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Abstract. A necessary and sufficient continuity condition is obtained in order that a
topological group of automorphisms of a semi-finite von Neumann algebra in standard
form is unitarily implemented. The methods used are extended to the study of unitary
implementation for a general von Neumann algebra of those automorphism groups that
commute with the one-parameter modular automorphism group.

1. Introduction

The Hubert space H of a semi-finite von Neumann algebra $ί in
standard form can be viewed as the completion of a certain two-sided
ideal m1/2 of $ί. It is then not surprising that an automorphism (i.e. a
*-automorphism) y of $ί will be implemented by a unitary operator U
on H in the sense that y(A) = UAU~ι for every A in 2ί. If Γ is a group of
automorphisms of $ί, one might conjecture that there is a homomorphism
U of Γ into the group of unitary operators on H so that the homo-
morphism y-+Uγ implements the action of Γ in the sense that y(A)
= UγA U~1 for every A e 91 and y e Γ. If Γ is a topological group and if the
action of Γ is continuous in the sense that for every fixed A e 21 y-+y0 in
Γ implies y(A)-+yo(A) in the weak operator topology of 2ί, then one
wishes U to be continuous in the sense that Uy~+Uγo in the strong
(equivalently, weak) operator topology of H whenever y-^y0.

We shall show that every continuous automorphism group of semi-
finite von Neumann algebra in standard form on the Hubert space H
is implemented by a (continuous) unitary representation on H, provided
a certain joint continuity condition holds. We show that every con-
tinuous locally compact automorphism group automatically has this
joint continuity property by showing that a continuous locally compact
automorphism group of an arbitrary von Neumann algebra is unitarily
implemented on some Hubert space (depending presumably on the
group) on which the algebra is faithfully represented as a von Neumann
algebra.
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The methods of proof are found in the literature. The main contribu-
tion here is expressing the objects involved in a form that these methods
can be applied. This involves the factorization of functionals through the
center of the algebra and then calculating with the resulting measurable
functions on the spectrum of the center. Once we make this factorization,
we use the method of Guichardet and Kastler [13, proposition 5], to
prove unitary implementation. Complications still arise here due to the
absence of the L1 structure of [13] because of the more general hypo-
thesis. The method of [13] also is the same of R. Busby and H. Smith
[5; § 5], even though those authors assumed that m1/2 is invariant under
Γ and also considered no topological questions.

Our main theorem is phrased in a more general way than is need for
the semi-finite case. This is done to include automorphism groups that
are "lie's" in the terminology of [13] with respect to a faithful normal
functional given by a cyclic vector on a von Neumann algebra. We show
what automorphism groups have this property in terms of their relation
to the modular automorphism group of the functional [23, cf. 21, § 13]
and then show these groups are unitarily implemented. Aside from
continuity we feel that here the proof of [13] applies directly; however,
the hypotheses on the algebra and the group in [13] are extremely
restrictive and so we do a very minimal amount of extra work in our main
Theorem 8 so that there should be no question concerning the validity
of the implementation.

As corollaries we obtain results that generalize the results of Aarnes
[1] and remove the separability condition on the group from [14] in the
semi-finite case.

2. Continuity

Let 21 be a von Neumann algebra and let 21^ be the predual of 91, i.e.
the space of σ-weakly continuous functionals on 21. Let Γ be a topological
group of automorphisms of 21; the group Γ is said to be a continuous
automorphism group of 2ί if, for every A e 21 and φ e 21^, the function
y-^φ(y(A)) is continuous on Γ. The group Γ is said to be jointly con-
tinuous at a point (y, A) of the cartesian product of Γ and a subset 23 of 21
if, for every φetyί^, the function (y\A')-*φ(y'(A')) is continuous at
(γ, A) on Γx 23, where 23 is taken with the relativized σ-weak topology.
If Γ is jointly continuous at (ε, 0 ) o n ί x 33, then Γ is said to be jointly
continuous at the origin on Γ x 23. Here ε is the neutral element of Γ.
Aarnes studied joint continuity at the origin on the cartesian product of
Γ and the positive elements in the unit sphere of 2ί.

A topological group Γ of automorphisms of a von Neumann algebra
21 on a Hilbert space H is said to be unitarily implemented on H if there is
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a unitary representation U of Γ on H such that y{A) = UyAΌ'1 for
every A e 21 and yeΓ. The group Γ is said to be unitarily implemented
if there is a faithful representation π of the von Neumann algebra 2ί
onto a von Neumann algebra 23 on a Hubert space K and a unitary
representation U of Γ on K such that π(y(A)) = Uyπ{A)U~1 for all
4̂ e 2ί and y e Γ. (Such a representation π is called covariant.) In the sequel

all unitary representations of a topological group are assumed to be
strongly continuous (i.e. continuous with regard to the strong operator
topology). An algebraic homomorphism of a group into the unitary
operators on a Hubert will simply be called a homomorphism.

We need the following lemma of Guichardet and Kastler [13;
proposition 3].

Lemma. Let 21 be a von Neumann algebra on the Hilbert space H, and
let Γ be a topological automorphism group of 2ί that is unitarily imple-
mented on H. Then, for every φ in the predual 21^ of 21, the function
y-*Φ - 7 is continuous map of Γ into 21 ̂  taken with its norm topology.

The first proposition indicates the kind of hypothesis we must
examine to find a sufficient condition for unitary implementation.

Proposition 1. A unitarily implemented topological group Γ of auto-
morphisms of a von Neumann algebra 2ί is jointly continuous on the
cartesian product of Γ and any bounded subset of 2ί.

Proof. For every φ e 21^, the function y->φ y is continuous function
of Γ into 21^ with its uniform topology by the lemma of Guichardet and
Kastler. Let S be a bounded subset of 21, let A e 23, and let yeΓ. Given
ρ > 0, there is a neighborhood N(γ) of y such that

|| φ y - φ y II ̂  ρ(l + lub{ \\A\\ \A e 23})'1

whenever / e N(y). If \φ y(A' — A)\ :g ρ, then

\φ γ'{A') - φ - y(A)\ ^\(φ y-φ.y) {Ά)\ + \φ y(A' - A)\ ^ 2ρ

Q.E.D.
We now show that in one case at least a continuous automorphism

group on a von Neumann algebra is automatically jointly continuous.
In fact, we prove that a continuous locally compact automorphism
group is unitarily implemented. For this, we use a construction of
Henle [14]. Henle used countable structures and so was able to base the
construction on the measurable fields of [9; Chapter II]. Since it is well-
known that certain arguments fail without countability, we sketch a
construction in the hope that a certain amount of repetition will be
acceptable in the interest of clarity. The construction is more closely
related to ideas in Fell [12] than in [9].
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We need the following result of Aarnes.

Lemma [1, Corollary, p. 333]. If Γ is a continuous locally compact
automorphism group of a von Neumann algebra, then Γ is jointly con-
tinuous at the origin on the cartesian product of Γ and the positive unit
sphere of the algebra.

