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Abstract. We consider the two-dimensional Ising model and show how correlation functions are
determined by a state of a C*-Clifford algebra. We describe how the phase transition manifests itself
in terms of a jump in the index of a Fredholm operator. A connection with the Pfaffian approach is
made through the theory of unitary dilations of contraction semigroups.

§ 1. Introduction

The two-dimensional Ising model in zero field has been treated algebraically
by many authors, notably Onsager [20], Kaufmann [11], Schultz, Mattis, and
Lieb [23], Abraham [1,2], Abraham and Martin-Lόf [3]. They consider an array
of spins on a finite lattice, compute correlations using either the Clifford algebra
[1, 3,11] or the Fermi algebra [2, 23] and then pass to the thermodynamic limit.
Following Pirogov [22] we consider the Clifford and Fermi algebras associated
with the infinite lattice. Other C*-algebras associated with the Ising model are
described by Marinaro and Sewell [16].

We investigate the connection between the Gibbs states of the Ising system
and certain states of the Clifford algebra. In this we follow Dobrushin [5] and
Landford and Ruelle [12] and regard a Gibbs' state of the infinite system as a
family of correlations <σα...σfln> for finite subsets {α1 ?...,αj of the lattice, σα

taking on values +1. These are obtained as the limit of correlation functions for a
sequence of finite sublattices with some prescribed boundary conditions. In
particular we denote by <...>p, <...>+ and <.-•>" tne correlation functions which
arise from the periodic, "plus" and "minus" boundary conditions respectively.
For a review of boundary conditions and general properties of Ising systems see
Gallavotti [7]. The state is translationally invariant if <σα ι + f l...σ f l n + f l> =
(σ

aί' 'σany f°r a^ lattice vectors ae Z2 and all subsets {al9 ...,an}. The set of all
translationally invariant equilibrium states is a non-empty convex space. A phase
transition is said to occur at inverse temperature βc if for β > βc there is more than
one equilibrium state while for β<βc a unique state exists. Extending a result
of Gallavotti and Miracle-Sole [8], Messager and Miracle-Sole [17] have shown
that every translationally invariant equilibrium state < > is such that

<.> = α< >++(l-α)< >- for some αe[0,1]. (1)
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Lebowitz [14] has shown that βc coincides with the Onsager value [21].
The extremal state <...> + , <...>" satisfy:

<^1...σ f lπ>+=(-ir<σβl...σβn>- for all aι...aneZ2, (2)

i m < σ f l . . . σ β σ f l + α . . . σ f l + f l >
+ = ( < σ f l . . . σ α > + )2, for all α l v..,α

and so are determined by their common value on products of an even number of
spin variables. In § 2 we show how the extremal state < . . . > + at inverse temperature
β corresponds to a state ωβ of the Clifford algebra Φ(H, s) over a symplectic space
H = E@JE. Each such ωβ is a Fock state with complex structure Aβ on H. For
β φ β' the operator \Aβ — Aβ\ is not Hubert-Schmidt so the corresponding represen-
tations are disjoint.

The complex structure Aβ has a decomposition

where P, Q are the orthogonal projections onto E, JE respectively and θ is
self-adjoint. The operator Je2JΘ is Fredholm and its index jumps at the critical
temperature :

The physical manifestations of the phase transition are shown by the calculated
values of the correlations and these depend on the index of Je2Jθ.

In this formulation the treatment of translations in the two basic lattice direc-
tions appears to be asymmetric, in contrast to the Pfaffian approach [19]. The
connection is shown in § 4 by an application of Sz-Nagy's theory of the unitary
dilation of contraction semigroups.

§ 2. Algebras and States

We adhere to the notation of Balslev, Manuceau and Verbeure [4]. Let H be an
infinite dimensional real Hubert space, s( , •) the real inner product on H, and
<%(H, s) the C*-Clifford algebra generated by {Γ(φ):φ e H} where the Γ(φ) satisfy
the relations

)l φ.ipeH. (3)

\ where 9lev is the C*-subalgebra generated by
[Γ(φ)Γ(ψ\ φ, ψ G H} and tfίod, the vector subspace spanned by products of an
odd number of Γ(φ).

