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Abstract. Dispersion relations for the vertex function are derived which are valid
when two of the scalar variables are arbitrary complex inside certain domains of the product
of the complex planes and the third scalar variable is evaluated just below or just above the
physical region-cut.

The domains of validity of the dispersion relations for the complex variables are
domains with three real dimensions and can be described as neighbourhoods of the
boundaries of the "axiomatic" analyticity region of Kallen and Wightman.

The discontinuity of the vertex function across the cut-surface in the third variable
for such values of the remaining variables is expressed only in terms of the dynamical
on-mass-shell matrix elements of the locally commuting field operators.

1. Introduction

In a series of earlier papers, hereafter called I [1], II [2], and III [3],
we have derived a set of relations of the kind usually called sum rules
for the vertex function both in momentum space [2, 3] and in coordinate-
space [1].

The basic assumptions behind the results are the analyticity proper-
ties proved by Kallen and Wightman [4] from some very general
assumptions, which ought to be fulfilled in all "interesting" field theories.
These authors assumed essentially that the field theory should admit

(i) covariance under Lorentz transformations and translations, i.e.,
among other things the existence of energy-momentum-operators

(ii) "reasonable" mass spectrum of the energy-momentum-operators,
i.e., that the occurring energies and masses should be positive, and that
the Hubert space is spanned by eigenstates of these operators

(iii) causality in the form of local commutativity properties of the
occurring field operators.
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For the results of paper I—III we further need assumptions on the
particle interpretation of the theory along the conventional lines of
reduction formalism [7,8] and some moderate boundedness and
integrability properties of the vertex function when the boundaries
of the holomorphy domain of Kallen and Wightman is approached
"from inside".

In this and a further paper we will use methods similar to the ones
employed in I—III in order to derive representation formulas in terms of
contour-integrals in the complex plane, of the kind called dispersion
relations, for the vertex function. Here we will write down "one-dimen-
sional" relations in the sense that only one-dimensional integral relations
are employed. By means of the formalism developed here it is possible
to express the vertex function for values of the arguments close to the
boundary of the Kallen-Wightman domain. Thus, the relations are
valid when two of the scalar variables are arbitrary complex numbers
inside certain domains (of three real dimensions) in the product of the
complex planes, while the third variable is in the physical region in the
sense that it is evaluated just below or just above the corresponding cut
along the positive real axis.

The main results of the paper are relations which express the dis-
continuity across the above-mentioned physical-region-cut for complex
values of the two remaining variables only in terms of the dynamical
quantities of the field theory, i.e., the onmass-shell matrix elements of the
field operators. These results closely resemble the well-known Kallen-
Lehmann [7—9,11] representation formulas for the two-point function.

The formalism is applicable if the vertex function is at most poly-
nomially increasing when one (or sometimes two) of the arguments is
(are) allowed to approach infinity in directions inside the Kallen-
Wightman domain. These conditions are fulfilled for perturbation
theoretical examples based upon polynomial interaction Hamiltonians.

In Section 2 the results of the paper of Kallen and Wightman are
briefly surveyed, in Section 3 the representation formulas are derived.
In Section 4 we give some definitions for the vertex function in order to
relate the boundary values in the dispersion relations to the physical
quantities of the theory, i.e., the causal and time-ordered boundary
values. In Section 5 the dispersion relations are expressed in terms of
the matrix elements. Section 6 contains a few further remarks and
extensions.

For simplicity, we will consider a scalar field theory in this paper and
we will only write the results in terms of the momentum-space quantities.
The results can certainly be generalized both to higher-spin field theories
and to coordinate-space quantities.
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2. The KaΊlen-Wightman Domain

In this section we will for reference briefly review a few of the results
of the paper by Kallen and Wightman [4] on the analyticity properties
of the vertex function. We will throughout this paper consider a scalar
field theory and in that case the existence of a unique Lorentz invariant
vertex function both in momentum-space (here called G) and in coordinate-
space (F) can be proved [4]. The well-known connections between
matrix elements between particle states of different operators and the
different boundary values of the vertex function is briefly discussed in
Section 4.

The vertex function will depend upon three scalar variables, which
can be chosen as the Lorentz squares of the coordinate-differences
between the field points in coordinate space and as the Lorentz squares
of the external energy-momentum vectors in momentum space (here
called Zi7 i — 1,2, 3). Due only to the very general assumptions mentioned
in Section 1, the vertex function exhibits analyticity properties in a
rather large domain of the three-dimensional complex variable-space.
This domain is explicitly constructed in the classical paper of Kallen
and Wightman [4].

