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Abstract. A study is made of the resolvent R(λ) for a system of n particles with
spin-orbit coupling, an interaction which necessarily has a long range in momentum
space. For short-range interactions, it has been known for several years that R (λ)
satisfies a Fredholm equation whose kernel is in the Schmidt-class. The corre-
sponding spin-orbit kernel is not in the Schmidt-class, but it is shown that it does
belong to a certain class of compact operators which is larger than the Schmidt-
class. A modified Fredholm theory is presented which applies to all operators in
this larger class. This enables R(λ) to be found for all values of λ in the complex
plane cut along the continuous spectrum of the Hamiltonian. It is shown that the
modified Fredholm theory also holds for the Coulomb interaction.

1. Introduction

In recent years our understanding of the %-body problem has con-
siderably improved. There are now rigorous mathematical methods
available to discuss non-relativistic systems consisting of any finite num-
ber of particles with two-body interactions. For three particles, a power-
ful approach is due to FADDEEV [1, 2]. Under the assumption that the
two-body scattering amplitudes are known, this gives a set of coupled
equations for the three-body amplitude. Faddeev's work became widely
known through two papers by LOVELACE [3, 4] and was subsequently
generalized to larger numbers of particles by several authors [5—9].
Alternative equations in terms of the two-body scattering amplitude
were given by ROSENBERG [10] and NEWTON [11] and applied by
NOBLE [12]. For further information see refs. [13—15].

A different method was proposed by WEINBEEG [16] and further dis-
cussed by HUNZIKER [17]. This is closely related to a formalism which
was developed independently by one of us [18]. In this formalism, it is
assumed that the two-body interactions are known, and a sequence of
equations is constructed which must be solved successively for the re-
solvents referring to 2, 3, . . ., n particles. In the present paper, these
2*
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equations are examined for a class of interactions for which the w-body
problem has not been considered before. Our previous paper is henceforth
referred to as paper I.

In all current n-boάγ theories, there are integral equations of the
Fredholm type which under favourable circumstances have kernels in the
Schmidt-class. Specifically, in the case of two particles interacting
through a local potential v(x), one considers an equation of the form

h(k) = ho(k) - (2π)-3/2 / (fca - λ)-1 Ϋ(k - I) h(l) dΠ , (1.1)

where V is the Fourier transform of v, the function hQ(k) is known and
h(k) is to be found. If Ϋ(k) is square-integrable and λ is not on the
positive real axis, the kernel of Eq. (1.1) is a square-integrable function
of k and I and is thus in the Schmidt-class. This enables the equation
to be solved by the Fredholm method. This approach to the problem has
been generalized to larger numbers of particles, but the actual computa-
tional work then becomes extremely laborious. For practical applications
many authors have therefore considered interactions of finite rank. This
is usually referred to as the separable approximation. It results in con-
siderable computational simplifications, but it has the disadvantage of
not being invariant under translations. It is therefore not adopted in the
present paper.

In the context of the Faddeev equations, the separable approxima-
tion was first advocated by LOVELACE [3, 4]. It also arises in special
three-particle models due to AMADO [19] and SUGAR and BLAKKEN-

BECLER [20]. It has been used in many papers by MITRA and coworkers
[21, 22]. A general exposition is given in refs. [14] and [22]. For various
applications, see refs. [12] and [23—34].

In the separable approximation, one can introduce spin-dependent
interactions without any difficulty. As a matter of fact, this was done
in most of the papers cited above, and the question has never received
any special attention. Consider, however, a translationally invariant spin-
orbit interaction of the form

s (as x k)v(x) , (1.2)

where s is a spin operator, ae is a position and k a momentum operator.
With the interaction (1.2), the analogue of Eq. (1.1) becomes

h(k) = ho(k) - s / (Jfc2 - A)-1 W{k - I) x kh(l) dΠ , (1.3)

W being proportional to the Fourier transform of x v(x). The kernel of
this equation contains a factor k(k2 — A)"1, and so it cannot be in the
Schmidt-class, no matter how W(k — I) is chosen. There is thus a prob-
lem which has not been envisaged before. It is the main purpose of the
present paper to show how this can be solved for any finite number of
particles.
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The problem is given a concise form in section 2. In order that there
be a self-adjoint Hamiltonian H, a general condition is imposed on the
interaction function W(k) in section 3. This guarantees that there exists
a resolvent R(λ) = (H — λ)'1. Some general properties of R(λ) are also
discussed in section 3. Section 4 is devoted to the Fredholm equation for
R(λ) which we propose to solve. This has a kernel K (λ) which is not in
the Schmidt-class. However, in appendix A2 we introduce a class of
integral operators which is denoted by (re) and which is considerably
larger than the Schmidt-class. For values of λ in the complex plane cut
along the real axis from a certain point Λo to σo, it is shown in section 5
that K(λ) does belong to the class (re). It is explained in appendix A2
that (re) is a subclass of a certain class of compact operators which some
authors denote by &4, but which we prefer to call (ρc). Also, it is indi-
cated in section 6 how one can generalize the Fredholm theory of integral
equations so as to apply to kernels in (ρc). This method is based on
a forthcoming paper by one of us [35]. It makes it possible to construct
R(λ) for all values of λ in the complex plane cut from Λo to σo. In the
cut plane, E(λ) is found to be analytic, except for possible poles corre-
sponding to bound states. To the left of Λo, there can thus be a discrete
spectrum at most. It is shown in section 7 that the essential spectrum
of H runs from Λo to σo.

The difficulty of Eq. (1.3) derives from the factor k, and thus from
the long range of the interaction in momentum space. This suggests that
we also try our methods on interactions with a long range in position
space. As an example of the latter category, we have chosen the Coulomb
interaction, for which the separable approximation is known to be parti-
cularly unsuitable. In the context of the Faddeev equations, it has
therefore not received much attention until recently [36, 37]. For three
particles, there are now approximation schemes available due to SCHUL-
MAN [36] and NOBLE [37], but it appears that the problem has never
been investigated systematically. It is shown in section 8 that the
Coulomb interaction gives rise to a kernel in the class (ρc). For values
of λ not in the continuous spectrum, the resolvent can thus be found
with the help of section 6.

The main body of the paper ends with a general discussion. There is
a mathematical appendix on compact operators, with special emphasis
on the classes (ρc) and (re).

2. General Remarks

2.1. Positions and Momenta

The present paper is concerned with a system of n particles with
positions Xi3 momenta Kif spins siy and masses m .̂ It is assumed that
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the Hamiltonian takes the form

H =

The interaction thus consists of -~- n(n — 1) two-body terms which are

invariant under translations in position and velocity space.

Owing to the invariance properties of the interaction, the motion of
the centre of mass can be separated off. This can, in fact, be done in
many ways, a convenient set of new coordinates being [38]

xn = (2/if JV2 Σ m.χ., M, = Σ ™i -

The transformation (2.2) is of the general form

Xj(2mj)V\ (2.3)= Σ

where {E7 }̂ is an orthogonal matrix. In the position representation, the
momentum Kjis represented by the operator — i V (-Xy) If kj stands for
the quantity which in the position representation is represented by

), one has

fc<= Σ UijKj(2mj)~y\ K^m.yy^ Σ VSihs. (2.4)

The kinetic energy takes the form

^ Σ * . (2.5)

Also,
n—1 jζ rζ n—\

Xi - Xj = 2J c ί Ma?Λ , 2 ^ : ~ 2~- = Σ Ciihkh , (2.6)
Λ = 1 J h = 1

with some set of coefficients such that cijn vanishes.

According to Eqs. (2.2—4), Xi(hJ) is proportional to the position
(velocity) of particle i + 1 with respect to the centre of mass of the sub-
system consisting of the particles 1,2, . . ., i (1 ̂  i ^ n — 1). The co-
ordinate xn(kn) is proportional to the position (velocity) of the centre of
mass of the system as a whole. The relations (2.6) express the fact that
the interaction does not depend on the motion of the centre of mass.
The Hamiltonian for the internal motion is

H^Σn+Σ Vt, ( ̂  can ^ n£ d*n K; *o «,) . (2.7)
i = l i<j \A-1 Λ = l /



N-Body Problem 23

To discuss a particular interaction term ViS, it is convenient to use
a set of coordinates which slightly differs from the set (2.2), and is
chosen in such a way that

xx = χu EEE (2mimjlmi + m^l2 (X, - Xό) . (2.8)

At times it is convenient first to split the particles into two groups, and
to choose xn_x proportional to the position of group 2 relative to group 1.
One will then introduce internal coordinates in the two groups separately.