Proposition 2. Every continuous locally compact automorphism group
of a von Neumann algebra is unitarily implemented.

Proof. Let Γ be a continuous locally compact automorphism group
of the von Neumann algebra $1 on the Hubert space H. Let μ be right
invariant Haar measure on Γ. Let K(Γ) be the algebra of continuous
complex-valued functions with compact support on Γ and let K be the
linear subspace of all functions of Γ into H generated by functions
/ x defined by (/ x) (y) = f(y)x, where feK(Γ) and x e H. A positive
hermitian form can be defined on K by setting

i, Σ Qi Λ> - j ΣMy) ΦY fe yj)dμ, (i)
r ij

for fh g{ in K(Γ) and xί5 yt in H. The set

is a subspace of K and is equal to Ko = {x e K\ <x, y) = 0, for all y e K}.
The hermitian form (1) may be transferred to an inner product

on the factor space K — Ko = Ho. The completion of the pre-Hilbert
space Ho is denoted by L2(Γ, H). Notice that we have written the inner
product in L2(Γ, H) as < , > to distinguish it from the inner product of H.

For every Ae%fu...9fn,gu...,gminK(Γ) and xu ...,xn,yu ...,ym

in H9 let

π{A, Σ frxi + K09 Σ giyi + Ko) = j Σ/^y) gfyY (y(A)xh yj)dμ.

Then for every A in 2ί there is a unique bounded linear operator π(A)
on L2(Γ,H) such that

for every x,y in i ί 0 . The map π is a faithful representation of ϊ ί on
L2 (Γ, H). This completes the outline of the construction.

Now we show that π is σ-weakly continuous. If {EJ is a monotonely
increasing net of projections in 51 with least upper bound E, then it is
sufficient to show that lub<π(Ei)};, y} = <π(E)_y, y} for every y e L2(Γ, H)
of the form y = / x + X o, where / is a continuous function of compact
support Γo on Γ and x e H. Now given ρ > 0, by the lemma of Aarnes, we



Automorphism on von Neumann Algebras 257

may find a neighborhood N of the neutral element ε of Γ and a σ-weak
neighborhood N' of 0 in 21 such that (y{A)x, x)<ρ whenever y e N and
AeN'ntyί+ with | |y4 | |^l . Let ylf...,yn be elements of Γ such that
{Nγt} covers Γo, and let i0 be an index such that y^E — E^eN' for
i ^ i0 and j = 1,..., n. Then we have that

(y(E-Ei)x,x)<ρ

for all Ϊ ̂  i0 and all y e Γ 0 . This means that

(π(E)y, y> - <jι{Ex)y, y} £ l u b { | / ( y ) | 2 :yeΓ} μ ( Γ 0 ) ρ ,

for every ί g; ί0. Thus lub<π(£ i)y, y> = <π(£)y, j/>.
Now, we argue as in Henle [14]. For every yeΓ and feK{Γ), let

p eX(Γ) be given by / y(δ) = f(δy). Then given Λ,.. . ,/„, ^ , . . . , ^ w in
and x l 5 ...,xΠ5 y l 5 ...,ym in //, we have that

Hence, for each 7 e Γ, there is a unique unitary operator Uy on L2(Γ, H)
satisfying

for every / l 5 ...,/„ in K(Γ) and x 1 ; ...,xΠ in //. Furthermore the map
y->l/y is a unitary representation of Γ on L2(Γ,H). However, an easy
calculation also yields

for every A e 21 and yeΓ. Q.E.D.

The next corollary extends the lemma of Aarnes.

Corollary 3. Every continuous locally compact topological group of
automorphisms of a von Neumann algebra is jointly continuous on the
Cartesian product of the group and any bounded subset of the algebra.

Proof. Let the notation be the same as Proposition 2. By Proposi-
tion 1 the map (y, A)-* ΌyAΌ~ι is jointly continuous at (y0, n(A0)) on the
cartesian product of Γ and the image π(3J) of a bounded subset © of 21.
Since π and π " 1 are σ-weakly continuous, the map

is jointly continuous at (y0, Ao) on Γ x 93. Q.E.D.
We can obtain a new proof of a result of Aarnes [2; Proposition 6.1].

Corollary 4. Let 21 be a von Neumann algebra, let 21^ be the predual
of A, and let Γ a continuous locally compact automorphism group of 21.
Then, for every φ e 31^, the map y-*φ y is continuous where 21^ is taken
with its norm topology.
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Proof. Proposition 2 and Lemma of Guichardet and Kastler.
It is now possible to improve some continuity conditions that are

found in the literature. Let © be a C*-algebra with identity on a Hubert
space H. Let 91 be the von Neumann algebra generated by S on H and
let 91^ be the predual of 91. Let Γ be a locally compact group of auto-
morphisms of ©. For each y e Γ and each φ e 91^, there is one and only
one functional φy e 91 ̂  satisfying the relation φy{Λ) = φ(y(Λ)) for every
A e © (cf. [2; p. 334]). Aarnes [2; Theorem] showed the following state-
ments are equivalent:

(1) each y e Γ can be uniquely extended to an automorphism y' of 91
such that {/1 y e Γ] is a continuous automorphism group of 91; and

(2) y-^φy is a continuous map of Γ into 91 ̂  with its σ(9I#,9I)-
topology. By Corollary 4 (2) may be replaced by the following statement

(2') y -> φy is a continuous map of Γ into 91^ with its uniform topology.

If the Hubert space H is separable and if the topology of Γ has a
countable base, then Kallman [17] proved that (1) is satisfied whenever
each y can be extended to an automorphism y' of 91 and y-^φy is con-
tinuous in the σ(9lHί, ©)-topology of 91^.

Now as a special case of Theorem IΠ.l of Borchers [3], the identity
representation of 33 on H is covariant extendible (i.e., is unitarily equiv-
alent to a subrepresentation of a covariant representation) provided (i)
that Γ is strongly continuous on © in the sense that, for every B in 33,
the map y-*y(B) is continuous from Γ into © with its norm topology and
(ii) that, for every vector state ω of H, the map 7 —• ω y is continuous from
Γ into the dual ©* of © with its norm topology. Due to the Kaplansky
density theorem [9; I, § 3, Theorem 3], the condition (ii) implies (1) via
(2'). By Proposition 2, there is a faithful normal representation π of 91 on
a Hubert space Hπ such that {/ lye Γ} is unitarily implemented on Hπ.
This means that the identity representation of© on if is quasi-equivalent
[8; § 5] to a covariant representation of © (i.e., the identity representation
is quasi-covariant, in the terminology of [3]). Since every multiple of a
covariant representation is covariant, the identity representation is
covariant extendible (cf. [8; 5.3.1]). Hence, we see that condition (ii) is
necessary and sufficient for the identity representation to be quasi-
covariant. In general, let π be a representation of the C*-algebra S on the
Hubert space K. Then we see from Proposition 2 that π is quasi-covariant
if and only if (ii) y—>ω π y is a continuous map from Γ to ©* with its
norm topology for every vector state ω on K, and (iii) the kernel of π is
invariant under Γ. Borchers [3; III.l] showed that, if Γ is strongly con-
tinuous, the condition (ii) is necessary and sufficient for a representation
to be covariant extendible. The strong continuity is hypothesized so that
the covariant algebra [10] can be employed.
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3. Unitary Implementation