The simplest way to describe the domain of holomorphy of the vertex
function, which due to the complete symmetry between momentum-
space and coordinate space is the same in both cases, is to describe the
boundary surfaces. To that end we will divide the three-dimensional
complex variable space into eight disjoint sections, corresponding to the
eight different possibilities of choosing the signs of the imaginary parts
of the three variables. In each one of these "octants" the relevant boundaries
of the Kallen-Wightman domain are given by the cut-surfaces along the
positive real axes of the variables defined above, as well as a more com-
plicated hypersurface. The "cuts" are actually reminiscences of the
corresponding two-point function boundaries. There are, however, four
different more complicated surfaces and each one of them constitutes
the relevant boundary of the holomorphy domain in two of the octants,
which are "opposite" in the sense that to go from one to the other one
has to change the signs of the imaginary parts of all three variables.
Thus, in case the quantities ImZ^ and ImZj have the same sign, while
ImZ k (fφjφ/cφf) has the opposite sign, the relevant boundary is the
F/j-surface:

( r - Z . M/ - Z H r Z ^ O , r > 0 . (1)

The three different F^-surfaces are known from perturbation theoretical
examples [4]. In the remaining two octants, i.e., in case all the signs of the
imaginary parts are equal, perturbation theoretical functions do not
exhibit any other singularities except the cut-surfaces [5], but the
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axiomatic approach does not exclude singularities outside the com-
pletely symmetrical boundary-surface called # Ί

r2 - r(Z1 +Z2 + Z 3) + Z1Z2 + ZXZ3 + Z2Z3 = 0, r > 0 . (2)

Due to the large symmetry of the above-described Kallen-Wightman
domain it is for our purposes only necessary to investigate a few special
cases in detail and then the general results can be found by obvious
permutations of indices.

In this paper we will make use of the analyticity properties in the
neighbourhood of the boundaries of the holomorphy domain. To be
specific, we will in the same spirit as in papers I—III consider the vertex
function just "above" the surface of intersection between one of the cut-
surfaces and one of the F[f or J^-surfaces. We will be satisfied to discuss
the case when the third argument is chosen just below or just above the
corresponding cut-surface, i.e., the positive real axis, while the other two
arguments are general complex numbers but restricted to a neigh-
bourhood of the boundary of the domain of holomorphy. As this boundary
is different in the different octants as described above, we will have to
differ between the two cases when

I m Z 1 I m Z 2 > 0 and I m Z 1 I m Z 2 < 0 .

In Section 3 A the first case is discussed and in Section 3 B the second one.
We will in both cases write the relations in terms of the momentum space
function G and only in the end comment upon the differences in case the
coordinate-space function F is used instead of G.

3. Dispersion Relations for the Vertex Function along the Boundary
of the Kallen-Wightman Domain

3 A. The Case lmZί ImZ2 >0

We will in this section discuss in some detail the properties of the
vertex function close to the intersection between the F^-surface,
respectively the J^-surface of Eqs. (1) and (2) and the positive real Z3-axis.

To that end we will first consider the function Γ+ ( 3 ) defined by

(3)

The parameters r and ζ3 as well as the infinitesimal quantity ε will be
restricted to the positive real numbers.

From the "axiomatic" analyticity properties we deduce just as in the
similar examples of paper I that the function Γ( + ) ( 3 ) is analytic in the
lower half-complex ζι -plane. This is due to the fact that with the restric-
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tions above on the parameters r and ζ3 the second argument ζ2 fulfils

•4)

and thus the sign of ImC2 is the same as the sign of I m ^ . The first line
of Eq. (4) can be seen to be the expression for the F[ 2-surface. Because
of the (infinitesimal) translation (is) in the third argument of Eq. (3), the
vertex function is as a matter of fact evaluated just inside the axiomatic
domain. In this octant the only remaining axiomatic singularities are
the Zr and Z2-cuts according to what has been said in Section 2 and
these surfaces are easily seen to cover the real ^-axis.

By the same argument the function

r>0, ζ3>0, β>0, (5)

i.e. in which the third argument of the vertex functions is evaluated just
below the Z3-cut, exhibits no "axiomatic" singularities in the upper half
complex ζι -plane.

We further note that by the exchange

r + ζ3 = Q > 0 (6)

we get from Eq. (4)

i.e., the analytic expression for the J^-surface of Eq. (2). Note that in this
case we have the restriction

0 < C 3 < ρ . (8)

By the same argument as above we can then deduce that the function
Γ + ( 3 ) is actually axiomatically analytic also in the upper half complex
ζ r plane and Γ~ ( 3 ) correspondingly in the lower half complex ( r plane.
To that end we make use of the analyticity properties proved by Kallen
and Wightman in the octants where all the imaginary parts of the
variables are equal, i.e. the octants where only the ^-surface and the cuts
constitute relevant boundaries. In this way we have, consequently,
derived the results that the two functions Γ ± ( 3 ) are both of them analytic in
the whole complex ζ^-plane except for cuts along the real axis stemming
from the corresponding two-point function boundaries, the Z^cut and
the Z2-cut.
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These results immediately imply that Cauchy's theorem can be used
to derive what is usually called dispersion relations, i.e., representation
formulas for the function Γ ± ( 3 ) in terms of contour integrals in the
complex plane.

To that end it is necessary to make assumptions on the behaviour of
the functions Γ ± ( 3 ) in the neighbourhood of the real C raxis as well as
for large values of the variable ζι. Such assumptions are seen to be
equivalent to assumptions on the behaviour of the vertex function G
in the neighbourhood of the intersection between two or sometimes
three of the cut-surfaces, as well as assumptions on the behaviour when
one of the arguments tends to infinity in directions inside the domain
of holomorphy while the remaining variables are close to positive real
values.

We will for our purpose be satisfied to assume moderate integrability
properties (satisfied e.g. for tempered distributions) and at most a
polynomial increase of Γ ± ( 3 ) in different neighbourhoods of infinity
(inside the domain of analyticity). These assumptions are "natural" in
the sense that this behaviour is found in perturbation theoretical examples
in theories with polynomial interaction Hamiltonians.