2.2. Wave Functions

The internal motion of a system of n particles may be described with
the help of a wave function

/ = /(ft) = / ( * ! , . . . , *»-l),

where / is an element of the Hubert space L2{RZn~z), that is, the space
of all measurable functions f(k) which satisfy

The space L2(BZn~z) is occasionally denoted by L2(k) or by L2. If / and
g are any two elements of L2, their inner product is written as

(f,g) = ff(k)g(k)d*«-*k. (2.9)

In the case of particles with spins, it is appropriate to use wave
functions of the form M

f'=ΣfaWXa, (2-10)
α = 1

where {χa} (a = 1, . . ., M) is a set of spinors and each fa(k) is in L2. If
all particles have spin 1/2, the index a runs through 2n values, and
similarly for other spins. With the inner product

(/',£/')'= Σ(ϊa>ga),
α = l

the set of all functions of the form (2.10) is a Hubert space. Let this be
denoted by L'2. A linear operator A' on L'2 is associated with a matrix
{Aab} of linear operators on L2. If \\A'\\' and ||-4α&|| stand for the operator
norms on U 2 and L2, respectively, one has

WW ^ Σ \\Aab\\ •
a,b

A relation of this form also applies to the Schmidt-norm, and, in fact,
to all the norms discussed in appendix Al. If v' denotes one of these
norms on L'2, and v the corresponding norm on L2, it is easily seen that

v'(A')^ ΣHAab),
«.6 (2.11)

v(Aah)<v'{A') ( α , & = l , . . . , J f ) .

From this it follows that v' (A') is finite if and only if each v(Aab) is finite.
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2.3. Interactions

For spin-independent interactions

such that
f[vtj(xti) ?^xti<oo, (2.12)

it is known from paper I that the resolvent satisfies an inhomogeneous
equation with a Hilbert-Schmidt-kernel. Owing to this, the resolvent can
be found with the help of the Fredholm theory of functional equations.

Now consider spin-spin and tensor interactions of the form

Vii = (si' SJ) VijiXa) , Vu = {Xij)-2{Si - xu) {Sj xa) Vi^Xij) ,

assume that vij(xij) again satisfies Eq. (2.12), and examine the resolvent
equations of paper I. These are now equations on U 2. Owing to Eq. (2.11),
their kernels are Hilbert-Schmidt on L'2, and so the results of paper I
can easily be generalized to spin-spin and tensor interactions.

For spin-orbit interactions

the methods of paper I do not suffice. This is not due to the spin, however,
but to the velocity dependence of the interaction. For the sake of nota-
tional convenience we shall therefore discuss in detail the interaction

Vu = s« * (xa x hn) VH&U) > (2 1 3 )

where s^ is a vector whose components are real numbers, rather than
Hermitian spin operators. The interaction (2.13) gives rise to a problem
on L2. Once this has been solved, the generalization to spin-dependent
interactions is straightforward and may be left to the reader.

3. The Hamiltonian

3.1. The Kinetic Energy

On L2, the kinetic energy Ho is simply the multiplication by
n - l

k2 = Σ *?• I f ® (#o) stands for the set of functions f(k) ζ L2 such that
i = l

Jc2f(k) is in L2, then the operator HQ with domain §>(H0) is self-adjoint
(KATO [39], ChV, section 5.2). Because Ho is a non-negative operator,
its resolvent (Ho — λ)"1 is defined and is a bounded operator for any
complex number λ other than λ 2̂  0. The resolvent is henceforth denoted
by RQ(λ). I t is the operator of multiplication by (k2 — A)"1, so its bound
satisfies

. (3.1)

The range of R0{λ) is §)(H0).
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3.2. The Interaction

In order to define the interaction term Y i i on L2, it is convenient to
choose coordinates x, such that xii is denoted by xv The interaction
(2.13) then formally yields

(F < 3 / ) ( f c 1 ; . . . . f c ^ )

= sit • f [W^k, - I,) x fej f(lu kz,..., kn^) dΠ,

where
Wu(h) = (2π)-3 / e~ik'x xvu{x) d*x .

In order that Viό be invariant under rotations, vij{x) must be a function
of x only. That gives

k x JFfi(fc) = 0 . (3.3)

In order that Yi} be a symmetric operator, vij(x) must be real, and so

W^.(-fc) = ΪFo.(fc). (3.4)

In the following it is assumed, that the relations (3.4) and (3.5) hold true.
In Eq. (3.2), the factor I F ^ / ^ — ϊx) x kx may then be replaced by
WijCki — lx) x lv I t is further assumed that Wij(k) is measurable, and
that the function

W{j(k) = \W{j(k)\
satisfies

/ [Wu(k)γi* d?k< oo. (3.5)

From this it follows that ([40], section 4.1)

/ [xvij[x)'\9t dzx < oo .

At the origin, the function vi} (x) is thus less singular than x~7^ and at
infinity it tends to zero faster than x~Ί^.

Given the relations (3.3—5), the interaction term Yii is defined as
the operator with domain §>(H0) which acts according to Eq. (3.2). The
total interaction V also has domain ®(H0), and is equal to Σ Vu

i<?

That this is a meaningful definition is ensured by the following lemma.
Lemma 3.1. For any λ other than λ ^ 0, the operator VR0(λ) is

bounded. Its bound satisfies

||FΛ0(A)|[ =g const μ|V* (ImA1/2)-3/4 . ( 3 < 6 )

Proof. For two particles VR0(λ) is an integral operator with kernel

Its r-norm, which is defined in appendix A 2, satisfies
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The substitution

I = lλ 9 u = k x — l t , v = k [ — J j , w = l χ — l[

and Schwarz's inequality give

• / JΓ12(M) Tfi2(v) PF1 2(^+ w) W12{v+ w

^ const |λ| (ImλV^-a {/ [Tf12(w)]4/3 #^} 3 .

Hence, by virtue of Eq. (3.5),

||FΛ0(λ)|| ^ r(Fi?0(A)) g const μ|V* (LnF)- 8 / 4 . (3.7)

This completes the proof for n = 2.
For larger numbers of particles, it is convenient to consider each

term Yii separately. If k' stands for k2) . . ., kn_λ ,

= s,, / [ ΐ F , ^ ^ - lx) x y (^ + 4'» - A)-1 /(?1? fe') («% .

If this expression is denoted by g(k, k'), the proof for n = 2 shows that

^ const μ - ^ψ/2 [Im(λ - jfe'2)i/2]-3/2 j |^( f e i ) fe/)|2 dzhi)

for almost every /er. One can now use the inequality

Integration over kr then shows that Eq. (3.6) holds true generally. This
proves the lemma.

Since the range of B0(λ) is ®(#0), it follows from lemma 3.1 that
Vf is in L2 whenever / is in © (-ffo)

Lemma 3.2. The operator V is symmetric.
Proof. Consider any particular term Vtί and choose functions / and g

ϊn®(H0). This yields

, k') ( P - β f d*hλ J su

Now suppose that the integral on the right converges absolutely. The
integrations may then be interchanged, and so it follows with Eq. (3.4)
that either side is equal to

/ / & , ft') «*»»-•*' ίPΪ!/ 8,,

• ! # „ ( ! , - ftj X y g{k,, ft') « α = (/, Vtig) .

This then shows that ViS is symmetric.
In order to justify changing the order of integration, write Ki5 for

the integral operator with kernel
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Obviously K{j is an operator on ϋ 2 ^ ) . By the proof of lemma 3.1, it
has a finite r-norm on L2^); let this be denoted by r1(jK'ί^). I t then
follows from Eq. (A2.11) of appendix A2 that

; ft') Wuih, - I,) \ fd,, fc')| «*>»-• V cPlc, d%

This shows that the integral in Eq. (3.8) converges absolutely and thus
completes the proof of the lemma.

3.3. The Hamiltonian

We now proceed to the major result of the present section, which
reads as follows.

Theorem 3.3. The operator H = Ho~{- V with domain §> (Ho) is self-
adjoint.

Proof. This theorem is closely related to a result due to KATO ([39],
Ch.V, sections 5.3 and 4.2). I t is proved in much the same way. Since
H is symmetric by section 3.1 and lemma 3.2, it suffices to show that
there is a real number μ such that the range of H — μ is as large as
L2 ([41], section 41).

It follows from Eq. (3.6) that

\\VR0(μ)\\^ const. \μ\-V* < 1 (3.9)

whenever μ is negative and \μ\ is sufficiently large. If this relation is
fulfilled, the operator 1 -f VRQ(μ) has a bounded inverse, which is
given by

This shows that the range of 1 + VR0(μ) is equal to L%. Since (Ho — μ)~x

exists, the range of Ho — μ is also equal to L2. Then it follows from

H-μ=[l+ VB0(μ)] (Ho - μ) (3.10)

that the operator H — μ with domain ξ) (HQ) has range L2. This proves
the theorem.