We assume H comes equipped with a fixed complex structure J, satisfying
J2= — 1, J+ = — J [J+ the adjoint of J with respect to the inner product s( , •)],
such that (HJ, h) is the complexification of (H, s) via

α,βeR φeH

h(φ, ip) = s(φ, ψ) + is (Jφ, ψ) φ,ιpeH .
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Let {en:n e Z} be an orthonormal basis for (HJ, h\ so that {en, Jen:n e Z} is an
orthonormal basis for (H, s) and let E be the closed subspace of (H, s) spanned
by{en:neZ}.

Then H = E®JE and Λ, the conjugation determined by J, defined by

satisfies Λ2 = 19 [Λ, J]+ =0, and P=^ — , Q = — ~ — are tne orthogonal projec-

tions onto E, JE respectively.
Let HLcH be the subspace spanned by {en, Jen\n= — L, ..., L}, SL( , •) denote

the restriction of 5( , •) to HL, and OL the restriction to HL of an operator O on H.
Let j/L be the Paulion algebra generated by {σaj'j= — L,..., L,a = x, y, z}

which obey the mixed commutation relations

jσ5 = iσ5 et eye., (o$2 = l,j= -L,...,L. (5)

The Jordan-Wigner transformation [10] is a ^-isomorphism η^.j^L-^^(HL, SL)
and is defined by

= Π- - L ( - iΓ(ej)Γ(JLej))Γ(e^ (6)

For a finite lattice /ί={(/,j)e Z2:z— — L, ...,L,j= — JV, ..., AT} the algebra of
observables is ^({+1, — I}"1), the space of complex valued continuous functions
on the compact set { + 1, — I}"1, and the expectation value of any observable /
is given by the Gibbs formula

= (ZU)-1 Σ*e{+ι,-i}- /Wexp(- /«*)), (7)

where

ΛX = ~ dJ)eA lXijXi* 1 J 2^
Xi, J

J1? J2>0 and d^b

Λ is the Hamiltonian interaction between the system A and its
boundary dΛ.

Correlation functions are expectation values of the functions {σ0 } where
σiJ{X) = xij.

Let us introduce a particular representation nL of J/L as bounded operators
on a Hubert space ^L^^-L § where § is a 2-dimensional space with ortho-

normal basis e + = ( | e _ = j Λ defined by
01 l l y

* = χ,y,z, (9)
zth position
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where

o\ , / o i\
-ij σ =U oj

The array Tb

L(y(m\ y(m+1)) defined by

— pγr> J > Y Y— V /ΛLy Λ / Λ^jf^Λ^jΛ- ir^ I ^> έ-ji ιm IT i

(10)

where y(m) = (x-Lm,..., xLJ an^ Σ? signiπes tnat tne limits of the summation are
prescribed by the boundary condition, determines an element V^ e s$L by

Tί(y(m\ y(m+ υ)= <(X)-L βαί?

 πL(^ΐ)®L-Lea' >L ' (H)

where α f = + when x ί m— ±l,αj = ± when x ί > m + ι= ±1 and < , }L is the inner-
product on §L.

Σ? *?*?+ 1 '

where

(13)

For our purposes we need consider only two boundary conditions: the periodic,
and the plus and minus, which give rise to the extremal states. Details omitted
here may be found in [3, 24].

Let / be a local element of <5f({ + 1, - 1}Z2) lying in #{ + !,- \}Λ) say. Using
the transfer matrix we have the existence of elements ap

f, a^ e J/L such that

where

2L+ 1

and σ^ L is identified with σ J + 1 and
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Define states ρ£L( )> ρ^L( ) on jtfL by

(16)

Lemma 1. For any a e J/L, ί/iere exisis / e #({ + 1, — I}"1) such that ρb

NL(a) =

Proof. £0L is generated by {σ£, σz

k k=—L,...,L}.
Trivially f = σk,0 has the property that {σk>oy

b

NL = ρb

NL(σl) k=-L,...,L.
Consider

Since σίFXFL

έ>"1-ch2K*-sh2X*σ^exp{K2(σϊ_1σί + σίσί+1)} for b = p or
fe= ±, it is straightforward to show that (fk)bNL = QNL(σk) k=—L,...,L. We wish
to consider the state ωb

NL on ^(HL, SL] given by

and in particular to study the limiting state ωb( ) = lim ωb

NL(-) on the Clifford alge-

L-> oo

bra ty(H, s).
To take the limit N-*oo it is necessary to have the spectrum of the transfer

matrix. Under the Jordan-Wigner transformation we can write (see [1], [11])

where

and

= exp - / Σ - x
) = exp ( - iX? Σ1: L Γ(et)Γ(JLe$

HL defined by

e^e^j »=-£,. ..,L-1 (19)

Similarly
2L-1
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and W:H^H is the bilateral shift

Wen = en+ί neZ,

Let us define operators on HL by

coshy± =

sh γ ± cos δ* ± =

w± _ L / w ± \

W± _L(W±

(21c)

(21d)

(21e)

Let ω/L be the Fock state on (HL, SL) corresponding to complex structure JL,
the representation defined in terms of creation operators

a*(x)=?(Γ(x) - iΓ(JLx)) and vacuum vector \ΩL > .