To be specific we will assume the limiting relation

Lj= lim ]dΘ~~G(ReiΘ,r-^e-iΘ,ζ3±iε)=0 (9)

to be fulfilled for some finite integer n.
For simplicity we will start by assuming that the integer n in Eq. (9)

can be chosen to be n = 0. We then use Cauchy's theorem to deduce that
if the pole-position Z1 is chosen in the upper half complex plane then
for an integration curve C that encircles Z t in a positive sense we have:

,; r, ζ3) = - L - § y ^ ~ Γ ± <3>(CX r, ζ 3 ) . (10)
^ π ι c t i — ^ i

By choosing the integration curve as a large semi-circle around the
origin with radius .R and a straight line along the real ζ^axis we get from
Eq. (9) for n = 0 in the limit when R tends to infinity and we, consequently,
can neglect the contribution from the semi-circle:

ImZ^O. (11)

We further note that the integral of Eq. (11) vanishes if the pole-position
Zγ is chosen in the lower half complex plane, because in that case there
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is no pole "inside" the limiting curve C. A completely similar discussion
can now be performed for the lower half Ci -plane and we get

2πi Λ d - Z , ~ Γ ~ " r-Ci ' ^ ^ ) (12)

^-^^(Z. r^,) I m Z ^ O

= 0 I m Z ^ O .

We note especially the occurring minus sign in Eq. (12) which corresponds
to the fact that all complex integrals must be performed in the "positive
sense".

By combining the two Eqs. (11) and (12) and remembering the remark
made after Eq. (11), we get representation formulas for the functions
Γ ± ( 3 ) which are valid in the whole complex Z rplane except for the real
axis:

+ iε', ζ2 + iε", ( 3 ± iή - G(ζι - iε', ζ2 - iε", ζ3 ± iε)}.

By some straightforward algebraic manipulations (note that the quanti-
ties (d — r) and (ζ2 — r) have opposite signs due to the restrictions on the
parameters r and ζ3) we get the following result:

iε', ζ2 + iε", ζ3 ± iε) - G{ζx - iε\ ζ2 - ίε", C3 ± is)}

( r - Z 1 ) ( r - Z 2 ) + r C 3 = 0 , r > 0 , ξ3>0.

To spell out the actual symmetry of the integrand of Eq. (14) we note the
following equality which is useful for the second term in the last paren-
thesis of the integrand:

— — I . {LJ)
Ci-Zi _ rζ3 (ζl-r)(ζ2-Z2) ζ2-

In Eq. (15) we have used the relation between the variables Z1 and Z 2

from the last line of Eq. (14) as well as the corresponding relation between
ζ1 and ζ2 from the ^-function. Except maybe for the last term, (—1), in
Eq. (15), we thus get obviously symmetrical contributions from the
integration ranges ( ζ 1 > r > 0 ; ζ2<r) and ( d < r ; C 2 >r>0), i.e., from
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the parts of the integration ranges corresponding to respectively the
Z r c u t and the Z2-cut.

The last term can, however, also be made into a symmetrical con-
tribution in the same sense, if we make use of the sum rules of paper I—III.
The rum rules of Eq. (14) in paper I - in that paper expressed in terms of
the coordinate-space vertex function F - and repeated in terms of the
momentum-space function G in Eq. (A 1) of appendix A of paper II as
well as the sum rules of Eq. (26) in paper III imply under the limiting
condition of Eq. (9)

f dζ, dζ2 <5[rζ3 + (r - CJ (r - ζ2)] {G(ζ1 + ίε\ ζ2 + ίε\ ζ3 ± ίε)

-G(ζ1-ίε\ζ2-ίε'\ζ2±ίε)}{Θ(ζ1-r)Θ(r-ζ2)-Θ(r-ζί)Θ(ζ2-r)}=0

r > 0 , ζ 3 > 0 (16)

and we can then by using Eqs. (15) and (16) finally write for the case
ImZ 1 ; I m Z 2 > 0

G(Zl9Z2,ζ3±iε)

- iε', ζ2 - iε", ζ3 ± iε)} l-^-—γ— Θ(ζι-r)Θ(r-ζ2) (17)

fZ2-2r H \

( Z 1 - r ) ( Z 2 - r ) + rζ3 = 0, r > 0 , ζ 3 > 0 .

We will actually consider the difference

(G(ZUZ2, ζ3 + ίε) - G(ZUZ2, C3 - iε)),

i.e., the dispersion relation for the discontinuity across the Z3-cut in the
applications of Section 5.

Eq. (17) can also be generalised to the case when Eq. (9) is not satisfied
for n = 0 but is satisfied for a finite positive integer n (it is of course evident
that if Eq. (9) is satisfied not only for n = 0 but also for negative integers,
then Eq. (17) needs no further modification).

In that case we consider instead of the function Γ ± ( 3 ) (Z l 5 r , ζ3) in
Eq. (13) the following integral for an arbitrary but fixed "subtraction
p o i n t y " :

- G (d - iε\ r + ~^\ iε", ζχ ± ίε)\ . (18)
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It is easily seen that the integral /„ equals

(19)

The expressions of Eq. (18) and Eq. (19) can be "symmetrised" in a way
similar to the discussion above in connection with Eqs. (15)—(17) but we
wJJJ not write out the details of such expressions.