3.4. The Resolvent

Because H is self-adjoint, it has a resolvent R (λ) = (H — λ)'1, which
is a bounded operator for ImA φ 0. In the upper and lower half-planes
(R(λ) f, g) is an analytic function of λ. If λ and μ are any two complex
numbers such that R (λ) and R (μ) are bounded, one has

R(λ) - B(μ) = (λ - μ) R{λ) R(μ) (3.11)

dR(λ)ldλ= [R(λ)]2.
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Under the present assumptions on the interaction, there is a real
number A such that the resolvent even exists for real values of λ such
that λ < A. In other words, the spectrum of H is bounded below. To see
this, choose a negative number μ such that Eq. (3.9) holds true. From
Eq. (3.10) it then follows that

B(μ) = B0(μ)[l+VB0(μ)]-i, (3.12)
a n d s o \\R(μ)\\<\\Ro(μ)\\[l-\\VBo(μ)\\rK

Hence R(μ) is a bounded operator. The third relation (3.11) now shows
that E(λ) is differentiable for λ = μ. Since it is already known that
(R (λ) f, g) is analytic in the neighbourhood of the real axis, it follows
that this quantity is an analytic function in the A-plane cut from some
point A to oo.

For Reλ ̂  A, it was shown in [18], Eq. (1.4.34) that

Together with the general relation

\\R(λ)\\ <Z l l m λ l - 1

this yields \\R(λ)\\ < \λ - Λ\-W [Im(λ - Λ)1!*]-1 . (3.13)

Now consider the operator H0R(λ). By virtue of Eq. (3.12), the
operator HQR(μ) is bounded if μ is near — oo. For a suitable fixed value
of μ, the relation

H0B(λ) = H0B(μ) +{λ-μ) H0R(μ)B(λ)

together with Eq. (3.13) thus yields

\\H0R(λ)\\ ̂  const(|λ - Λ\-V* + \λ - A\^) [Im(λ - A)1/2]-1 . (3.14)

There is an inequality of the same form for VB(λ).
Since Ho is non-negative, there is a uniquely defined non-negative

operator (HQ)1!2. Because

for any / ζ L2,

\\(H0)V*R(λ)\\ <* \\R(λψ2 \\H0R(λψ2

g const (\λ - A\-V* + 1) [Im(A - Λ)1!*]-1

In the following, there often occur operators of the form R(λ) V or
R (λ) (HQ)1/2. These are certainly defined on the dense subset ξ) {Ho) of
L2. They can uniquely be extended to L2 by the definitions

R(λ)V= [VR(1)]* , R(λ) (HJW = [(H0)V*R(l)]* . (3.16)

It is henceforth assumed that this extension has been made. Because
they are the ad joints of bounded operators, the operators under dis-
cussion are bounded themselves. Their bounds satisfy inequalities like
Eqs. (3.14) and (3.15).
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4. The Resolvent Equation

The resolvent satisfies the well-known equation

B(λ) = BQ(λ)-B0(λ)VB(λ). (4.1)

For two particles, this is a useful equation, because the kernel — B0(λ) V
is a compact operator. For larger numbers of particles, however, more
powerful equations are required. These were derived in paper I, and,
independently, by WEINBERG [16] and HUNZIKER [17]. The present sec-

tion is devoted to a summary of some results that are needed in the
following.

We first explain the notation, which is almost the same as in paper I.
Let the system of n particles be divided into k groups (1 ̂  k ^ n), and
let p(k) denote the particular division in question. Consider the case
that all particles in any particular group interact, but that particles
belonging to different groups do not. The total interaction which then
remains is denoted by F2)(fc>, the corresponding resolvent is

RJ&>W = (Bii+V,M-λ)-1. (4.2)

For the special cases k = 1 and k = n, we also write

R W = B%, Λ« = R% , V=V,ω. (4.3)

The resolvents Rίfy), with k ^ 2, can be expressed in terms of the
resolvents iu<w), with 2 ^ m ^ n — 1, as follows. Let the groups of the
division φ (k) consist of nλ, . . ., nk particles, with nx, . . ., nάr ̂  2 and
nj+1 — = nk = 1. Then

Bfrfa = R(fll) * ̂ (na) * * BM * JB^ . (4.4)
Here the resolvent B^ refers to the internal motion in group i, and
Rff* refers to the internal motion of the centres of mass of the k groups
with respect to each other. The operation * is defined by

{[Ba * Eb] (λ) /, g) = (2πi)~ι f (Ra(σ) Rb(λ - σ) /, g) dσ (4.5)
G

for every / and g in L2. Here G is a contour in the σ-plane such that the
singularities of Ra(σ) are on the right of G, and the singularities of
Bι(λ-σ) on the left of G.

In the case of the present paper, the resolvents Ra (σ) and Rb (λ — σ)
are analytic for any A, σ other than a έ Λa and λ — a ^ Λb. Owing to
this, the integral is defined and is analytic for any λ other than
λ ^ Λa + Λb. The contour G is conveniently chosen as

σ=γ{λ~Λb + Λa) + s exp [y i arg(A - Ab- Λa)] ( 4 6 )

(— oo < s < oo) ,

but it may be modified in various ways. I t is easily seen that the con-
volution product * is associative and commutative.
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Now let the symbol p(k)Cp(k — j) express that the division p (k) is
obtained from p(k — j) by further splitting some groups of the latter
division. The resolvent equation for n particles then reads

Σ(- i f " 1 ( * - i ) ! ΣRfm = ( - I ) - 1 Σ ' Σ
* = 1 p(k) 2>(»-l)...j>(2)

,(—1) C-Cί,(2>

. fj?(n) τz 7?(n) ΓF V Λ ^ ^

2) 4 ^ ) tF - F,(8)]

In an obvious notation, Eq. (4.7) is of the form

R(n) = Q(n) + χ(n) R(n) ? (4.8)
where

K(n) = 2; J ^ j . (4.9)
2? (2)

For n = 2, Eq. (4.7) is identical with Eq. (4.1). For further reference we
define

JFW = KWRW = RW - QW . (4.10)

The relation (4.7) can be generalized as follows. Choose any particular
division p(l). A division p{h)Cp{l) gives rise to I numbers kλ. . . kt,
where kj is the number of subgroups into which group j of p (I) is divided
by p(k). For fixed p(l), one has

Σ Σ (-l)*- 1^!-!)!...^-!
f

4 & F p ( , _ i ) (4.11)
2 ( ) p ( )

V(n-1) C ~' Cp(l + 1) Cp(l)

• 4 t - i ) Rvlι +1) [^P(Ϊ) - *W +1)] 4 %

For n = Z this equation is obvious and for n = I + 1 it is of the form
(4.1). Once it has been proved for any particular pair n, I, it can be
proved for n-\-l,l in the same way as Eq. (4.7) ([18], section 1.7.1).
I t thus holds true for every pair n, I such that n ^ I.

Now choose I = 2, and suppose that the division p (2) yields groups
consisting of nx and n2 particles such that nx ^ 2 and w2 ̂  2. Compare
the right-hand side of Eq. (4.11) with the kernel Kfyy Use Eq. (4.4) on
the left of Eq. (4.11) and compare this with the equations for i? ( n i ) and
JS(n >. With Eq. (4.10) this yields the important result

K% = - FM> * JF<*> * Bjp [V - F p ( 2 ) ] . (4.12)

We wish to emphasize that this formula differs slightly from [18], Eq.
(1.7.48), as may be seen by taking n = 4, n^ = n2 = 2. The proof in [18]
is not correct, because use has been made of equations like [18], Eq.
(1.7.39), which is false. The relation [18], (1.7.33) is correct.
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For divisions p(2) such that n1= I and n% — n — 1, the analogue of
Eq. (4.12) reads

% ( D Jp Vp{2)] . (4.13)

The kernel K^(λ) = — Rjp(λ) V and the inhomogeneous part
= i?<2) (A) of the two-particle equation are denned for any λ other

than λ S 0. I t is convenient to write /1^2) = 0. In solving the equation
(section 6.2), one finds a number Λ^ ^ Affi such that the resolvent
E ( 2 )(λ) is analytic for any λ other than λ ^ /t ( 2 ).

