L_γ be the minimal (Z2-graded) subspace of L, which contains Lo, is
not Lo itself and is ad L0-invariant.
L = L__djL_d+ίD ... DL.^LQD ... by putting (cf. [6]):

The corresponding associated Z-graded Lie superalgebra GrL= (J) Gt

has the following properties: * = ~d

1°. GvL is transitive and irreducible,
2°. G_s = GLl9s>0.
It is also possible to believe, that
3°. (J) Gj does not contain any nonzero ideals of Lie superalgebra GrL (by

i<0

taking a quotient if there is a nontrivial ideal). If Z-grading does agree then the
following holds:

4°. [Go, Go] is a contragredient Lie superalgebra.
It seems that 4° holds in general case, too, but I can not prove it.
The remain result of this section is as follows.

Theorem 10. Let G= φ Gt be infinite-dimensional Lie superalgebra, satisfying

l°-4°. Then G is ίsomorphίc as a Έ-graded superalgebra to one of W(m,n),...,
K(m,n\ m>0.

The proof uses the same methods as the proof of Theorem 4 and is based on
Theorem 3.

A primitive Lie superalgebra L with marked subalgebra Lo is called complete
if L is complete in the topology defined by subspaces of transitive filtration of the
pair (L,L0) (see 1.2.3). Note that Λ(m, n) = K[£xί9... ,xmJ]<S)Λ(m) is supplied
by the topology defined by the filtration (and is complete in such a topology).
Denote by W(m, ή) the Lie superalgebra of all continuous derivations of Λ(m, n).
W(m, n) is a complete primitive Lie superalgebra with the natural marked sub-
algebra. The Lie superalgebras S(m, n\ ..., K(m, n) are complete and primitive, too.

A wellknown result by Cartan is that W(m9 0),. . . , K(m, 0) exhaust all complete
infinite-dimensional primitive Lie algebras.

Hypothesis 1. Complete infinite-dimensional Lie superalgebra are isomorphic to
one of W(m, n\ ..., K(m, n) for m>0.

§5. Some Unsolved Problems

1. Classification of Infinite-dimensional Primitive Lie Superalgebras. See hypothesis
1 and Theorem 10.

2. Characters and the Dimension Formula for Irreducible Representations. The
most interesting case is the contragredient Lie superalgebra G = G(A, τ). Let V
be a G-moduIe with highest weight Λ, V(Λ)= (+) Vλ be the weight decomposition

relative to H =(hl9 ...,/i r>. Let λ

ch V(Λ) = Σ (dim Vλ)e\ sch V(Λ) =Σ(~ *)***λ(dim VλV
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Functions ch and sch are called the character and supercharacter of V(Λ). The
method of [14] fits only for B(0, n).

Let AQ (resp. Δ±) be a set of even (resp. odd) positive roots, AQ =

Let ρ0 (resp. ρx) be the halfsum of even (resp. odd) positive roots, ρ = ρo~~{?i
For we W (the Weil group of Go) let ε(w) = ( - l)/(w),ε'(w) = (- l ) Γ ( w ) , where l(w) is
the number of reflections S^OLEAQ, in some expression of wΓ(w)—the number
of those sΛ, αe AQ . Then for J5(0, n) we have:

ch V(Λ) = Σ ^)

sch V(Λ) = £ ε'(w)ew

w w

dim V(Λ) = 2" Y\ (Λ+ρ, α)/(ρ0, α),
aeΔ$

dim Fδ(/t)-dim Fτ(/1)= f ] {Λ + Q, α)/(ρ0, α).

5. Cohomology. For definition of cohomology for Lie superalgebras see [17].
If V is a finite-dimensional irreducible G-module, Γ is the Kazimir operator
(provided there is an invariant bilinear form) and Γ(V) φ 0, then Hn(G, V) = 0, n > 0.
This is equivalent to (Λ9 A + 2ρ) Φ 0 for the highest weight A and holds for every
representation only in β(0, n) case. Furthermore, cohomology for simple finite-
dimensional Lie superalgebras with trivial coefficients as well as cohomology for
complete infinite-dimensional primitive Lie superalgebras are of interest.

The trivialness of H\G, V) is in close connection to the complete reducibility
and the Levi-Malcev theorems. sl(π, n\ serves as counterexample for the Levi
theorem. Its adjoint representation is the counter-example to complete reducibility.
As was noted, representations of β(0, n) are completely reducible. It is not dif-
ficult to demonstrate that if G is a classical type Lie superalgebra then for any
irreducible representation of G, save a finite number of them, H1(G, V) = 0.

4. Infinite-dimensional Representations. Evidently, the Kirillov method of orbits
is extended to Lie superalgebras (see Theorem 7). There is almost nothing known
about infinite-dimensional representations of simple Lie superalgebras. The
first step on the way is surely di-spin algebra β(0,1).
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