3B. The Case lmZ1 I m Z 2 < 0

There is a further set of dispersion relations similar to the ones in
Section 3 A and also based upon the analyticity properties which can be
derived from the Kallen-Wightman results. In these cases we will con-
sider the remaining four octants of the three-dimensional complex
variable space, i.e., those in which ImZi ImZ 2 <0. The third variable
will once again be evaluate just above or below the real positive axis.

To that end we will consider the functions y ± ( 3 ) defined by

(20)

with the following restrictions on the real, positive parameters r and ( 3 :

0 < r < C 3 , (21)

In this case the second argument of the vertex function G fulfils

(22)

The first line of Eq. (22) is seen to be the analytic expression for the
F^-surface (cf. Eq. (1)), the second line tells that the sign of Im( 2 is
opposite to the sign of I m d We are, because of the (infinitesimal)
translation ±iε in the third argument, consequently once again in-
vestigating the vertex function just above the surface of intersection
between one of the complicated analytic hypersurface boundaries of
Kallen and Wightman, in this case the /^-surface, and one of the
cut-surfaces.
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In a way that is very similar to the one used in Section 3 A we may
then deduce that the function y + ( 3 ) (d) and y~(3)(Ci) are "axiomatically"
analytic in the upper respectively lower half complex ζι-plane. Further
the Z^cut and Z2-cut once again cover the real ^-axis.

By making the change of parameter

ρ = ζ3-r>0 (23)

(note that we have ζ3 — ρ = r>0) we find, however, from the first line
of Eq. (22) that the second argument ( 2 can also be written as

C2 = e+-^τ-. (24)
Q-C3

But this is the analytic expression for the F23-curve (cf. Eq. (1)). This
surface constitutes the relevant boundary of the Kallen-Wightman
domain when the signs of the imaginary parts of the second and third
argument are the same, while the imaginary part of the first argument
of the vertex function has the opposite sign. From the second line of
Eq. (22) which written in terms of the new parameter ρ (note the remark
after Eq. (23)) is

I m ζ 2 = - — ^ — I m d (25)

we may deduce that the functions y + ( 3 ) and y~{3) represent the vertex
function also along the intersection of the F23-surface and the Z3-cut in
the lower respectively upper ζ>ι -plane. Due to the infinitesimal transla-
tion ± iε in the third argument we also deduce that we are inside the
holomorphy domain, and that the functions y+ ( 3 ) and γ~(3) consequently
are analytic also in the lower respectively upper half complex ζ1 -plane.

Thus from the Kallen-Wightman results we deduce that the func-
tions y± ( 3 ) are (just as the functions Γ± ( 3 )) analytic in the whole complex
ζx -plane with the exception of the real Ci-axis where there may be
"axiomatic" singularities corresponding to the two-point function
boundaries, the Z r c u t and the Z2-cut. Due to the similarity between
the analyticity properties of the functions Γ ± ( 3 ) of Section 3 A and the
functions y± ( 3 ) discussed above we can use the same arguments to
derive representation formulas in terms of contour-integrals. The
relations corresponding to Eq. (13) of Section 3 A are

(26)
• {G(d + iε', ζ2 — iε", ζ3 ± iε) — G(ζ t — iε', ζ 2 + iε"; C3 ± iε)} •
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We have then for simplicity implicitly assumed the limiting relations

/± = lim ] dθ - 1 - G (κciθ

9 - ^^~ Re1"* ζ3 ± iε) = 0
R->π 0 K \ r /

(27)

to be fulfilled for the case n = 0 (cf. Eq. (9)).
It is further possible to "symmetrise" the relations of Eq. (26) in a

similar way as in connection with Eq. (17) of Section 3 A. To that end we
introduce as new parameters α and β with

(28)

(note that α > 0 and β > 0, cf. Eq. (23)).
In terms of them we can write both the F'13- and F^-surfaces in this

case as
aζ2 + βζί=aβζ3. (29)

Then we find from Eq. (26) by a few obvious algebraic manipulations

G(Zl9Z29ζ3±iε)

= -Tj—r ί d £i d^ δ^2 + βCi - «y9ζ3) {G(d + iε\ ζ2 - iε", ζ 3 ± iε)

(30)

We have here used the equalities (cf. the corresponding Eq. (15) of
Section 3 A)

-̂V-— —-Λ- en

and then referred half of the contribution from the part of the integra-
tion range when both of the integration variables ζ1 and ζ2 are positive,
to each one of the terms. Finally, in case Eq. (27) needs a "convergence
power" π > 0 w e can in the same way as in connection with Eq. (18) of
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Section 3 A consider the integral Γn instead of Eq. (26):

Ί r (32)

The value of the integral Γn is easily seen to be

- P± +/ε",C3±iε)J.

For the cases n = 1 and n = 2 w e can, e.g., write for this expression

IΊ = ^Zγ{G(Z1,Z2,ζ3±iε)-G(ξ1,ξ2,ζ3±iε)}

1 • — - - • • > ~ < - - ( 3 4 )

(Z1ξ1)

We will end this section with a few remarks.

1. Because of the symmetry of the Kallen-Wightman domain we can
write completely similar relations as we have done for the functions
Γ± ( 3 ) and y± ( 3 ) above also for the functions Γ± ij) and y±U)j=l,2 which
are defined in obvious ways. We will, however, not give explicit expressions
since such formulas can be obtained by straightforward permutations of
indices from Eqs. (17) and (30).