Now suppose that the equations for R(m) (λ) (m = 2, . . ., n — 1) have
successively been solved, so that R(m) (λ) has been found for any λ other
than λ^ΛW. With the help of Eqs. (4.4), (4.12) and (4.13), KM(λ)
and Q(n) (λ) can be constructed for any λ other than λ >, Λ^, where

min {Λ^-V, Λ^ + Λ^n (n ̂  3) .
nx + n2 = n; nlt n ^ 2

Again a number /l ( n ) ^ /t[)n) is found, such that R^ (λ) is analytic for
any λ other than λ ^ Λ{n). In section 6.2, Eq. (6.11), the numbers Λ{n)

will be defined more precisely. In section 7 it will be proved that Λ^n\
thus defined, is the lower bound of the spectrum of H^n\

The relations between the numbers A may be summarized as

= 0 ,

^ = min {AM + Λ^} (n ̂  2) , (4.14)
«i + wa = n;nltn2 ^ 1

Λ ( n ) ^ ^ (

o

w ) (w ̂  2 ) .

5. The Kernel

5.1. The Relation Ω

In the present section it is shown that the kernel i£<w) (λ) of Eq. (4.8)
is sufficiently well-behaved for this equation to be soluble. In order that
the argument may be presented as consisely as possible, we first define
the relation Ω. If z (A) is any non-negative function of λ, the expression

) (5.1)

means that z (λ) satisfies an inequality of the form

Q

o ^ z(λ) g β

where Q is some integer, γq > 0, ocq ̂  0, βq > 0, and

max [ocq-γ βqj^ p<0 .

The relation Ω has the following properties.
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Lemma 5.1.1. // z{λ) satisfies Eq. (5.1), it follows that

for every ft Ξ> p and every Λx ^ A.
This lemma is a consequence of the inequalities

\λ -

Lemma 5.1.2. From

z1(λ) =
it follows that

Lemma 5.1.3. Suppose that

where p± + pz < — 1. Define

(zi * z2) (λ) = (27Γ)

Co is given by

- σ) \dσ\ ,

s exp \γi arg(2 - Az- Aj] (- <χ> < 5 < 00)

(̂ i * zz) (λ) =

This lemma is proved in appendix A4.

5.2. The Kernel

I t can now be shown that the operator K(n> (λ) belongs to the class
(re) of L2(RZn~z). The proof is based on a number of lemmas.

Lemma 5.2 The operator KW is an integral operator such that

Proof. Since

it follows from Eq. (3.7) that

r(Kl*> (λ)) ^ const μi1/* (Imλ1/*)-*/* . (5.2)

Lemma 5.3. Xeί jP<m) α̂ c? ̂ (m) (^ 0 ) 1 / 2 ^ e integral operators such that

r(FW(λ)) = Ω(-^-m - ^, A(™ή (2 ^ m ^ n - 1), (5.3)

(λ) ( ^ = β ( - y m - | - (2 ^ m ^ n - 1) . (5.4)
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Then KW is an integral operator such that

r(K™ (A)) = Ω ( - ~ n + ~, Λ^) . (5.5)

This relation is compatible with lemma 5.2.
Proof. According to Eq. (4.9), K{n) is a sum of terms K$2). I t is

convenient to discuss these separately. To start with, consider a division
p(2) such that nx = 1 and n2 = n — 1. Suppose that it is particle n which
forms a group by itself. Choose internal coordinates kλ) . . ., kn_2 among
the particles 1, . . ., n — 1, and introduce a coordinate kn_x to describe
the motion of particle n relative to the centre of mass of the large group.
Now select a particle j in the large group, and choose coordinates
k[, . . ., k'n_1 in such a way that

Make sure that the transformation from the unprimed to the primed
coordinates is an orthogonal one. Write

n—1

kι = 2J
 ci ™i '

i = l

Then it is obvious that cn_1 φ 0. If / is any function in L2, define /' by

/'(fci, . ., kn_x) = f(k1} . . ., kn_x) .
Then

ff(k[ -m, /4, .,fcn-i) = / ( & ! - o1m, . . . , f e Λ _ i - on-i™)

According to Eq. (3.2), the interaction term V3 n is defined by

(Vinf'){k[,...,K-i)

= - «/» / [fci x Wjn(m)] /'(lei - m, 14, . . ., fc;^) d m ,
and so

• /(fcj - Cj m, . . ., fen-1 - cM_1 m)

If fcW stands for Jfex, . . ., kn_2, the operator F<-n~1'>(λ) is an integral
operator with kernel F^-^ikW, Uι>; λ). The operator

is therefore an integral operator with kernel

- k - j h 3 ^ - 1 ' (km, IW + - ^ - (&„_! - «„_!); σ) ( i ^ . ! - λ + σ)-1 s i B

( 5 7

3 Commun. math. Phys., Vol. 11
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Its r-norm is not larger than the sum of the r-norms of the two operators
with kernels

l ^ ^ l - β J(»-D(fc(i), 10) σ) (&JU - λ + σ)" 1

V \
/

and (5.8)

9 \c \ k W ( kn~1 ~ ln~1\
6jn \cn~l\ κn-l πjn\ c ^ _ i J

This transition is a consequence of the definition of the r-norm. To
justify it, one needs Schwarz's inequality and the relation

|s (fe x W)\ ^ shW .

Now write Ljn(λ — σ) for the operator with kernel

The two operators (5.8) each correspond to an operator on L2(kM) times
one on L2 (few_i). Write rx and r3 for the r-norms on Z2(feί1)) and Lz(few_!)
respectively. This gives

^ const[r^J C-D(σ) (ffo)1^) r 8 ( i ί n ( λ - σ)) (5.9)

Here (H0)V2 is an operator on L2(kW) or on ^(kn^, as the case may
be. If Ŵ  w satisfies Eq. (3.5), it follows from the proof of lemma 3.1 that

jn{λ)) < const \λ\V* (Imλ^)-»/« = β ( — § - , o) ,

5 ( 5 J 0 )

r,(Lίn(λ)) ^ const |A|-V* (Imλ1/8)-*/* = fl(—J-, OJ .

With Eqs. (5.3) and (5.4), appendix A3 and lemma 5.1.3, the relation
(5.9) thus yields

W * i#> Vjn) (λ))

Since a result of this form applies to every term Vjn of the interaction
V — Fp(2)> ft follows with Eq. (4.13) that Kp^) ^s a n integral operator
such that

<K% (λ)) = Ω (-j» + y,4(-i) . (5.11)



N-Boάy Problem 35

The terms K$2) with nx ^ 2, n2 ^ 2 can be discussed in the same
way. The analogue of Eq. (5.9) is

r(F^ (τ) F™ (σ - τ) E™ (A - σ) Vu)

g const [ri(FM (τ) (H0)V*) r2(F™ (σ - τ)) r8(£,,(λ - σ))

+ rx(FM (τ)) ra(J<*> (σ - τ) (H0)W) rz(Lίό(A - σ))

+ ri(FM (r)) ra(J(» > (σ - τ))

From this it follows that

If this result is combined with Eq. (5.11), lemma 5.1.1 gives the desired
relation (5.5). This completes the proof of lemma 5.3.

Lemma 5.4. Let F^m)and K^ be integral operators such that

r(FW (A)) =

r(JS:<»)(λ)) =

Then FW is an integral operator such that

r(jP<») (A)) = fl(-{w - ™, Λ<w>) . (5.14)

T&e operator FW is an integral operator satisfying Eq. (5.14) with n = 2.
Proof. Suppose that w ^ 3. By repeated application of resolvent

Eq. (4.7) for small numbers of particles, the term Q(n) in the resolvent
equation can be written in such a form that resolvents other than Eo

only occur in the combination F™ = K(ni)EM. The term Q(n) can
thus be written as

where Q^ consists of a finite number of terms Q^ of the form

, (5.15)
2 ; (n, - 1) + (p - 1) == n - 1 .

This yields

F(n) = ^(n) ^(n) _ gin) jβ(n) ^ [ ] ()

To prove the lemma, we now consider each term on the right separately.
Term 1. On L2(k), the resolvent R^ (A) is the operator of multiplica-

tion by (&2 — A)"1. Hence, if K^ is an integral operator, so is ^ ^
By the definition of the r-norm

r(K^ (A) E(ri (A)) ^ r{K^ (A)) s u p | F - A^ 1 .
Because

sup |& 2 - Al"-1 = Jθ(— 1,0),
3*
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it follows with lemmas 5.1.1 and 5.1.2 that

Term 2. Owing to Eq. (5.15), the term KM QM is a sum of terms
K{n) Q*f of the form

(2πi)-' J KM (λ) F^iσJ F^(σ2 - σj . . . FM)(σ. - a^J

The integrand is an integral operator in the class (re) of L2(R3n~3), by
the data of the present lemma and appendix A2, lemma A 2.