It is straightforward to verify that the Bogoliubov automorphisms
α^:Γ(x)-*Γ(Sj ;x) of <%(HL, SL) induced from the orthogonal operators 5^ are
implemented in the above representation by

(22)
[2(2L+1)'

where α*(ω)=£ΐι L e~ίnκ

co + = 2πίk/2L + 1, ωfe" = πi(2/c + 1)/2L +1 fc = - L,..., L, (23)

cosh y(ω) - ch 2Kf ch 2K2 - sh2Kf sh 2K2 cos ω, (24a)

sh2K2-sh2K*ch2K2cosω, (24b)

sinω, (24c)

-π. (24d)

Theorem 1. For β<βc the state ω£( ) is a quasi-free Fock state over %(HL, SL\
described by complex structure A~[ =8^ JL(S^)+.
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Proof. For β<βc the principal eigenvalue of πL(V[) is non-degenerate and its
eigenvector is |Φ£ ) = πL^Z ̂ Γl^z,)- Taking the limit JV-»oo in (16) in the usual
way we have

which is a Fock state as it is related to the Fock state ωjL by a Bogoliubov
transformation.

Lemma 2. For β>βc the states ω^( ) have the property ω^(y) = 0 for any

Proof. For β> βc the largest eigenvalue of nL(V^) has an exact degeneracy

between |Φ±> and |Dί>=iπL»/Z1(^-ι)-iΠ^ι))|ΦL >•
Letting ]V->oo in (17) and using the parity of |Φjr > and |Dj> we obtain

If 7 e ̂ od(tf L_ ! , SL_ J C Φβd(/ϊL, SJ then

ω ( y ) = 0 since

Lemma 3. For any y/, e ̂ ei C^L? SL) an^ any M>L we have

Proo/. When jβ>jβc there is an asymptotic degeneracy of πM(F$) between

IΦM) and

where

and the respective eigenvalues Λ,~ax, λ$ have the property

where τ is the surface tension [2]. Consequently for any yL e <%ev(HL, SL).

But for any χeHL \h(x,g^/\\g^ IDI

||0o ||2|ΦM>, therefore after successive application of the anticommutation rela-
tions,

. M



286 J. T. Lewis and P. N. M. Sisson

Let ωA be the Fock state on ^(H, s) determined by complex structure A on H
where

ch y = ch 2K* ch 2K2 1 - sh 2Xf sh 2K2 — -- - , (25a)

-ι\
(25b)

_
shysinδ*- - Jsh2Kf - - - , (25c)

(25d)

(25e)

The following extends Theorem 3 of [22].

Theorem 2. For all β and for each yε%(H,s\ limωp(y) and limωf(y) both
exist and

lim ωp

L(y) = lim ωί(y) = ω^(y).
L-»oo L-»oo

Proof. In the case of periodic boundary conditions the result follows imme-
diately from Theorem 1 and Lemma 3, together with the fact that

s-lim WL = s-lim W+ = W.
L-» oo L-+OO

If 7 e %od(H, s), then lim ω^ (y) = 0 for β > βc follows immediately from Lemma
L-»oo

2. A careful consideration of the degeneracies of nL(V^} when β<βc from [3]
shows that lim ω^(y) = 0 for β<βc also when ye%od(H,s\ To show that ω±

L-»00

agrees with ω^ on °Ueυ(H, s) we require the following Lemma.

Lemma 4. For any boundary condition b and inverse temperature β, given
f e δv({ + 1, - 1}Z2) ί/iere exists yf e <%ev(H, s) such that

and conversely given γe%ev(H,s) there exists fye$v({+l, — 1}Z2) such that
( f y y b = ωA(y) for any boundary condition b.