2. We have in all the formulas above used momentum-space quanti-
ties.-Because of the symmetry between momentum-space and coordinate
space, all that has been said above, apart from the boundedness proper-
ties, i.e., the assumed limiting properties in Eqs. (9) and (27) can word
for word be repeated in terms of the coordinate-space function F. In
coordinate-space, however, perturbation theoretical examples in general
imply exponential damping when one or more variables are allowed to
tend to infinity in different directions inside the holomorphy domain
("cluster properties"), and therefore the "convergence factors" of Eqs. (18)
and (32) might be unnecessary.
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There is, however, a further and more deep-lying difference between
momentum-space and coordinate space in the fact that even in theories
containing no particles with vanishing mass, the two-point boundary
surfaces, the Zx- and Z2-cuts are believed to start in the origin of
coordinate-space ("lightcone singularities"). In momentum-space, how-
ever, the corresponding situation is different. We would expect, in general,
to find isolated poles corresponding to the one-particle states situated
at the square of the corresponding masses (cf. Section 4 and 5), and only
further "up", i.e., further along the positive real axes, the thresholds from
the scattering states. This "mass gap" will become evident when we ex-
press the boundary values [G(ζx 4- iε, ζ2 + iε, ζ3 + iε) - G(ζ1 - iε, ζ2 - ie,
ζ2 + iε)] etc. in terms of the on-mass-shell matrix elements in Section 5.

3. The integration ranges occurring in the representation formulas
are actually parts of what is called the "distinguished boundary" of the
Kallen-Wightman domain of holomorphy. This concept plays in general
an important role in representation theory for functions of several com-
plex variables [6]. The distinguished boundary can in an intuitive way
be described as the "utmost corners" of the domain of holomorphy.

4. We would like to stress that the boundary values of the vertex
function which occurs in the integrands of the dispersion relations above
are "physical" in the sense that they can be expressed in terms of the
physical quantities of the field theory, i.e., the causal and time-ordered
boundary values etc. of the vertex functions. These quantities are in a
well-known way via reduction formalism related to the matrix elements
of different operators. We will give the details of such expressions in
Section 5 after having given a few relevant definitions for this program
in the next section.

4. The Boundary Values of the Vertex Function

In this section we will give some relevant definitions for the vertex
function and briefly touch upon the problem of expressing the boundary
values occurring in the integrals of Section 3 in terms of the physical
quantities of the theory.

We will rely heavily upon the formalism developed in papers I—III
where similar problems have been treated in more detail. Just as in that
case we will consider a field theory with three scalar fields A, B and C.
Due to the assumed Lorentz-covariance of the theory, the vertex func-
tion in momentum space G is a Lorentz invariant function only depending
upon the (complex) scalar variables Zh which we will often identify with
the Lorentz squares of three (complex) vectors κh fulfilling energy-
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momentum conservation:

Z f = - κ ? , ί = l , 2 , 3 ; iki9 ϊ = l,2,3. (35)

(We use the matric κ2 = κ2 — κl)
We will further assume in order to introduce particle states into the

discussion that the fields admit weak asymptotic limits to free fields in
such a way that a reduction formalism can be developed. The free fields
describe "incoming" and "outgoing" A-, B- and C-particles with masses
mί,m2 and m3 respectively. We will without further discussion assume
that the field theory is "renormalized" in the sense that e.g. for a matrix
element between a "stable" one ,4-particle state with momentum px and
the vacuum the following relation is valid [9]

-

The quantities N} are normalisation constants, which depend upon the
energies Ej = Ypj + πή as well as upon the quantisation volume V.
The quantity V occurs because we will handle the problems connected
with Haag's theorem [10] by the conventional procedure of introducing
a "quantisation-box" with periodic boundary conditions.

By means of reduction formalism [7] in the way described in some
detail in papers II and III (but without attempts at mathematical rigour)
we may relate matrix elements, between two one-particle states for the
operators, to different boundary values of the vertex function in momentum
space.

We will use the same notations as in papers II and III and talk about
the retarded (R) and advanced (A) boundary values (for short "causal
boundary values", CBV) and about the time-ordered (T+) and antitime-
ordered (T~) boundary values (for short TBV and ATBV) of the vertex
function.

In that way we may write

<0\(m2

2-Π2)B\pl9p3> (37)

We have in connection with Eq. (37) not specified whether the state
Pi, P3> corresponding to a state with one ^-particle and one C-particle
is an "out-state" or an "in-state". In connection with RB and T + we deal,
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however, with "in-states" ("particles at a time long before the interaction")
while in connection with AB and T~ we deal with "out-states" [8]. All
the quantities RB, AB, T+ and T~ have Fourier transforms in terms of
vacuum expectation values (VEV) of different operator products:

T+(-PI -(P1+P3)2, -Pi)
T~(-p2

u

2, -Pi)
(38)

= — \dx1dx3e
ιpx

X2> X l ~~ X2J

ΐ+(xux2,x3)

t~(xux2,x3)

i X3, X2 X^)

= Π K 2 - D i ){<O|0(21)0(13)[C,[Λ5]]|O>

t+(xux2,x3)
3

(39)

+ 0(13) 0(32) 0(23) 0(31) BCA

Θ{3l)Θ(l2)CAB}\0>.