By repeated application of appendix A3 and lemma 5.1.3 it follows
that KM Q^ is an integral operator such that

r (*<"> (λ) QM (λ)) = β ( _ I n + i- ί,_l., 4

Since p does not exceed n — 1, it follows with lemma 5.1.1 that

(5.18)

I t may be remarked here, that the integral kernels of the operators
KM (λ) Q^iλ) can be found with the procedures given in appendix A2,
lemma A2 and appendix A3.

Term S. This term is most easily discussed in terms of the Schmidt-
class (appendix A1 and A2). Since KM is in the class (re) by assumption,
and RM is a bounded operator, it follows that [KM]2 EM is in the
Schmidt-class. This operator is therefore an integral operator. Owing to
Eqs. (A1.18) and (A2.10)

r([KM (A)]2 EM (A)) 5J σ([KM (λ)f EM (λ))

£ [r(KM(λ))γ\\RM(λ)\\.
Since

by Eq. (3.13), it follows that

r([KM (λ)f RM (λ)) = Ω ί - ~ n - | - , ΛM^ . (5.19)

The required result (5.14) now follows from Eqs. (5.17—19) and lemma
5.1.1. This proves the assertion for n ^ 3.

If n = 2, the term QM is absent. The assertion on JF<2) can be justified
by the arguments for term 1 and term 3. This completes the proof of
lemma 5.4.
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Lemma 5.5. Let F(m), F^m){HQfl2 and !£>> be integral operators such
that i Λ 7 \

[ Λ ^ η (2 ̂  m ̂  n - 1),

(λ) (#0)
1/2) = Ω ( - ~ m - - | , Λ « ) (2 ̂  m ^ w -

F(n) {HQ)1/2 is an integral operator such that

r(ί < ) (λ) (#o)1/2) = β ( - y » - I " , ̂ ( n ) ) (5-20)

operator FW {HQ}1/2 is an integral operator satisfying Eq. (5.20) with
n = 2.

Proof. This lemma can be proved in much the same way as lemma
5.4, the only difference being that one requires the relations

The first of these is obvious, the second follows from Eq. (3.15).
Theorem 5.6. For every n ^ 2, the operators K^, FW and F

are integral operators satisfying Eqs. (5.5), (5.14) and (5.20).
Proof. For n — 2, the assertion follows from lemmas 5.2, 5.4 and 5.5.

Now suppose that it has been proved for n = 2, . . ., N — 1. Then for
n = N it follows from lemmas 5.3, 5.4 and 5.5. The theorem can thus be
proved by complete induction.

Because the operator 1£>) (λ) is in the class (re), it is also in the class
(ρc) discussed in appendix Al. Given Q^(λ), this makes it possible to
solve the resolvent equation explicitly. The method of solution is ex-
plained in section 6. In the cause of the argument, the following result
is used.

Theorem 5.7. For n ^ 2, the ρ-norm of KW (λ) satisfies

the constant on the right depending on n.
Proof. Because ρ(K) ^ r(K), lemma 5.2 yields the inequality (5.21)

for w = 2.
Now suppose that Eq. (5.21) has been proved for n = 2, . . ., N — 1.

Consider the integrals by which one will evaluate the ρ -norms of the
operators F^- D (σ) 4 2 ) (λ - σ) Vjn and F™ (τ) F™ (σ - τ) R{

0

2) (λ - σ) F,,
[appendix A2, Eq. (A2.9)].
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According to theorem 5.6, the relations (5.3) and (5.4) are true. Hence
all the statements in the proof of lemma 5.3 are correct. In particular,
the two operators under discussion have finite r-norms, and so the
integrals for their ρ-norms converge absolutely. Owing to this, the order
of integration may be changed. With Schwarz's inequality, this makes it
possible to derive inequalities of the forms (5.9) and (5.12), with r
everywhere replaced by ρ.

Now the ρ-norm, unlike the r-norm, satisfies the useful relations

ρ(KB) £ ρ(K) \\R\\ , ρ(KR(Hoγη <: ρ(K) \\R(H0)V*\\ . (5.22)

Given Eq. (5.21) for n = 2, . . ., N - 1 and Eqs. (3.13) and (3.15), the
relations (5.22) enable bounds to be derived for ρ (JF<W>) and ρ (ίW (iyo)

1/2),
with n = 2, . . ., N — 1. If these are combined with Eq. (5.10) and the
integrations over a and τ are performed using appendices A3 and A4,
the desired result (5.21) is obtained for n = N. By complete induction,
Eq. (5.21) thus holds true for every n ^ 2.

6. The Solution of the Resolvent Equation

6.1. A Generalized Fredholm Formula

Choose any / ζ L2, write

and consider the equation

(6.1)

for any λ other than λ ^ Λ^\ Because K^ (λ) belongs to the class (ρc),
this equation can be solved explicitly by a generalization of the Fred-
holm theory of integral equations. Details of this formalism will be
published in a separate paper [35]. In the present section we summarize
the more important results.

For values of λ for which the homogeneous equation h = K^ (λ) h
does not possess a solution, Eq. (6.1) has precisely one solution, which is
of the general form

h = h9 + Z<»> (A) h0 + [<5<"> U)]- 1 Z<»> (λ) h0. (6.2)

Here Z(w)(A) is an operator and δ^(λ) is a number. The homogeneous
equation has a non-vanishing solution if and only if δ^(λ) = 0.

The quantities Z(n)(λ) and ό(n)(A) are most easily constructed with
the help of the series expansions

Z<»>(λ) = Σ 4n)W , <3W(A) = Σ W ) . (6.3)
q=0 g=0
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Given KSn\X), the terms of the series can be found by the recurrence
relations

= a<»> (λ) [KM (λ)]* + Z<»Λ (A) ZW (A) (g ^ 1) ,

δp>(λ) = 1, όi»>(A) = ό^>(λ) = 4»>(λ) = 0 , ( 6 * 4 )

d™ (λ) = - q~i tr Z<»_> 4 W [X(w) (A)]2 (g ^ 4) .

Because Kin)(λ) is in (ρc), the operator [Z(w)(A)]2 is in the Schmidt-
class (ore) and [i£(n)(/l)]4 is in the trace-class (τc). The quantities Z£n)(Λ)
and (5^(λ) are therefore properly defined, and the Zj^(λ) are in (σc).
The series for <5(n)(λ) converges absolutely, the series for Z(n)(A) con-
verges in the Schmidt-norm.

Some remarks on this solution and its connection with the classical
Fredholm theory will be given in section 9.

Owing to Eq. (6.2), the solution of the resolvent equation takes the
form

B(n){λ) = Q^(λ) + KW(λ) Q(n)(λ)

Because Z ( n ) is in (σc), the quantities Z ( w ) and Z ( w ) Q^ are integral
operators. By the proof of lemma 5.4, i£ ( w ) Q^ is also an integral
operator.

6.2. The Fredholm Denominator

If / and g are two functions in L2, the quantity (R^ (λ) f, g) is analytic
in the A-plane cut from Λ^ to oo. Since Q (n) is a sum of resolvents, it
is also analytic. Hence so is F{n\ by Eq. (4.10). From Eqs. (4.12) and
(4.13) and the properties of the convolution product it now follows that
K{n) is analytic in the A-plane cut from Λ^ to oo. This suggests the
following lemma.

Lemma 6.1. The Fredholm denominator d^n\X) is analytic in the
λ-plane cut from Λffl to oo.

Proof. Because K^ is analytic, it follows from the recurrence
relations (6.4) that δ^ (λ) is an analytic function for every q. I t is shown
in [35] that

\δ^(λ)\ ^ (Zelqfr [ρ(KW(λ))f . (6.6)

If ε and ε' are two positive numbers, the series Σ tyf* W thus converges
uniformly in the region

0 < ε < \λ - Λ^\ , 0 < ε' < arg(A - Λ^) < 2π - ε',

by Eq. (5.21). The sum (5(n)(A) is therefore analytic in the A-plane cut
from Λ^ to oo. This proves the lemma.
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According to Eqs. (6.4) and (6.6), δ(n){λ) tends to 1 as λ tends to - oo.
Hence δ^ (λ) does not vanish identically, and it can have only isolated
zeros. It vanishes at λ = λx if and only if there is an element φx ζ L2 such
that φx Φ 0 and

[1 - Z<»> (λx)] φκ = Q<»> (λx) (H -λx)φx=O. (6.7)

Here ζW (λx) # is the bounded operator which is the adjoint of
^ (λx). The relation (6.7) is equivalent to

fl + Σi- 1)" (* -1)] Σ 4 w ( y *W)1 [1 + ̂ (K) V] φΛ= 0 . (6.8)

Now suppose that there is a non-trivial element φx ζ§> (Ho) such that

(H -λx)φx = O. (6.9)

Then δ(n) (λx) = 0, so λx is an isolated singularity of RW(λ). Owing to
Eq. (3.11) it must be a simple pole. Because KW (λΛ) is a compact
operator, the multiplicity of its eigenvalue 1 is finite. Hence, by Eq. (6.7)
the multiplicity of the eigenvalue λx of H is also finite.