Let 3 b e a commutative von Neumann algebra. There is a locally
compact space Z and a Radon measure v on Z so that 3 with its σ-weak
topology is identified (i.e. isomorphic) with the algebra Π° = L^(Z,v)
of all essentially bounded complex-valued measurable functions on Z
with its σ-weak topology, i.e. with the topology induced on L00 by
UC(Z, v). Let 3 + be the set of all positive, finite or infinite valued, measur-
able functions on Z. Functions in 3 + which are equal locally almost
everywhere are identified with each other in the same way the functions
of L00 are identified. The set 3 + is embedded in 3 + in a natural way. Since
each majorized monotonely increasing net in 3 + has a least upper bound
in 3 + > each monotonely increasing net in 3 + has a least upper bound in
3 + so that the least upper bound in 3 + of a majorized monotonely
increasing net in 3 + is also in 3 + Notice that the least upper bounds
are in general not pointwise least upper bounds. For every S in 3 + , let
ω(S) denote the essential upper integral of S. The function ω of 3 + is a
normal semi-finite faithful trace of 3 + whose restriction to 3 + is a

normal semi-finite faithful trace of 3 [6 and 9; III, § 4]. Without further
mention we shall always assume some choice of Z and v has been made
for every abelian von Neumann algebra.

Any element Q in 3 + is actually a class of functions. Any two elements
of the class differ from each other on a set which is locally of measure 0
i.e. a set whose intersection with each compact set is of measure zero. As
is customary, we consider algebraic relations for the elements of 3 + as
though they were actual functions with the modifier locally almost
everywhere adjoined. This means that two different choices of represent-
ing measurable functions for the various classes involved in the algebraic
relations give two different resulting measurable functions which lie in
the same class in 3 + i e which are equal locally almost everywhere. In
the sequel, we pass freely from classes to representations of the classes.
Underlying this, however, is the assumption that verification has been
made that such passage is legitimate.

Let Q be an element of 3 + such that 0 < Q(ζ) < + oo locally almost
everywhere on Z. For every n = 1, 2,..., the characteristic function En

of the measurable set {ζ e Z\ n'1 ^ Q(ζ) g n) is a projection in L°°. The
sequence {En} of projections is clearly monotonely increasing and
bounded above by the constant function 1. We show that \\xbEn = E
is equal to 1. Indeed, let P be the characteristic function of any compact
set X in Z. By the definition of locally almost everywhere, we have that
{ζ e X\ Q(ζ) = 0 or Q(ζ) = + oo} is a set of measure zero. Hence, the set
X-Xr\{^j{ζeZ\n~ι ^ β ( 0 ^ "} has measure zero. Thus EP = P
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locally almost everywhere. This proves that the function E is equal to
1 locally almost everywhere.

Now let y be an automorphism of 3 The element EnQ determines a
class of essentially bounded measurable functions and so EnQe3 + .
The sequence {y(EnQ)} is monotonely increasing in 3 + since {EnQ} is
monotonely increasing in 3 + We denote the least upper bound of
{y(EnQ)} in 3 + by y(Q).

We make some preparations for the Theorem 8 in the following
lemma.

Lemma 5. Let 3 be an abelίan von Neumann algebra and let y be an
automorphism of 3 Let Q and R be elements of 3 + such that 0 < Q(ζ) < 4- oo
and 0<R(ζ)< +oo locally almost everywhere on Z. Let {Fn} be a mono-
tonely increasing sequence of projections in 3 with least upper bound 1
such that QFne3 for every n = 1,2, ... then the following statements
are true:

(i) \uby(QFn) in 3 + is equal to y(Q);

(ii) 0 <y(Q)(ζ)< +oo locally almost everywhere on Z;

(iii) y(Q)y(R) = y(QR);and

(iv)

Proof, (i) If {An} is a monotonely increasing sequence of functions
in 3 + > then the function A(ζ) = \ubnΆn(ζ) is measurable and hence in
3 + [4; IV, §5, Corollary 1, Theorem 2]. This means that \ubAn = A
locally almost everywhere. Applying this fact to the monotonely in-
creasing sequences {y(QEmFn)}mtΆ and {y(QEmFn)}n, we get that
luK,ny(QEmFn) ^ lub f Iy(β£mFπ) - γ(QEm) locally almost everywhere and
then that hxbmtny{QEmFn) ^ \uby(QEm) = y(Q) locally almost everywhere.
Here Em is the characteristic function of the measurable set
{£ e Z I m~ι ^ Q(ζ) ^ m}. Since y{QEmFn) ^ y(QEm) locally almost every-
where, we obtain the reverse inequality y(Q) ^ lubm ny(QEmFn) locally
almost everywhere. This means that y(Q) = lubm ny(QEmFn) locally
almost everywhere. Now working with {y(QFn)}, we obtain \uby(QFn)
= lubw ny(QEmFn) = y(Q) locally almost everywhere.

(ii) Since 0<Q(ζ)< +oc locally almost everywhere, the least upper
bound of the projections {En} defined in (i) is 1, and so the least upper
bound of the monotonely increasing sequence {y(En)} is also 1. Now let
Y be a compact subset of Z. Then the sets

{ζeY\y(En)(ζ)=0 for all n = l,2,...}

and

{ζeY\y(Q)(ζ)*\uby(QEn)(ζ)}
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have measure zero as do the complements with respect to Y of the sets

{ζeY\ m-'yiEJ (C) ύ y(QEm) (ζ) ̂  my(Em) (ζ)},

{ζeY\y(QEn)(ζ)y(Em)(ζ) = y(QEm)(ζ)} for n^m,
and

{CG Y\y(QEn)(ζ)Sy(QEn + 1)(ζ)} for all n.

Thus, there is a subset Yo of Y of measure zero such that ζeY—Y0

implies that y(Em) (ζ) = 1 for some m and that

y(β) (C) = \ubny(QEn) (ζ) = lub^yίβJE,) (C)

II) (0 y(Em) (ζ) = y ( β £ J (C)

is in the real interval [m~ι,m~\. So 0 < y ( β ) ( 0 < +oo locally almost
everywhere.