We have for practical reasons used the notation 0(12) = Θ(x1 — x2)
for the step function with a vector argument, meaning that the vector
belongs to the forward light-cone V+. The field-points of the fields
A, B and C are in all cases of Eq. (39) xux2 respectively x3.

The quantity rB is apart from the product of Klein-Gordon operators,
stemming from the reduction formalism, the VEV of the combination
of operator products called the retarded commutator. It is only a matter
of algebra to show that rB has support only when the field-points of the
fields A and C are "retarded" (in the backward light-cone) with respect
to the field-points of the field B [7, 8]. At this point local commutativity
is a necessary assumption in order to get the support properties for rB

and aB as well as to restore Lorentz covariance [7, 8].
All the quantities RB, AB, T+ and T~ defined in this way correspond

to different boundary values of the vertex function G. To be specific
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we have
RB= lim G(Z)

/deF+^O
k3eV+^O

AB= lim G(Z) (40)
k V - O

T±(Ci, C2ί C3) = lim G(d ± iε', ζ 2 ± iε", ζ3 + iε).
ε,ε',ε"->0

The quantities ε, ε', ε" are as usual positive.
The particular boundary values occurring in Eq. (37) are notified

by the restrictions
p2 = — m2, Di 6 F +

(41)
pl=-ml, p 3 e 7 + .

For other values of the vectors p1 and p3 the C 5 F i^β describe other
matrix elements in a well-known way [8] and we have e.g. for

pi = —mh Όλ e V +

PΪ=-rnl, p3eV
that

RB(PuP3) = N1N3(-p3\(m2

2~'Π2)B\pί}. (43)

It should be noted that the signs of the imaginary parts of the limiting
arguments of the vertex function G in Eq. (40) are (+ + + ) in connection
with Eq. (41) and (+ H—) in connection with Eq. (42). In Eq. (43) the
yl-particle and C-particle states are actually "instates" in the sense
described above. It is, however, immediately evident that the occurring
boundary value G(m\ + ίε', — (pγ + p3)

2 + iε", ml — iε) also describes the
matrix element

# i ^3 < - Pi out I (ml - Ώ2)B\Ps out) ΞΞ AB(pl9p3) (44)

if the vectors pί and p3 are restricted by

v\=-m\, PleV~

pl=-ml p3eV+.

This is an expression for the important field-theoretical symmetry called
CPT-invariance. (We would like to add the small technical remark that
we have in these connections actually assumed that m\ > m\ which
implies that the vector p i + p 3 belongs to the same light-cone as the
vector pί9 whenever time-like or light-like.)

Along these lines it is possible to express some of the different
boundary values of the vertex function which are required for the
integrands in the dispersion relations of Section 3 by means of the
different CBV.
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Using the notations
ζt=-pf, i = l,2,3

Σ Pi = °
i = 1

it is obvious that we can write e.g.

G(Ci ± iε', ζ2 ± iβ", C3 + iε) = β ( + Pi) β ( + P3) [©( + P2)] « B ( P I , Ps)

+ Θ( + p 1 )6>(±p 3 )[Θ(±p 2 )]/ l B (p 1 ,p3)

in the cases
ζ f > 0 i = l,2,3

(48)
and

d > 0 , C3>0, C2<0. (49)

The notation with a step function inside square brackets [ Θ ( ± p 2 ) ] ^n

Eq. (47) means that the step function is only relevant when the correspond-
ing quantity ζ2 = 0. The upper and Ipwer signs correspond to each other
in Eq. (47). Further we note that the inequality in Eq. (48) implies that
the vector (px 4- p3) = — p2 whenever time-like or light-like belongs to the
same light cone as the vector pί. Finally the occurrence of two terms in
Eq. (47) is once again an expression for the CPT-invariance.

The same boundary value of the vertex function can for the cases

C;>0 1=1,2,31 (5°)
and

ζ 2 > 0 , ζ 3 > 0 , ζ,<0 (51)
be written as

G(ζx ± iε', ζ2 ± iε", ζ 3 + iε) = [ β ( + Pi)] θ(±p2) Θ( + p3) RA(p2, P3)

) A ( )

with the CB V RA and AA defined in the same way as RB and AB in Eqs. (38)
to (40) except that the field A is distinguished in the same way as the
field B is there.

Further for the cases

o, c3>o, ζ2<(\/ζι-yζ3)
2

C2>o, ζ3>(\/Ti+]/T)2

and similarly for the cases

ζ2>o, c3>o,
( 5 4 )
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we may write

iε",ζ3±iε) = lΘ(±pί)-]lΘ(±p2)]Θ{+p3)AA

) ] L ( ) ' ] ( )

with the same meaning of the symbols lΘ(±pi)~] as above. For the
symmetrical case when the index 1 is exchanged to the index 2 and Eq. (53)
or Eq. (54) is valid, we get in the same way

G(ζιTiε\ζ2±iε\ζ3±ίε)=lΘ(±p1)-]lΘ(±p2)-]Θ(Tp3)ΛB

(56)
)

In Eqs. (47), (52), (55), and (56) we have by different CBV actually
expressed all the boundary values of the vertex function G which are
required for the dispersion relations of Section 3 in all the six octants
of the variable-space where the signs of the limiting imaginary parts of
the arguments are "mixed", i.e., when one of them has different sign
compared to the remaining two.