Conversely, let δW (λx) — 0. Then there are two possibilities.

Case 1. There is an element φa ζ L2 such that

[1 + R0(λx) V] Ψx = R0{λx) (H - λx) <px = 0 . (6.10)

For n = 2, this is in fact the only possibility. It yields

B0(λx)HΨx=λxB0(λx)φx.

It is obvious that the right member of this relation is in ξ>(H0). Hence
H φx is in L2 and φx is in ®(H0). From this it follows that Eq. (6.9) is
satisfied. The resolvent therefore has a simple pole. Because H is self-
adjoint, Aα must be real. The spectrum of H is bounded below, so λx is
restricted to a finite interval of the negative real axis. Define

j\W) = min λx , if there are zeros λκλ x ,
(6.11)

Λ{n) = Λφ , otherwise .

Case 2. There is an element φx £ L2 such that

+ Y(- Vk (fc - i)! Σx%(k) VviJc] χ«= o.
k = 2 p(k) J

In this case λa is not an eigenvalue of H. The quantities Z<n> (λx) and
ό(n) (Aα) vanish simultaneously in such a way that the resolvent is analytic
in the neighbourhood of λ = λΛ, λx included. The number λx may be
complex. For n = 2 this case does not apply. For n =« 3 an example of
these spurious zeros was discovered by FEDERBUSH [43] and discussed
by NOBLE [44]. It is not known if the spurious zeros can be avoided by
imposing suitable conditions on the interaction.
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The FADDEEV equations do not give rise to such spurious zeros ([2],
theorem 7.1), and it was pointed out recently by NOBLE [45] that they
do not occur either in the equations proposed by ROSENBERG [10] and
NEWTON [11].

7. The Spectrum of the Hamiltonian

First, some remarks will be made on the spectrum of a self-adjoint
operator T. It consists of the numbers λ for which the operator T — λ
does not possess a bounded inverse. In defining different parts of the
spectrum, we will follow KATO ([39], Ch.X, sections 1.1. and 1.2) and
RIESZ and SZ.-NAGY ([46], sections 132 and 133).

The point spectrum consists of the eigenvalues of T. Let P be the
orthogonal projection on the subspace, spanned by all the eigenspaces
corresponding to the different eigenvalues. The continuous spectrum of T
is then the spectrum of T{\ — P). Finally, the essential spectrum is
obtained by removing from the spectrum the isolated points which are
eigenvalues with finite multiplicities. The essential spectrum thus consists
of the continuous spectrum, the limit points of the point spectrum and
the eigenvalues with infinite multiplicity.

The essential spectrum may be characterized as follows ([46],
section 133).

Lemma 7.1. The number λ belongs to the essential spectrum of T pre-
cisely if there exists a sequence {fp} ζΦ(T), such that

for any element g in the Hilbert space.
We will prove in this section, that the essential spectrum of the

Hamiltonian ranges from ΛQI) to oo. Hence, according to Eq. (6.11),
Λ^ is the lower bound of the spectrum of H. I t is not known, whether or
not the interval [Λty\ oo) contains a part of the point spectrum.

Theorem 7.2. The essential spectrum of the Hamiltonian HW runs
from Λ^ to oo.

Proof. We first show that the half-line [0, oo) belongs to the essential
spectrum. Choose some set of coordinates of the type considered in sec-
tion 2.1. Each term kf of the kinetic energy H^ can be considered as
an operator on .L2(/^). It has a continuous spectrum from 0 to oo. It
follows from lemma 7.1 that for any μ ^ 0 there exists a sequence
{dp(ki)} such that

O (7.1)

[HQ -(n- l)-i μ] d,\\' = {/[&? - (n - l)-i μf {d^k.ψ άPty/* ~> 0 ,

the second relation being true for every g{k^) ζ£ 2(fc z ). In the present
case, the functions dp(ki) may be chosen non-negative.
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Now define the sequence {fv} in L2(k1, . . ., kn^) by

f9(k1,...,kn.1)='πdp(ki). (7.2)
ϊ = l

Then it is obvious that /,, £ §>(H0). It follows from Eq. (7.1) that, for
any geL*(Rs«-η

I U = 1 , (/,,(/)-0, K H ^ - ^ / J - ^ O . (7.3)

In order to prove that μ belongs to the essential spectrum of H(n\ it
is sufficient to show that |]F^ /J tends to 0 for any term ViS of the
potential energy F. Suppose that

n-l

Λ = l

Then at least one of the numbers ch differs from 0. Let it be cv The
relations (5.6) and (3.3) then yield

(VijfvHkί,...,kn-i)

[ n-l "I n-l

Wu(m) x Σ tiΛK - chm) JJ dh(kh - chm)
A = 1 J A = 1

= K|-» su • J Wu(^f±) x ̂  +*Σ }
• d, (y S 1 d, (kh -f(h- h)) <Ph.

From this it follows with Schwarz's inequality that the norm of Vijfp is
not larger than the sum of the norms of the two functions

h\~3*it I w

and

Cl J W
ti A - 2

because the functions dJ)(ki) are non-negative.

Write Wi:} for the integral operator on L2(kx) with kernel
). Then it is clear that

l|F,,y ^ const nWuW*d,i' + ιwtidpy
Here the primed norms are those in L2(RZ). It has been used that

Kll' = i.
According to Eq. (7.1), ((Ho + 1) d9, g)f tends to 0 for any g ζ L2(B8),

that is, the sequence {(Ho + 1) dp} converges weakly to 0. By the proof
of lemma 3.1, the operators TF^ (#0)1 / 2 -#o(~ ι) a n d WiSR0{- 1) belong
to the class (re) of L2(RZ), and so they are compact. As a consequence,
they transform the sequence {(^0 + 1) dp} into strongly convergent
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sequences. From this it follows that

° | F , , / , | - * 0 . (7.4)

With Eq. (7.3), this shows that the half-line [0, oo) belongs to the
essential spectrum of H(nK

It follows from section 6.2 that the half-line (— oo, Λψ>) does not
contain points of the essential spectrum of H<nK So if ΛQ^ = 0, the
assertion of the theorem has been proved. In particular, the assertion is
true for n — 2.

On the other hand, let Λ^ be negative. Then Λ^ can be split into
numbers Λ^ni) and Λ^ according to Eq. (4.14). At least one of the
numbers must be negative. Let this be Λ^ni\ Then Λ^ is either an
eigenvalue of H(7ll\ or it is equal to Λ^. In the latter case it may be
split further. Because ΔSn^ can only be negative owing to one or more
subgroups of the n-particle system having bound states, it follows, ulti-
mately, that A$* is the sum of energies of bound states of subgroups.

Now choose internal coordinates in these subgroups, and denote these
by k^h Introduce coordinates kW to describe the motion of the remain-
ing particles and the centres of mass of the subgroups. Write H(l) for
the Hamiltonian which refers to the internal motion of the subgroups.
Then there exists a function φ(k^) of norm 1 in L2(k^) such that

In L2(kW) a sequence {fP{kW)} can be constructed with the properties
(7.2) and (7.3). If FP is now denned by

Fp(k)=φ(kV>)f9{k<*>),

t h Θ n 11̂11 = 1. (^)-O (7.5)
for any g £ L2{EZn~-3). Also,

[H(l) - Λ^] Fp = 0 , || [ίΓ0(2) - μ] Fp\\ -> 0 .

The argument for the half-line [0, oo) can be repeated to show that || V{ i Fp ||
tends to 0 for every interaction Vii which does not occur in H(l). Hence

l(H-Λ^-μ)Fp\\->0. (7.6)

By Eqs. (7.5) and (7.6) and lemma 7.1, Λ^ + μ belongs to the essential
spectrum of H^ for every μ ̂  0. Since (— OO,ΛQ^) does not contain
points of the essential spectrum, it follows that theorem 7.2 is true.