(iii) Let Gn be the characteristic function of the set {ζeZ\n~1

g R(ζ) :g n) for every n = 1, 2,... . We have that {Gn} is a monotonely
increasing sequence of projections of least upper bound 1 and thus that
{EmGn} is a monotonely increasing sequence of projections of least
upper bound 1. By part (i) we have that y{QR) = \ubmny (QREmGn). But
y(QR)^y{QEm)y(RGn) locally almost everywhere and so y{QR)
^y(Q)y(RGn) locally almost everywhere and finally y(QR) ^ y(Q) y(R)
locally almost everywhere. But it is clear that y(QREmGn) rg y(Q)y(R)
locally almost everywhere. Hence, we have that y(QR) ^ y(Q) y(R)
locally almost everywhere. Thus we obtain y(Q)y(R) = y(QR).

(iv) Notice that 0<β~ 1(C)<H-oo locally almost everywhere and
thus yiQ'1) exists. From (iii) we see that ^(β" 1 ) γ(Q) ^y{Q~1Q) = y(l) = 1
locally almost everywhere. Thus y(Q~ι) = y(β)" 1 in 3 + Q.E.D.

The following definition is purely for convenience. It allows us to
treat simultaneously the two cases in which we are interested.

Definition 6. Let 91 be a von Neumann algebra with center 3 A
function Φ of 91+ into 3 + will be called an extended normal semi-finite
faithful module homomorphism if

(i) Φ(Λ + B) = Φ(A) + Φ{B) for every A, B in 91+

(ii) Φ(AB) = AΦ(B) for every A in 3+ and B in 9 Γ
(iii) if Φ(A) = 0 for A in 9ί+, then A = 0 (faithful);
(iv) the set {A e 21+ | ω(Φ{A)) < + oo} is the set of all positive elements

of a weakly dense two-sided ideal m of 91 (semi-finite);
(v) if φ = ω - Φ on 91+ and φ is the unique linear functional on m

defined by linearity, then A-^φ(AB) is σ-weakly continuous on 91 for
every Bern (normal).

If Φ is an extended normal semi-finite faithful module homomorphism,
then the ideal m (iv) will be called the ideal of definition of φ = ω Φ.
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Since m is dense in 91, there is a monotonely increasing net of projections
{En} in m with least upper bound 1. Therefore, given any nonzero A in
2ί+, there is an En with A1/2 EfίA

1/2 ή=0. This means that every nonzero
element of 21 majorizes a nonzero positive element B of m. So the function
Φ(B) is finite locally almost everywhere. Hence, there is a projection F
in 3 such that FΦ(B) = Φ{BF) is a nonzero element of 3 . This means
that A majorizes a nonzero element BF in m such that Φ{BF) is in 3.

The set m 1 / 2 = {Ae$l\ A9" A e m} is a two-sided weakly dense ideal
of 91 [9; I, § 1, Proposition 11]. The relation

{A,B) = φ{B*A)

defines an inner product on m 1 / 2. The completion of m 1 / 2 under this
inner product will be denoted by Hφ. We notice that m as well as m 1 / 2 is
dense in Hφ. Indeed, let A e(m1 / 2) + and let ρ > 0. There is a monotonely
increasing sequence {£„} of projections which commute with A and
satisfy the relation \ubEn = 1 such that, for each En, there exist orthogonal
projections Fλ,..., Fm which also commute with A and positive numbers
λu...,λm which satisfy (1 - ρ) AEn ^ Σ λiFi S ΛEn. This means that
Σ λ^i e m and

\\A - Σ λMφ ^ U ~ AEn\\φ+ \\AEn - Σ λMφ

Since \imφ((l — En)A2) = 0 by hypothesis (v), we see that A is in the

closure of m in Hφ. But each element in m 1 / 2 is a linear combination of
elements of (m1/2) + . Hence, m is dense in m 1 / 2 or equivalently m is dense
in Hφ. For each A e 91, the map B-^AB of m 1 / 2 into m 1 / 2 is a bounded
linear operator of m 1 / 2 and so the map can be extended uniquely to a
bounded linear operator πφ{A) of Hφ. The map πφ of 21 into the bounded
linear operators of Hφ is a faithful representation of 2ί on Hφ. It is called
the canonical representation of 21 induced by φ. If {An} is a monotonely
increasing net in 2ί+ with least upper bound A, then the least upper
bound of the monotonely increasing net {πφ(An)} is πφ(A). Indeed, we
have that lub(πφ(An)B9B) = lubφ{B*AnB) = φ(B*AB) for every Bern
since \imB*An = B*A (σ-weakly). Using the fact that m is dense in Hφ,
we conclude that lubπφ(An) = πφ(A).

We now perform a calculation that we shall need.

Lemma 7. Let 21 be α von Neumann algebra with center 3 Let Φ be an
extended normal faithful semi-finite module homomorphism o/2l+ into the
space 3 + which is formed with respect to the normal semi-finite faithful
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trace ω of 3 Let y be an automorphism of 2ί such that there exists a Qy

in 3 + with, ω Qy Φ — ω Φ y. Then the following statements are true:

(i) 0 < β y ( Q < +00 locally almost everywhere on Z; and
(ii) if Q' e 3 + and ω (Q'Φ) = ω Φ y, then Q = β r Suppose δ is an

automorphism of 2ί for which there exists a Qδ in 3 + with ω-Φ δ
= ω -(QδΦ); then

(iii) ω . φ

Proof, (i) For simplicity let β y = β. Let X be a measurable subset of
a compact set in Z, and let E be the projection in 3 which corresponds
to the characteristic function of X. If EQ = 0 locally almost everywhere,
then ω(Φ(y(£)) = 0. This means that y(E) = 0 since ω and Φ are faithful.
Hence, the projection E vanishes and X is of measure zero. This means
0 < g ( 0 locally almost everywhere. Now let X be a measurable subset
of a compact subset of Z such that Q{ζ)= + oo for all ζ e X. If X is not of
measure zero, the characteristic function E is nonzero. For every nonzero
A in 21 with 0 ^ 4̂ :§ £, we have that Φ(Λ) G 3 + i s nonzero and majorized
by Φ(E) = EΦ(E). Hence, the function βΦ(^4) is equal to + oo on a set of
positive measure. On the other hand, we can find a nonzero A in 21 with
0 ^ A ^ £ such that ω Φ(y(̂ 4)) < +oo due to the semi-finiteness of Φ
(cf. discussion following Definition 6). We have obtained a contradiction.
Therefore, we have Q(ζ)< -f-oo locally almost everywhere.

(ii) Let Q' be in 3 + so that ω (β'Φ) = ω Φ y. By (i), the function
Q' is finite locally almost everywhere. Let £ be a nonzero projection in
3 such that Q'E and QE are in 3 There is a nonzero A in m + majorized by
E such that Φ(A) is in 3 This means that

ω(QΈΦ(A)B) = ω(QEΦ(A)B)

for every B in 3 + Since ω is a normal semi-finite faithful trace on 3, we
obtain that QΈΦ(A) = β£Φ(^) . Hence, we have shown that for every
nonzero projection £ in 3 such that both Q'E and QE are in 3, there is a
nonzero element C in 3 with 0 ^ C ^ £ such that QΈC = QEC. In view
of the fact that Qf and β are finite locally almost everywhere, we find
that Q' = β.