For the remaining two octants where the signs of the limiting
imaginary parts are equal, we can in a well-known way use the TBV or
ΛTBV of the vertex function.

5. The Dispersion Relations in Terms of the On-Mass-Shell Matrix
Elements of the Operators

We will in this section by means of the definitions given in Section 4
describe the occurring differences between the boundary values of the
vertex function in the integrands of the dispersion relations of Section 3
in terms of the matrix elements of the operators.

We will start by discussing the dispersion relation of Eq. (17) in some
detail and from these results the general procedure should be sufficiently
clear to allow only a brief mentioning of the remaining cases.

In connection with the formula for the vertex function G(Z1,Z2, C3 + iε)
we need for the integrand in Eq. (17) the contribution Δ[+) to the Z^cut,
i.e., to the integration range

(57)
C3>o

A[+) = G(d + iε', ζ2 + iε", ζ 3 + iε) - G{ζί - iε', ζ2 - iε", ζ 3 + iε). (58)
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Eq. (57) imply the easily proved inequalities

(59)
if C 2 > 0

and we can then according to Eqs. (47)—(49) of Section 4 write for the
quantity Δ[+) in Eq. (58):

- Θ(-Pl) Θ(p3) [6>(p2)] {T+ - RB]
(60)

T + l }

Using the representation formulas for the occurring CBV and TBV
given in Eq. (38) of Section 4 we deduce the following Fourier representa-
tion for the quantity A\Λ):

3

Δ\+) = -Idx^x^e^^3 (61)

'{Θ(-Pί) Θ(p3) [6>(p2)] {ί+ - r β } + Θ(Pl) θ(-p3) [ © ( - p 2 ) ] {ί+ -α β }} .

The difference (t+ — rβ) in this expression can according to Eq. (39) after
some algebra be written as

(t+ ~ rB) - Π K - Πj) <0| {AΘ(23) [B5 C]
jr = 1

We note that in Eq. (62) there is only one step function in the integration
vectors. This means that we can perform one of the integrals over the
field-points in Eq. (61) by the introduction of a complete set of inter-
mediate states with given values of the energy-momentum vectors. Due
to the assumed spectral properties of the energy-momentum operators
and the indicated light-cone properties of the vectors Pj in Eq. (61) we
will actually only get contributions from the first two terms of the VEV
in Eq. (62). A similar treatment of the difference (t+ — aB) results in the
following non-vanishing contributions (note the CP T-symmetry between
the results in Eq. (62) and Eq. (63)):

f . (63)

If we had from the beginning been interested in the formula for
G(Z 1 ? Z 2 , ζ 3 -- is), i.e., for the vertex function on the other side of the
Z3-cut compared to the situation discussed above, we would instead
of the quantity A[+) get the following contribution to the Z r c u t in the

21 Commun. math Phys., Vol 25
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dispersion relation of Eq. (17):

A\'] = G(d + iε', ζ2 + iε", ζ 3 - iε) - G{ζ1 - iε', ζ2 - iε", ζ3 - iε) (64)

(cf. Eq. (47)).
The difference between the two expressions in Eq. (60) and Eq. (64)

i.e., the discontinuity stemming from the combination of the Z r c u t
and the Z3-cut has a particularly simple expression in terms of the
matrix elements and we find by the same methods employed for Eq. (62)
and (63):

-Pl) Θ(p3) [β(p 2 )] <0\A{Xι) B(x2) C(x3)|0> (65)

+ Θ(pί)Θ(-p3)lΘ(-p2)-](0\C(x3)Θ(x2)Ά(x1)\0)}.

The interesting point is that the integrand of Eq. (65) contains no step
functions in the integration vectors and we can therefore immediately
perform the integrals by the introduction of complete sets \n} and |m>
of intermediate states with given energy-momentum vectors pn and pm:

7 = 1 | « > | m >

+ p m ) (66)

A similar treatment of the corresponding discontinuity stemming from
the combination of the Z2-cut and the Z3-cut results in the following
formula:

+ iε', ζ2 + iε", ζ3 + iε) - G(ζί - iε\ ζ2 - iε", ζ3 + iε)}

- {G(ζί + iε', ς 2 + iε", ζ3 - iε) - G(ζί - iε', ζ2 - iε", ζ3 - iε)}

- ( 2 π ) 8 Π K - C j ) Σ {^(-P2)Θ(p3)δ(p2 + pn)δ(p3~pm) (67)
7 = 1 | « > | m >

In that case Eq. (52) has been used because we note that this contribution
to the difference integral for G(Zλ, Z2,ζ3 + iε) — G{ZU Z 2 , ζ3 — iε) in
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Eq. (17) only occurs for values of the quantities ζt according to:

ζ2 >r>0

r a ( 6 8 )

C 3 >0

r ζ 3 + ( r - C 1 ) ( r - ζ 2 ) = 0,

i.e., when the inequalities (cf. Eqs. (50) and (51)) are fulfilled

rM •* r π ( 6 8 / )

ζ 3) 2 if d > 0 .
Thus we may write for the contribution to the dispersion relations of
Eq. (17) when one considers the discontinuity across the Z3-cut:

Θ(ζ1-ήθ(r-ζ2) (69)

G i 4 ( ζ 1 > ζ 2 , ζ 3 ) ii ζ

( Z 1 - r ) ( Z 2 - r ) + r ζ 3 = 0 ; r > 0 , £ 3 > 0

Im(Z1) Im(Z 2 )>0.