8. The Coulomb Interaction

In the context of the present paper, the difficulties associated with
the spin-orbit coupling are due to the factor kiS in the interaction (2.13).
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This factor results in the interaction having a very long range in mo-
mentum space. In the case of a short-range interaction, one would expect
the operator K^ (λ) to be in the Schmidt-class (σc), but, as we have seen,
it is merely in (ρc). Now it is pointed out in appendix Al that the class
(ρc) is invariant under unitary transformations. This suggests that it
also refers to interactions with a long range in position space. The
Coulomb interaction is now examined as an example of these.

In a system of n particles with two-body interactions of the form

Vij(xu) = eijjxij, (8.1)

it is well known from Kato's work ([39], Ch.V, sections 4 and 5) that the
Hamiltonian (2.7) is a self-adjoint operator with domain ®(H0). Its
spectrum is bounded below, and so the resolvent satisfies Eq. (3.13). If
Λ^ is defined by Eq. (4.14), it follows from papers by ZHISLIN [47] and
DOLLARD [48] that AQ^ is the lower bound of the essential spectrum of
H, which is continuous in the strict sense.

Now consider two particles and examine the operator — Ro (λ) V for
non-positive λ. In the position representation this is an integral operator
whose kernel is

l ^ - y1\~1 yτ1 (8.2)
Thus,

f^ix^y^Kix,, yί)\ dϊxx

= const (Imλvη-i exp [- Imλ1/* \yx - y[\] yr1 y'r1 •

To obtain the r-norm r(R0(λ) V), one must square Eq. (8.3) and integrate
over yx and y[. Choosing u = yx — y[, v = ί/l5 we have

const(Imλ1/2)-2 / e x p [ - 2ImA1/2^] υ-*\v _ u\~2 d3u dzv

= const (ImA1/2)-2 / exp [- 2ImA1/2^] u-1 d3u = const (ImA1/2)-*.

This shows that the operator — E0(λ) V is in the class (re) and satisfies

r(R0(λ) V) ^ const(Imλ1/2)-1 . (8.4)

In the notation of section 5.1 we have for two particles

(8.5)

This result is to be compared with lemma 5.2. There is an analogue of
lemma 5.3 which reads as follows.

Lemma 8.1. Let the operators F^ be integral operators such that

r(FW (λ)) = β ( - { m - | , Λ(mή (2 ̂  m ̂  n - 1). (8.6)

Then KW (λ) is an integral operator such that

r(#»> (A)) = Ω ( - -g- n + y , Λ^) . (8.7)



iV-Body Problem 45

Proof. First examine the terms Z<#2) of the form (4.13). If F^n

is in the class (re), then so is

The analogue of Eq. (5.9) is

r(F<»-i> (σ) R$\λ - σ) Vin) g ^ ( J C - D (<τ)) r,(ZW (A - σ)) .

This yields

([J-(»i) *

with Eqs. (8.5) and (8.6), appendix A3 and lemma 5.1.3. That is, the
terms K^2) °ί the form (4.13) are compatible with Eq. (8.7). There is
a similar argument for the operators K^fy) °f the form (4.12), which
proves Eq. (8.7) for the full kernel JEW (λ).

We proceed to the analogue of lemma 5.4.
Lemma 8.2. Let F^m) and .fi>> be integral operators such that

Λ^mή (2 ̂  m ̂  n -

Then FW is an integral operator such that

) (8.8)

Proof. As in the proof of lemma 5.4, it is convenient to decompose
F(n) according to Eq. (5.16) and to consider three types of terms
separately.

Term 1. This is a term K^n) B^K Because in the present section we
are considering the position representation, R^ is an integral operator
whose kernel is of the form G^ι)(x - y; λ) ([18], Eq. (1.2.17)). From this
it follows with Schwarz's inequality that

x - y, λ)\ dSn~s(x - y)

^ const r(ZW(l)) \λ\*n~% (ImλV*)~^ +1

([18], Eq. (1.7.83)). Thus, with Eq. (8.7),

r(K(") (λ) iφ> (λ)) = Ω ( - y n - y , 4»>) . (8.9)

Term 2. This is a sum of operators of the form

KM Q^ - Z<*> ί W * * F^ *R(*), 2<p<n.

Here, R^ can be handled as indicated under term 1. The further analysis
follows the lines of term 2 in the proof of lemma 5.4. The result is

r (Λ» (λ) Qf (λ)) = Ω(-n + ±p-~, Λ&) , (8.10)

a relation which is compatible with Eq. (8.8) because p <n.
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Term 3. I t remains to discuss the term (i£<n))2 RW. As in the proof
of lemma 5.4, this satisfies

r([JΓ<»> (λ)f Λ<»> (λ)) £ [r(Z<»> (λ))f |Λ< > (A)|,
and so

r ([#<«> (λ)f BW (λ)) = Ω(-n, Λ<&) . (8.11)

The results (8.9—11) together with lemma 5.1.1 now lead to Eq. (8.8),
which concludes the proof of this lemma.

Again, consider the case n = 2. The relation (8.5) gives an estimate
for r (i£(2>). From this an estimate for FW follows with lemma 8.2. Next,
lemma 8.1 leads to an estimate for r(K^). Then again lemma 8.2 gives
an estimate for r(F@)), and so on. Summarizing, we have the following
theorem.

Theorem 8.3. For a system of n particles with Coulomb interactions, the
operators KW (λ) and FW (λ) defined by Eqs. (4.8) and (4.10) are operators
in the class (re) of position space. Their r-norms satisfy Eqs. (8.7) and (8.8).

This is the analogue of theorem 5.6. If we restrict ourselves to values
of λ not in the essential spectrum of the Hamiltonian, the Fredholm
theory of section 6 makes it possible to find the resolvent RW (λ) for
n particles with Coulomb interactions.

We will conclude this section with some remarks on the momentum
representation. The potential energy is then defined by

(Vu /)(fe1; . . , K-J = (2π)-» β < i / \k, - h\-2f(li> *2, , *»-i) dfih ,

where kx = fe^ etc. Thus, V is a properly defined symmetric operator on
§)(H0), leading to a self-adjoint Hamiltonian with domain ξ)(HQ). The
relations (8.4—8) remain valid for the r-norms in the momentum represen-
tation. This is not a trivial result, because the r-norm is not unitarily
invariant. However, the relation (8.4) and the lemmas 8.1 and 8.2 can
be proved without difficulty for the momentum representation.

9, Discussion

For certain classes of long-range interactions, we have formulated an
equation for the w-particle resolvent R(λ), and we have shown that this
has a kernel K(λ) which belongs to the class (ρc). This enables the equa-
tion to be solved by the methods of section 6. I t appears worth while
to comment briefly on the significance of this procedure.

Consider the equation
h^h^ + Kh, (9.1)

where hQ and K are known and h is to be found. The classical Fredholm
theory gives a solution in the form

h = Dhojd , (9.2)
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where D is an operator and d is a number. Both D and d can be evaluated
explicitly. These quantities involve K and all the powers Kp, as well as
the traces tvKp (p = 1,2, . . .). The solution can therefore only be expected
to hold for kernels K in the trace-class.

If it is merely known that K is in the Schmidt-class, tτK does not
necessarily exist. However, K2 still is in the trace-class, and so the
equation _ Ί __τ τ r o 7

4 h = ho + Kh0 + K2h (9.3)
can be solved by the classical theory. In practice, however, this is never
done. One prefers the modified Γredholm theory due to SMITHIES [42],
in which D and d are replaced by quantities which no longer depend on
trK. Now if K is merely in the class (ρe), then tτK, trK2, and tτKz need
not exist. On the other hand, K2 is in the Schmidt-class in this case, and
so Eq. (9.3) can be solved by Smithies's formulas. We have chosen not
to do this, however, and we have further modified the expression for
D[d so as to eliminate also trK2 and tΐK3. This is the contents of section 6,
which thus generalizes Smithies's ideas.

If instead of Eq. (9.1) one considers Eq. (9.3), then the corresponding
homogeneous equation has an eigenfunction h = K2h not only if there
is a function h such that h = Kh, but also if h ~ — Kh. Thus, the
Fredholm denominator may have spurious zeros which are cancelled
exactly by zeros of the numerator. These spurious zeros are avoided if
one adopts the modified solution which applies directly to Eq. (9.1). This
thus results in the Fredholm numerator and denominator having a less
complicated structure. One may hope that it makes the Fredholm series
converge better. It is not difficult to see that this method for long-range
interactions can also be used profitably in the context of the FADDEEV

[1, 2] and ROSENBERG-NEWTON [10, 11] equations.
Our results on the resolvent R (λ) apply only in the A-plane cut from

a certain point ΛQ to oo. For spin-orbit interactions, it is shown in sec-
tion 7 that ΛQ is the lower bound of the essential spectrum of H. The
method of proof is different from, but related to, an argument for local
interactions due to HUNZΓKER [49]. Similar work was done by ZHISLIN

[47]. The results of these authors apply to the Coulomb interaction as
a special example. Our method can also easily be formulated so as to
include this case.