Proof. The first part follows from Eq. (1) and the fact that it is true for b = p.
The converse follows essentially from Lemma 1. It is sufficient to show fyk, f
exist for {yk = Γ(ek)Γ(Jek):ke Z}, {μk = Γ(Jek)Γ(ek+1):keZ}. Direct verification
shows that fμk = iσk,lί0σk,0 and /Vk = z/k, fk as in (18).

Since ωA is W-invariant we take the Fourier transform
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determined by en-*emp, so that for each φ e HJ we have

eip) = φ(eίp) = ΣZ h(en, φ)eίnp .

For every operator T:H-+H such that [T, J]_ = [T, W^]_=0 there exists
ί( )e£°°(S) such that

Theorem 3. 77ze finite temperature ωA are obtained from the infinite tempera-
ture state o)j by a Bogoliubov transformation induced from the orthogonal operator
S+ on H i.e. ωA = a)j°as + .

The automorphism Γ(φ)^Γ(S+φ) is not unitarily implemented in the Fock
representation determined by ω3.

Proof. The non-implementability follows from Theorem 2 of [15]. The ope-
rator \A — J\ is not Hubert-Schmidt since it has continuous spectrum.

Let the Fock representations determined by the states ω, and ωA have creation
operators a*(φ)=%(Γ(φ)-iΓ(Jφ)) and b$(φ) = %(Γ(φ)-iΓ(Aφ)) and vacuum
Ω0, Ωβ respectively.

Let b*(φ) = b%(Sφ)=±(Γ(Sφ)-iΓ(SJφ)). The Bogoliubov transformation has
the form

b*(φ) = α*(cos θφ) - ia(JΛ sin θφ) . (27)

Introducing the operator-valued distributions α*(p), b*(p) by

it takes the form

b*(p) = cos θ(p)a*(p) + i sin θ(p)a( - p) . (28)

Let V:H-+H be the operator such that [K, J]_ = [7, fΓ]_=0 and
) = e-y(p}φ(eίp\ and let VF be the operator on the Fock space ^(L2(Sf))

determined by V on L2(S'\ The following extends Theorem 4 of [22] and is
immediate.

Theorem 4. For any boundary conditions, the transfer matrix normalised by
dividing out the maximum eigenvalue tends strongly to the operator VF on 3P(L2(S'}}.
Consequently VFΩβ = Ωβ and V^(φ)Vin = b^(Vnφ).

The operator VF is unitarily equivalent to the operator P^ in [18] when the
magnetic field equals zero.

§ 2. Index

We have shown how to compute expectation values of observables
/e#({+l,— 1}Z2) using the Fock state ωA, at all temperatures. Odd correlations
are in principle determined by the clustering properties [Eq. (2)] and convexity
[Eq. (1)].
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In principle therefore the correlation functions are all determined by the
complex structure A.

Now A = A1

and elementary manipulation of Eq. (26)

(Je2Jθφ)\eίp) = ίe2ίθ(p}φ(eίp) = a(eίp)φ(eίp)

where

e2iθ(P) _ IP _~~

and

(30)

so that

for

for

lΐφ:S->C is a continuous function, the index of φ, I(φ\ is given by

) = arg(φ(eίπ))-arg(φ(eίπ)) . (32)

Lemma 5. I(a) =1 β>βc

= 0 β<βc.

Proof. Form (31) jBίξl if and only if β^βc and the lemma follows from
direct computation.

When β — βc the function a( ) is not continuous. It is not even locally sectorial
in the sense of [6], so we cannot assign an index to it in the same way.

§ 3. Spontaneous Magnetisation

We compute ra* by one the standard methods

m*2 = lim <σ0 0σM θ>.
n~ > oo

Using the state ωA we have

^^

D(n] an n x n matrix with entries

D^k = s(AJW^ej9 ek) = ̂ π e

where D(p) = exp(i<5*(p)).
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From (24d) and Lemma 5

β>βc

β<βc.

2 = 2 = 7 -inp-Let H2(S) denote the Hardy space =φe L2(S):φ(n) = $7Lπ φ(p)e-
inp-=ΰ, n<0

and P+ the orthogonal projection L2(S)-+H2(S).
For each φ e LCO(S), let Tφ denote the Toeplitz operator on H2(S) determined

Lemma 6. \\Tφ\\ = \\φ\\^ = sup \φ(eip}\.
pe[-π,π]

Theorem 5. (Douglas and Widom [6]). // φ is continuous and bounded away
from zero then Tφ is a Fredholm operator and

ind Tφ = dim (ker Tφ) - dim (coker Tφ) = - I(φ) . (33)

Moreover Tφ is invertible if and only if I(φ) = 0.