(iii) Let Fn be the characteristic function of the measurable set
For every Aε%+, we have that

= β ^ - ^ β ) Φ(A).

in 3 + (Lemma 5 (i)) and hence that

g φ(A)) = ω{Qδδ-\Q) Φ(A))
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[4; V, § 1, Proposition le]. But we have that

ω{Qδδ-\QFn) Φ(A)) = ω(Φ((βFπ) δ{A))) = ω((QFn) Φ(δ(A)))

= ω(QΦ(Fnδ(A)) = ω{Φ(γ(Fnδ(A))))

= ω(γ(Fn)Φ(γδ(A))).

Since lubFn = 1 and so luby(FJ = 1, we have

= ω(Φ{yδ(A))). Q.E.D.

We are now ready to prove our principal theorem. We perform an
analysis similar to that of [13; Proposition 5] without recourse to an
L1-structure or to the fact that the locally compact space Z in [13] can be
taken to be the spectrum of 3 or equivalently, an analysis similar to that
of [5 § 5] without recourse to the invariance of the ideal of definition
under the automorphism group.

Theorem 8. Let %be a von Neumann algebra with center 3 and let Γ
be a continuous automorphism group of 51. If Γ is not locally compact,
then assume that Γ is jointly continuous at the origin on the cartesian
product of Γ and the unit sphere of 3 Let Φ be an extended, normal semi-
finite faithful module homomorphism of 51+ into the space 3 + which is
formed with respect to the normal faithful semi-finite trace ω of 3 For
each yeΓ, assume there is a Qye3+ such that φy = ω(QyΦ) where
φ = ω Φ. Then the automorphism group Γ is unitarily implemented on the
Hubert space Hφ associated with the canonical representation induced by φ.

Proof. At the outset we identify each element of 51 with its image
under the canonical representation induced by φ.

We have that 0 < Qy(ζ) < + oo locally almost everywhere on Z. Hence,
the function β " 1 in 3 + a ls° satisfies the relation 0 < β ~ 1 ( ζ ) < +°o
locally almost everywhere on Z. The function Rγ = (Qy

1)112 in 3 +

satisfies the relation

0<Rγ{ζ)<+ao

locally almost everywhere, and thus δ(Ry) is defined for every δ e Γ, and
is equal to the least upper bound in 3 + of the sequence {(5(jRy£")}, where
Ey is the characteristic function of the measurable set {ζeZ\n~ι

ikQ^iQύn} o r equivalently the set { ( e Z | n~ ι / 2 ^ Ry(ζ) ̂  nί/2}
(Lemma 5).

Now we outline the steps of the proof. Let m be the ideal of definition
of φ. For every y e Γ, we show (I) that the relation UyA = limy(^£",4)
(A e m1 / 2) uniquely defines a unitary operator Uy on H = Hφ. Then,
using the lemmas we have prepared, we verify (II) that y -> Uγ is a homo-
morphism of the group Γ into the group of unitary operators of H,
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(III) that UyA U~ι = y(A) for every A e 91 and y e Γ, and finally (IV) that
γ -> Uy is continuous.

I. We now proceed with the initial step, viz., the definition of Uy. Let
A em112 and let γ e Γ. First we show that y(RyE

n

yA) e m 1 / 2. For simplicity,
let RyE" = R". We have that

φ{y{Rn

γA)* y(R"yA)) = ω Φ{y{(R"y)
2A*A))

= ω(Qy(R"y)
2 Φ(A*A)) = φ{En

yA*A),

for every w = 1, 2,..., since βy(K")2 Φ(ΛM) - E ^ t 4 M ) locally almost
everywhere in 3 + Because A*A em and 0 g En

yA*A ?g /I'M, we see
that y( i?μ)em 1 / 2 .

Now we show that {y(Rn

yA)} is a Cauchy sequence in H. Indeed, for
n ^ m, we have that

; - E™)A*A)

since β y ( ^ " - JR™)2 Φ(A*A) - (JSJ-E^) Φ(^*^i) locally almost every-
where in 3 + The σ-weak continuity of B->φ(BA*A) on 21 and the
σ-weak convergence of {£"} to 1 implies that {y(RyA)} is Cauchy in H.
We denote the limit of this Cauchy sequence in H by UγA.

It is clear that Uy is a linear map of m 1 / 2 into H. But we also have that

{UγA, UγA) =

) = {A, A),

for every ^ e m 1 / 2 . This means that Uy is an isometry on m 1 / 2. Because
m 1 / 2 is dense in H, the map Uy has a unique extension to a linear isometry
of H into //. We also denote this extension by Uy.

We now complete the proof this initial step by showing that Uy is a
unitary operator. It is sufficient to show that the range of Uy contains an
arbitrary A in the dense set m 1 / 2 of H. Because y~ί(Ry_1A)em1/2 for
every n = 1, 2,..., the element

is in the range of Uγ. However, we have that

locally almost everywhere by Lemma 5 (ii), (iii) and (iv) and Lemma 7
(iii). Hence, we have that \imy(Er

y

n)Ey_ιA is in the range of Uy. This

means that En

y_1A is in the range of Uy as is shown by the relation
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coupled with the fact that {y(E™)} converges σ-weakly to 1. Likewise, the
relation

implies that A is in the range of UΓ Thus, the dense set m 1 / 2 is in the range
of Uy. Because Uγ is an isometry, the range of Uγ is actually H and so
Uγ is a unitary operator.

II. We now show that γ -> Uγ is a homomorphism of the group Γ
into the group of unitary operators of H. Let Λem1/2 and let y and δ be
in Γ. We calculate UγUδA. We have that

Uy UδΛ = lim U7(δ(R!?A)) = lim limy (Rϋ,δ{Rf A)) (2)

since δ(R™A)emί/2 (Parti). By Lemmas 5 (iii), (iv), and 7 (ii), (iii) we
conclude that

Rγδ = Rδδ-1(Ry)
Then we have that

in 3 for every k, m, n, by Lemma 5 (iv) and Lemma 7 (iii). Applying yδ
to both sides, we obtain

γδ(Rk

ya) yδ(EJ) γ(E"y) = γδ(R%) y(R"y) yδ(Ek

yό), (3)

and this yields

= \\Uyt(Ek

yiE?δ-1(Ey')A-EytE'δδ-1(Ey)A)\\φ

= φ({Ek

yδEΐδ-1(EΎ

>)-EyiE δδ-\Ey))2A*Aγ12.