Using the same methods for the corresponding difference in the case
lm(Zί) Im(Z 2 )<0 of Eq. (30), in which case we will have use of the
formulas of Eqs. (53)—(56) of Section 4, we get the following result:

^ V (70)

; C3>0

= l , α > 0 , ^ > 0

lmZί I m Z 2 < 0 .

Eqs. (69) and (70) are the main results of this paper. They express the
contribution to the vertex function across one of the cut-surfaces (here
the Z3-cut) with the two remaining variables arbitrary complex (inside
certain domains of the two-dimensional complex space) only in terms
of the matrix elements of the locally commuting field operators, i.e.,
the (in general distribution-valued) weight functions GB and GA of Eqs. (66)
and (67). The domains inside which the formula allows free variation of
the variables Zx and Z 2 , are seen to be of three real dimensions and we
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can describe these domains as neighbourhoods to the intersection
between the Z3-cut and the ''axiomatic" boundaries of the domain of
holomorphy for the three-point-function.

We further note that the formulas are valid for arbitrary real positive
values of the parameters ζ3 and r in connection with Eq. (69) as well as
for ζ3 and the actually occurring parameter a/β in connection with
Eqs/(70).

We would like to stress that the assumptions behind the results are
essentially only the rather general assumptions of Kallen and Wightman
(cf. Section 1), the particle interpretation according to reduction formalism
(cf. Section 4) and some moderate integrability and boundedness pro-
perties (cf. Eqs. (9) and (27)).

6. Concluding Remarks

1. The Eqs. (69) and (70) can be immediately generalised along the
lines indicated in Eqs. (18) and (19) respectively (32)-(34) if there should
be need for "convergence powers" in Eqs. (9) and (27). Such modifica-
tions, which are usually called "subtractions", do not change Eqs. (69)
and (70) except for the fact that the resulting expressions will become
somewhat larger, and we will not give explicit formulas.

2. The Eqs. (69) and (70) have of course analogues for the cases when
we, e.g., want to consider the discontinuity across the Zx-cut with the
variables Z 2 and Z 3 arbitrary complex in a similar neighbourhood of the
corresponding intersection surface of the Kallen-Wightman boundaries.
Such formulas can be immediately written down by straight-forward
permutations of indices, e.g.

• Z , - 2 r _ , „

(71)

•β(r-ζ2)Θ(ί3-rn

(Z 2 -r ) (Z 3 -r )+rζ 1 =0; r>0, ζ 3>0

Im(Z2) Im(Z3)>0,

uZ2 + βZ3-uβζι; d

α + j8=l, α>0, β>0

Im(Z2)Im(Z3)<0.
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In this case the quantity Gc is a matrix element defined in a similar way
as GB and GA of Eqs. (66) and (67):

7 = 1 |«>|m>

μ | | | | β | 0 > + θ ( p 1 ) Θ ( - p 2 ) δ ( p 1 - p n ) 5 ( p 2 + pm) (73)

<0|JB|m><m|C|n><n|,4|0>}.

The remaining case with index 2 and 3 permuted compared to Eqs. (69)
and (70) should be obvious.

3. The weight functions GΛ, GB and Gc in the dispersion relations
above also occur in other representation formulas connected to the
vertex function, in the well-known representation formulas [4, 8] for the
coordinate-space function, i.e., the VEV of non-time-ordered operator
products. We have, e.g., for the operator product [_(mj — [Jί)Λ(x1)]
• [(m2

2 - Π 2 ) B(x2)] [(m2 - Π 3 ) C(x3)] = PΛBC

•GB(-pl-(Pl+p3)\-pl).

The weight function GB further occurs in the similar representation
formula for the product in the opposite order, PCBA (note the CPT-
symmetry):

(75)

4. It is interesting to note that the same situation occurs in connection
with the two-point function where the well-known Kallen-Lehmann
representation [9,11] can be written for the corresponding coordinate
space function [8]:

- Q M ^ X m * - Π 2 ) £ ( * 2 ) ^

0(P) GΛB{ - p2) = ( 2 π ) 3 K + p2) (m2 + p2) (76)
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The corresponding formula for the momentum-space two-point func-
tion G defined via reduction technique by

• <0| Θ(Xί - x2) [fl(x2), A(Xί)] |0> (77)

= lim G(-(p2 + ik2)
2)

k2eV +

is then

G{Z)=J-^-GAB(Q. (78)
0 S ~ ^

In the case of the two-point function, the weight function GAB can,
essentially because of local commutativity [8], be proved to be equal
to the weight function GBA defined by

l»> ( 7 9 )

This function occurs in the representation formula corresponding to
Eq. (76) for the operator product in the opposite order, i.e.

Due essentially to the representation formulas in Eqs. (69) and (70)
and the boundedness properties of Eqs. (9) and (27), there are actually
definite relations also between the three weight functions GA, GB and G c,
though not as stringent as for the two-point case. Such relations will be
further investigated in a forthcoming publication.

5. Representation formulas for the coordinate-space vertex function
F similar to the ones derived above for the momentum-space function G
can be written down along rather similar lines. In that case different
VEV will occur instead of the weight functions GA, GB and G c.
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