Theorem 6. Let Tφ be a Fredholm operator on H2(S). For n = 0, 1, 2, . . . let P* be
the projection of H2(S) onto the span of {efj=Q, 1,2,... n}, and let T$} = P+ TφPj .
Then if I(φ) + 0 and \\Tφ\\^l,dεt(Tj?)-+Q as rc-+oo.

Proof. If ker Tφ φ {0}, then there exists a unit vector / e ker Tφ and an integer
HO s.t. for n>n0 the component P* f is non-zero.

Then for all n>0, there exist operators Un such that UnP*=P*Un and
Une0 = P:f/\\P:f\\ and so ||/- E/ΛHO.

By Hadamard's inequality

If ker Tφ = {0}, then coker Tφ Φ {0}, which on a Hubert space means ker T£ φ {0}.
Since |det Pn

+ Tφ*PM

+ 1 - |det P+ TΦP+ 1 the same conclusion holds.

Corollary. m* = Q for β<βc.

Theorem 7. (Devinatz [9]). Let φ e J\f be such that
(i) φ is continuous.

(ii) ψ(e ip)Φθ/orpe[-π,π].
(iii) P+ \ogφ and (1 — P+)log0 are continuous.
(iv) I(φ) = Q.

Then lim (det Tin))FG-"" x = 1, where if
-> ψ
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It is straightforward to verify that for β > βc, the function D( - ) satisfies the conditions
of the above theorem, and by the usual computation (see [19]) we obtain:

Corollary. m* = {l-(sh2K lSh2K2Γ
2}1/8 forβ>βc.

§ 4. Dilations of a Semigroup

In an algebraic treatment which incorporates the transfer matrix translations
along the two basic lattice directions are seemingly represented in an asymmetric
way. Perpendicular to the transfer direction translation is described by the
automorphism a^:Γ(φ)-^Γ(Wφ) of 2I(//, s) whereas along the transfer direction
it is described by the automorphism av:Γ(φ)-^VFΓ(φ)Vi1. Translation invariance
of the state ωA is a consequence of VFΩβ = Ωβ and [4, W~\ _ = 0.

The Pfaffian approach [19], however, does not distinguish one lattice direction
from the other. Even correlation functions in this approach can be calculated from
knowledge of {Fnitn2} given in the appendix to [19]

= _J__ f f π 1 1 2 2 2

'1.1,1.2 2 J J - « ' ^ ^

where

α =

y1=2Z1(l-Z2

2) Z

y2 = 2Z2(l-Zl).

From Theorem 4 we have

where

(Vφ)(eip) = e'y(p)φ(eip)

and | |7 | |=e- y ( 0 ) <lfor j8φft : .

Let G — {Vn:n>0} denote the contraction semigroup on L2(S).

Theorem 8. (Sz-Nagy [25]). Let T be a contraction on a Hilbert space §, then
§ can be imbedded in a larger Hilbert space ft on which there is a unitary operator
U in such a way that Tn~πUn n>0 on §, where π is the projection of ft onto §.

We will use the Lax- Phillips [13] construction of the unitary dilation of the
semigroup G.

Let ft = /2(— oo, oo yΓ) Jf some auxiliary Hilbert space, and let t/:ft->ft be
the shift operator

Let J^:ft->ft be the Fourier transform onto Λ = L2(S;«yΓ) given by
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so that (^U^~lg)(ei0} = eiθg(eiθ)gEL2(S^}. Choose ^ = L2(S;μ) for some
measure μ on S, so that

$t = L2(S; Jf) = L2(S xS; μ xμ0), Mo the Lebesgue measure on S .

The Lax- Phillips construction is unique up to unitary equivalence of JΛ
The map L2(S)^>$t given by

is an isometric imbedding if and only if

..
2π

The map L2(S)-»Λ given by

•* P' cosh y(p) - cos 0

is an isometric imbedding if and only if μ(dp) = th y(p) — a.e. The realisation of
2π

Theorem 8 with this second imbedding becomes

~ny(p) inθ Q

°n L2(S} (35)

From (24a) we have

.e.

The relation between (34) and (35) is evident.
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