From this we see that all of the possible iterated limits of

exist and are equal. Indeed, the functional B^-φ{BA*A) is σ-weakly
continuous on 21 and the sequences {Eyδ}, {£"} and {δ'1(E")} converge
to 1 strongly in the unit sphere of 3 But we now have that

U y δ ( A ) = ] i y y
m m n

= lim lim limyδiRLE^δ^iE^
m n k

= limlimlimγδ(Rk

yδEf δ'^E^
k m n

= \im{\im\imy {Rn

yδ(Rf A Ek

yS)))
k in nk
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by relations (3) and (2) and the fact that limE%A = A

= Eδ

mA, and \imAEk

/ό = A in H. Therefore, we have that Uγδ=UyU
δ

because m1/2 is dense in H. Finally Uγ-i = U'1 since Uε = l. This com-
pletes the proof that y -* Uy is a homomorphism of Γ.

III. We now show that UγA U'1 = y(A) for every A e 91 and y e Γ.
We recall that each element of 9X has been identified with its image
under the canonical isomorphism induced by φ. For every Bern112,
we have that

UyA U~1B = limϋγiAy-1 (Rn

y-iB))

= lim\imy(E™)E" ,y(A)B
n m i i

because y~1{Rn

γ~ιB) and γ~1(Rn

/-iy(A)B) are in m 1 / 2 and because
y(Ry)Rn

y-ι = yiEfiEΊ-i by relation (1). But we have that

limlimyίE?) E"iy(A)B = limE?.-ιy(A)B = y(A)B .
n m r ϊ n

Therefore, we have that UyAU~1B — y(A)B for every Bern112 and
consequently UyAΌ~1 =y(A).

IV. We now prove that y -• Uy is continuous. We first show that
(5, UyA)-+(B, A) as y->ε for every A and B in m + . Since Bem and since
y(A)-+A (strongly) as y -»ε, we have that φ (y {A) B) -• φ {A B) as y -* ε. Thus,
it is sufficient to show that {(£, t/yy4) — ̂ (7(^)5)} converges to 0 as 7
tends to ε. We have that

|(B, [/yy4)- 0(y(X)B)| = lim|φ(y(Kμ)jB)- ^(y(£JX)B)| (4)

since limyίE") = 1 (strongly) and C-^φ(CB) is strongly continuous on 9ί.
The operator # " is a positive and so there is a positive operator Sy in the
unit sphere of %En

y such that (££ + En

y)Sn

y = En

y.On account of the manner
in which the Ey are ordered, we may find a positive element Sy in the unit
sphere of 3 such that SyE

n

γ = S". We then obtain that

iς - E; = {R» -
and that

φ{y{A(Rn

y - En

y))B) = φ ( 7 μ ( ( ^ ) ^ ) 5 y ) 5 )

= 0(y(Λ;S yX 1/ 2)y(Λμ 1 / 2Γ 1(β)))-φ(y(>l^S y)jB).

We notice that A112 e m 1 / 2. Thus, from (4) and (5), we get

|(B, UyA)-φ(y(A)B)\ = Kl/^^/^-^B)) , Uy{SyA
ιi2))-φ{y{ASy)B)\

B)! (6)
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because Uγ is a unitary operator. We now have the correct estimates and
shall complete the proof using an argument by contradiction. Assume
there is a ρ > 0 and a net {yj in Γ that converges to ε such that

\(B9UyA)-φ(yi{A)B)\^ρ

for every i. Because the unit sphere of 3 is weakly compact, we may
assume (by passing to a subnet if necessary) that {Sy} converges to an
element S in the unit sphere of 3 By the joint continuity hypothesis
(or by Corollary 3 if Γ is locally compact) we conclude that {^(S^)}
converges weakly to S. By the continuity hypothesis, we then can con-
clude that {Syιyr1(B)} and {yi{Sγ)yi(A)} converge weakly SB and SA
respectively. From (6), we get

, UyΛ) - φ(yi(A)B)\ = \φ(SAB) - φ(SAB)\ = 0 .

This contradicts the choice of {yj. Hence, we have that

lim(B, UyA) = (B, A).

Since linear combinations of m + are dense in H, we have that

lim(x, Uyy) = (x, y) for every x, y in H .

Because the map y->yδ is continuous at ε on Γ and because γ-+ Uy is a
homomorphism, we see that

lim(x, Uyy) = (x, Uδy)

for every x,y in H. Therefore, the map y-^Uγ is continuous. Q.E.D.

4. Applications to Algebras in Standard Form

A semi-finite von Neumann algebra 91 on a Hilbert space H is said
to be in standard form if there is a Hilbert algebra A that is dense in H
such that 2X is generated by the extension to H of the left multiplication
operators of A. Every semi-finite von Neumann algebra is isomorphic to
a von Neumann algebra in standard form [7 and 9; I, § 5-6].

The next theorem applies Theorem 8 to algebras in standard form.
It is known under more restrictive hypotheses ([14], [16; Remark 4.75],
[18; §2]).

Theorem 9. Let 91 be a semi-finite von Neumann algebra in standard
form on a Hilbert space H. Let Γbea continuous automorphism group ofS&.
If Γ is not locally compact, then assume Γ is jointly continuous at the
origin on the cartesian product of Γ and the unit sphere of the center 3
of 91. Then the automorphism group Γ is unitarily implemented on H.
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Proof. Let 3 be identified with the space of all essentially bounded
measurable functions on the locally compact space Z with respect to a
Radon measure v. Let ω be the normal semi-finite trace given by the
essential upper integral defined by v on the space 3 + °f all positive
(finite or infinite) measurable functions on Z. Let Φ be a normal semi-
finite faithful 3-trace on 91+. This is an extended 3~m°dule homo-
morphism on 91+ in the sense of Definition 6. The function φ = ω- Φ
is a normal semi-finite faithful trace 9ί + (cf. [9; III, §4]). For every
y 6 Γ, we may easily verify that φ y is also a normal semi-finite faithful
trace on 91+. Hence, there is a normal semi-finite faithful 3~t r a c e Φy

 o n

9ί + such that φ-y = ω-Φy (cf. [9; III, §4, Proposition 3]). However,
there is a Qy in 3 + such that QyΦ = Φy [9; III, §4, Theorem 2]. Thus,
there is a Qy in 3 + such that ω Φ y = ω (<2yΦ) for every 7 e Γ. By
Theorem 8, we conclude that there is a unitary representation U of Γ on
Hφ such that πφ(y(^)) = Uyπφ(A) U~ι. Here π φ is the canonical representa-
tion induced by φ on the Hubert space Hφ. The algebra πφ(9I) on Hφ is
also in standard form [9; I, §6, Theorem 2]; and therefore, the iso-
morphism πφ of 91 onto πφ(9ί) is implemented by an isometric iso-
morphism of H onto Hφ [9; I, § 6, Theorem 4], This means that Γ is also
unitarily implemented on H. Q.E.D.

The next corollary extends the results of Kallman [18]. It also
extends results of Henle [14] in the semi-fmite case except that Henle
assumed only measurability while we assumed continuity owing to the
noncountable situation before us.

Corollary 10. Let 91 be a semi-finite von Neumann algebra with
properly infinite commutant on a separable Hilbert space H and let Γ be a
continuous automorphism group of 91. // Γ is not locally compact, then
assume that Γ is jointly continuous at the origin on the cartesian product
of Γ and the unit sphere of the center of 9X. Then Γ is unitarily implemented
on H.

Remark. If Γ leaves the center of 91 elementwise invariant, we may
replace the condition that H is separable by the condition that 91 is
countably decomposable. We also note that here no joint continuity
hypothesis is needed.

Proof. Let φ be a normal faithful semi-finite trace on 91, and let
πφ be the canonical representation of 91 on Hφ induced by φ. There is a
unitary representation U of Γ on Hφ such that πφ(y(A)) = Uyπφ{A)JJ~ι

for every y e Γ (Theorem 8). Let K be a Hilbert space with countably
infinite dimension. The commutant of πφ(SH)® Cκ on the tensor product
Hφ®K is πφ(9ϊ)'®L(X). Here Cκ is the algebra of scalar operators on
K and L(K) is the algebra of all bounded operators on K. But πφ(9I) and
71̂ ,(91)' are anti-isomorphic and so πφ(9ί)' is also σ-finite [9; III, § 1,

19 Commun math Phys., Vol. 25
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Corollary, Theorem 6]. Thus, the algebra πφ(^y ® L(K) is σ-finite and
properly infinite. This means that the isomorphism A—>πφ(A)®l of 91
onto τfy(2I)® 1 is spatial [9; III, § 8, Corollary 8]. But the map y-> Uy® 1
is a unitary representation of Γ on Hφ®K. Therefore Γ is unitarily
implemented on H.

We now derive the second application of Theorem 8.
Let 91 be a von Neumann algebra on a Hubert space H with cyclic

and separating unit vector x. Denote the normal faithful state ωx(A)
= (Ax, x) on 91 by ω. Then there exists a one-parameter group
{σt I — oo < t < oo} of automorphisms of 91 associated with ω such that
ω - σt = ω for all t and such that for every A, B in 91, there is a function
F(λ) holomorphic on the strip 0 < ImΛ. < 1 and bounded on 0 g Im/l ̂  1
with boundary values F{t) = ω(σt(A)B) and F(t + i) = ω ^ σ ^ ) ) (cf. [21
§ 13]). The state ω is said to satisfy the Kubo-Martin-Schwinger (KMS)
boundary conditions for 1 with respect to the one-parameter group {σj,
and {σt} is called the modular automorphism group associated with ω
[21, § 13]. As is well-known the group {σt} is unitarily implemented on H.
In fact, we have that (ΣAix,ΣBix) = (Σσt(Ai)x,Σσt(Bi)x) for all
Au ...,An, 2?!,..., Bm in A. Hence the map Ax^>σt(A)x can be uniquely
extended to a unitary map Ut of H such that σt(A) = UtAUt~

1 for every
4 G 91. Also the map t-+ Ut is a unitary representation of the reals. For
future reference we note that Utx = x for all ί.

We now consider those automorphisms y of 91 such that ω-y = ωQy

for some β γ in 3 + , where 3 + is formed with respect to ω restricted to the
center 3 of 9I Before we set up the precise situation, we characterize
those automorphisms y for which Qγ exists. These automorphisms leave
ω 3 " m v a r i a n t m Λe terminology of Guichardet and Kastler [13;
Definition 8].

The next proposition generalizes Theorem 1 of [15] to auto-
morphisms that do not leave the center elementwise invariant.

Proposition 11. Let 9ί be a von Neumann algebra on a Hίlbert space H
with center 3 Let x be a cyclic and separating vector for 91 and let {σt}
be the modular automorphism group associated with the state ω = ωx. Let
y be an automorphism o/9I. Then there exists a positive self-adjoint (per-
haps unbounded operator) C affiliated with 3 so that x is in the domain
ofCandωCx = ω y if and only if y commutes with σt for every — o o < ί < o o .

Proof. Suppose that C exists. For every n = l,2,..., let En be the
spectral projection of C associated with [0, ή] and let CEn = Cn. The
monotonely increasing sequence {En} of projections in 3 n a s least upper
bound 1.

First we show that ω(y σt y ~x (̂ 4)) = ω(A) for all A e 91 and
-oo < t < oo. We notice that σt(B) = B for all B e 3 [21 Lemma 15.8].
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We have that

ω(y σt y'HA)) = (σt(y~ι{A))Cx9 Cx)

= \im(σt{y-ι(Λ))CnxXnx)

= ]im(σt(y-1(A)Ci)x9x)

= \im{y-\A)C2

nx, x) = (y~1(A)Cx, Cx)

= (Ax,x).

Hence, the state ω is invariant under y σt y"1 for every — oo < t < + 00.
Now we show for every A and B in 91, there is a complex-valued

function F(λ) defined on the strip 0 :§ ImA g 1, that is holomorphic in
0<Im>l<l and continuous and bounded on Oglm/lrgl, and that
satisfies the KMS boundary conditions

and
F{t + i) = {Bγ σry-i(A)x9x)

for all - o o < ί < +00. Let Af = y~1(A) and B' = y~ι(B). For n = l,2,...
the function Fn(λ) defined on the strip 0 ^ Im/ί ̂  1 by

= (Δ-iλB'Cnx,A'*Cnx) if 0 ^ ImA ^ 1/2

= (A'Cnx,Δ1~ilB'i'Cnx) if l/2

is holomorphic for 0<ImΛ<l and continuous and bounded for
0 ^ Iml g 1 [22; Remark, p. 37]. Here zl is the modular operator. Also
we have that

Fn(t) = {σt(A')B'Cnx,Cnx)

= (y σry-1(A)By(En)x,x)
and

Fn{t + i) = (B'σt{A')Cnx9Cnx)

= {By σry-1(A)y(En)x,x),

for all real t. Comparing the values of Fn and Fm at s + it with s and ί
real and 0 g ί ^ 1/2, we obtain

|Fn(5 + ΐί) ̂ - Fm(s + iί)| ^ iμ'B'ίC,, - Cjxll M'*Cπx||

by [22; Remark, p. 37]. But (1 -h Δ112)'1 is a bounded operator such that
1 1 2 1 is bounded with norm not exceeding 1 for 0 ^ ί ^ l / 2 .
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Hence, we have that

\\Δ'B'(Cn - Cjxll ^ ||(1 + Δ1'2) B'(Cn- CJxfl

^ \\B'(Cn - C J x | | + \\JAll2(B'(Cn - CJx)

S2\\B'\\\\(Cn-CJx\\,
and that

Here J is the conjugate-linear isometric isomorphism of H such that
JΔ1/2Dx = D*x for every D e 2ϊ. Since x is in the domain of C, we see
that l u b | | Q x | | < + o o and that l i m | | ( C π - C J x | | = 0 . Hence {Fn(λ)} is

m,n

uniformly Cauchy on 0 ̂  Im/l ^ 1/2. Likewise we obtain that {Fn(λ)} is
uniformly Cauchy on 1/2 ?g Im/l :g 1. This means that {Fn} converges
uniformly to a function F on 0 ̂  Im/l ^ 1 and hence that F is holo-
morphic on 0 < ImA < 1 and continuous and bounded on 0 ^ Im/l ^ 1.
Now we calculate F(t) and F(ί + i) for all real ί. Since {y(-En)} converges
strongly to 1, we have that

F(t) = limF^ί) = lim(y σt y " 1 ^ 5y(£π)x, x)
n n

= {y-ary-1(A)Bx,x)

and likewise that

F(t + i) = (Byσry-ί{A)x,x),

for all — o o < ί < + o o . This means that ί->y σ v y " 1 is the modular
automorphism group of the normal faithful state ω of ̂ ί. By the unique-
ness of the modular automorphism group of ω, [21; Theorem 13.2] we
obtain that y σt y~ι = σt for all — o o < £ < +oo.

Conversely, suppose that σt-y = y - σt for every — oo < t < oo. How-
ever, the one-parameter group {<y~1 σί y} of automorphisms is the
modular automorphism group of ω y [15; Lemma 1], i.e. the normal
functional ω y satisfies the KMS boundary conditions with respect to
σt. This means that there is a positive self-adjoint (perhaps unbounded)
operator C affiliated with 3 such that the domain of C contains x and
that ωCx = ω y [21 Theorem 15.4]. Q.E.D.

Let 2ί be a von Neumann algebra with center 3 on the Hubert space
H and let x e H be a cyclic and separating vector for 21. Let v be the
measure on the spectrum Z of 3 induced by the relation

(Ax,x)=\A%)dv{ζ).
z

Here /C is the Gelfand transform of A e 3 T n e n 3 w i t n i t s σ-weak
topology is identified with the space L™{Z,v) of essentially bounded
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measurable functions on Z with its σ-weak topology by the Gel-
fand transform A-+&. Indeed, the measure v is a so-called perfect
measure. Now the projection E of H on the subspace closure {Ax \ A e 3}
is an abelian projection of the commutant 3 ' of 3 Since x is a cyclic
vector for 3', the projection E has central support 1 in 3 ' Hence, for
each A in 3'5 there is a unique Φ'{A) in 3 such that EAE = Φ\A)E. The
mapΦ'(^) is a positive σ-weakly continuous 3~module homomorphism
of 3 ' into 3 The restriction Φ of Φ' to 21 is also a positive σ-weakly
continuous 3~m°dule homomorphism of 21 into 3 It *s a l s o faithful
since Φ(A*A) = 0 implies (Φ{A*A)x, x) = (Φ'(A*A)Ex, x) = {Ax, Ax) = 0
and hence that 4̂ — 0.

Proposition 12. Let Wbea von Neumann algebra on a Hilbert space H.
Let x be a cyclic and separating vector for 91, and let {σt} be the modular
automorphism group of the normal faithful functional ωx. Let Γ be a
continuous automorphism group of 91 such that y σt — σt-y for every
real t. If Γ is not locally compact, then assume that Γ is jointly continuous
at the origin on the cartesian product of Γ with the unit sphere of the center
of 9ί. Then the automorphism group Γ is uniformly implemented by a
unitary representation U of Γ on H so that, given any unitary implementa-
tion V of {σt} on H such that Vtx = x, the unitary operators Uy and Vt

commute for every y e Γ and — oo < t < oo. Furthermore, if JΔ112 is the
polar decomposition of the closure S of the conjugate linear operator
Ax^>A*x (Ae 9ί), then Uy commutes with J and A for every y e Γ.

Remark ί. As we have seen, such an implementation V of {σf} exists.

Remark 2. In view of Proposition 11, the last statement of Proposi-
tion 12 is a generalization of a result of St0rmer [20; Lemma 2].

Proof. We preserve the notation of the paragraph introducing this
proposition. For every y eΓ, there is a positive self-adjoint Cy affiliated
with the center 3 of 91 such that x is in the domain of Cy and such that
ωc x = ωx y (cf. Proposition 11). Let F" be the spectral projection of
Cy corresponding to the interval [0, ή] and let C" = CyFy. For every
A e 9ί+, we have that

ωx-y(A) = (ACyx, Cyx)

- lubn(XC;x, Cn

yx) = \ubn(A(Cn

y)
2x, x)

= \ubn(Φ(A(Cn

y)
2)x, x) = lub π ((q) 2 Φ(A)x, x) = ω(QyΦ(A)),

where Qy is the least upper bound of the monotonely increasing net
{(C")2} in 3 + Thus, the hypotheses of Theorem 8 are satisfied. Let us
preserve the notation of this theorem. Let πφ be the canonical homo-
morphism of 91 induced by φ on Hφ. For Aγ, ...,An, Bί9..., Bn in 9ί, we
have (Σ Atx,ΣBtx) = φ((Σ J5f)*(Σ At)). Hence, the space H is spatially
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isomorphic to Hφ under the map Ax-^A of six onto m1 / 2 = 21. Hence,
we may transfer the implementing unitary representation of Γ on Hφ to
a unitary representation U on H by setting UγAx = Wmγ(RyA)xfor every
AeSH.

For every A e 2t, y e Γ, and — oo < t < +00, we have that

= limσf y(Rn

yΛ) Vtx = \imy(Rn

yσt(A))x

= Uy{σt{A)x)=UyVtAx

since Vtx = x and since σt(C) = C for all C E 3 [21; Lemma 15.8].
Because Six is dense in if, we get that Vt Uy = Vt Uy for all y, ί.

We now consider the last statement. For every A e 21 and y e Γ, we
have that

Ax = \imy(Rn

yA)x.

Since #" is in 3 + , we have that

\imSy(Rn

yA)x = \imy(Rn

y) S(y{A)x) = ]imγ{Rn

yA*)x = UyA*x .

Using the fact that S is a closed conjugate linear operator, we have that
UyAx is in the domain D(S) of S and that L / ^ ^ l / ^ x = A*x = SAx.
Now let y e D(S). There is a sequence {,4J in 21 with lim^nx = y and
Iimv4*x = Sy. However, we have that UmUyAnx = Uyy and limSUyAnx
= UySy. Since S is closed, we have that Uyy e D(S) and that U~1S Uyy = Sj.
This means that SQU^SUγ. Since y is arbitrary, we may conclude that
S=U~1SUy for all yeΓ. Hence, we have that U~ιJUy = J and
Uy-

1Δ1/2Uy = Δ1/2 (cf. [11; XII.7.6] for the analogous result for closed
linear operators). Finally, we get that U~ίΔUy = Δ. Q.E.D.

Added in Proof on February 10, 1972. A more general form of Proposition 11 was
obtained independently by F. Combes [Proposition 4.17, Compositio Math. 23, 49-77
(1971)].
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