In all this work on the essential spectrum, very few assumptions are
made about the interaction, but also very little information is gained on
the detailed structure of the spectrum. This question was discussed from
a general point of view by GLAZMAN ([50] section 65). For short-range
local interactions, one can use the time-dependent scattering theory due
to JAUCH [51] and discussed by KATO ([39] Ch.X), and one can show that
that there exist wave operators [52, 53]. From this it then follows that
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the Hamiltonian H contains parts which are unitarily equivalent to
Hamiltonians that refer to the system of n particles being split into
a number of subsystems which are allowed to move freely with respect
to one another. For three particles with sufficiently smooth interactions,
it was shown by FADDEEV ([2] theorem 9.2) that the sum of all parts
of H so obtained in fact accounts for all of the essential spectrum of H,
which is thus absolutely continuous. DOLLARD [48] generalized the
method of wave operators to Coulomb interactions, and the essential
spectrum of the Coulomb Hamiltonian was also discussed recently by
WEIDMANN [54]. For interactions with a long range in position space,
there is at present very little known beyond this. As regards the spin-
orbit coupling, which is non-local and has a long range in momentum
space, a preliminary investigation indicates that wave operators do exist
if the functions Wij(k) are somewhat more restricted than is indicated
by Eq. (3.5). This would give some additional information on the struc-
ture of the spectrum. Eventually, however, one will want to construct
R(λ) explicitly for all values of λ on the real axis. This requires further
investigation.

Appendix

A1. Compact Operators on a Separable Hilbert Space

In the present paper, we are concerned with a Hilbert space $) whose

dimension is finite or denumerably infinite. If / and g are any two

elements of £), their inner product is denoted by (/, g), the notation being

such that / i # s n,i >, /Λ i τ\

(oίf, βg) = ocβ(f,g) (A 1.1)
for every pair of complex numbers α and β.

By the term "operator" is meant ''linear operator". If A is an
operator on £j, its bound is

μ i = sup μ/j|. (A i.2)
0/11 « i

If μ | | is finite, the operator A is called bounded.
A bounded operator is called compact or completely continuous if it

transforms every weakly convergent sequence into a strongly convergent
one. In other words, let / be an element of $), and let {fn} (n = 1, 2, . . .)
be any sequence such that

lim (/„,<?) = (/, <?) (A 1.3)
n—> oo

for every g in ξ>. Then A is compact if and only if Eq. (A 1.3) implies that

lim μ / n - . 4 / 1 = 0 . (A 1.4)
n—> oo

The compact operators are precisely the ones that admit a polar de-
composition of the form

i
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Here {φ^ and {ψ^ (ί — 1,2, . . .) are orthonormal sets in §, and the
quantities λι are positive numbers such that λ{ tends to 0 as i tends
to oo (SCHATTEN [55] p. 18).

If A is compact and p is any positive number such that p ̂  1, one
m a y d e f i n e μ«^[iw]r (A i.6)
This quantity has the properties of a norm, as is brought out by the
following relations.

\\A\\P ^ 0; \\A\\P = 0 implies A = 0 ,

\\ccA\\φ = |α| \\A\\P for any complex number α , (A 1.7)

μ1 +4,1, <; μj,+ μ.L.
The p-norm defined by Eq. (A 1.6) was investigated in great detail by
SCHATTEN [55]. The relations (A 1.7) can be proved by combining various
sections of Schatten's book.

If X and Y are any two bounded operators,

In particular, for unitary operators U and V one has

11174711,= μ i , . (A 1.9)
If Sξp denotes the class of compact operators A for which \A\^ < oo, it
is easy to see that

β.sjξ,, μ i ^ μ i , (Up^j). (A l.io)
Also, whenever A is compact,

\\A\\ = max{AJ, (A 1.11)
i

and so |μ| | ̂  \\A\\V ( ^ 1 ) , (A 1.12)

With the norm \A\pi the class Sξ̂  is a normed linear space. It follows
from Schatten's work ([56] Ch.V, section 11, see also [55] Ch.V, section 7)
that this is complete, hence a Banach space.

In the present paper, the cases p = 1,2, and 4 are of particular
importance. The corresponding classes and their norms are denoted by

(τc) = ®!, τ(A) = \\A\\X (trace-class),

(σc) = ^ a , σ(-4) = |μi||2 (Schmidt-class), (A 1.13)

If A is in the Schmidt-class and {χj, {ωj are two complete ortho-
normal sets in §, the Schmidt-norm σ{A) satisfies

[σ(A)f = Σ \\AXi\\* = Σ \AXi, ω,)|2 = Σ U*°>iV ( A L 1 4 )

([55] p. 29). For operators in the trace-class, the trace is defined by

tvA=Σ{A%i,Xi) (A 1.15)
4 Commun. math. Phys., Vol. 11 *
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([55] p. 37). I t satisfies

If A and B are in the Schmidt-class, then A B is in the trace-class and
the norms τ and σ are related according to

*)= [a{A)f,
(A 1.17)

Likewise, if A and B are in the class (ρc), then A B is in the Schmidt-

class, with σ{A*A) = σ(4.4*) = [ ρ ^ ) ] 2 ,
(A 1.18)

A 2. Integral Operators

As our Hubert space, we now choose a space consisting of square-
integrable functions. Specifically, let Rn be the set of all systems of
n real numbers (x11 . . ., xn), where each xi may vary continuously over
the interval — oo < xi < oo. Let Zm be the set of all systems of m real
numbers (sl9 . . ., sw), where each s3- takes certain discrete values only.
If X stands for some finite or infinite interval in Rn x Zm, the set L2 (X)
consisting of all functions which are square-integrable over X is a Hubert
space. In this space, the inner product takes the form

(f>9) = Σ //fe,.. .,α;w,s 1,. . .,θJg(^ 1,. . . ?ί i :w,s 1,. . .,5j^Λ: 1 . . .^^. (A2.1)
Si

I t is convenient to take the variables together and to denote them by x.
This yields ( / > g) = ; f{χ) -{χ) dχ ( A 2 2 )

An integral operator on L2(X) is an operator which acts according to

(Af)(x) = jA(x,y)f(y)dy, (A 2.3)

the function A (x, y) on X x X being the integral kernel of A.

On JL 2 (X), the Schmidt-class is precisely the set of all integral
operators whose kernels belong to L2(X x X). The Schmidt-norm is
given by σ { A ) = [ f f μ ^ y ) j , ̂  ^ ] 1 / 2 _ ( A 2 Λ )

If 4̂X and ^.2

 a r e a n y ̂ w o operators in the Schmidt-class of L2(X), their
product is an integral operator with kernel

μ ^ 2 ) (x, y) = / Ax(x, z) A2(z, y) dz . (A 2.5)

The adjoint A* is an integral operator with kernel

A*(x,y) = I(y,x). (A 2.6)

For the special case of the space L2(0, 1), these statements are proved
in Schatten's book ([55] p. 35). The proof also applies to more general
spaces L2(X).
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Now suppose that the operator A belongs to the trace-class. Then it
is in the Schmidt-class, and so it is an integral operator. Its trace is
given by

tτA = / B(x, y) C(y} x)dxdy = f A (x, x) dx , (A 2.7)

where B and C are two Schmidt-operators whose product is A.
If, on the other hand, it is merely known that A is in the class (ρc),

then the situation becomes much more difficult. It is not obvious that A
is still an integral operator, and if it is, its kernel may be very unman-
ageable. It is in view of this complication that we now define a subset
(re) C (ρc) which consists entirely of integral operators with useful proper-
ties analogous to Eqs. (A2.5) and (A 2.6). This set is investigated in detail
in a separate paper [35]. For easy reference we only quote some major
results here.

An integral operator is said to belong to the class (re) if its kernel
A (x, y) is a measurable function on X x X satisfying

[r(A)Y =f\A (x, y) A (xf, y) A (x, y') A (x'} y')\ dx dx' dy dy'

= f[f\A (x, y) A (x', y)\ dyf dx dx' (A 2.8)

= / U\Mx, y)A(z, y')\ dxf dy dy' < oo .

If A is in (re), it is bounded. In fact, it is in (ρc). The norm ρ(A) can
be evaluated according to

[ρ (^)]4 = / A(*> V) A {*, y') A (x\ y) A(x', y') dx dx' dy dy', (A 2.9)

the integral converging absolutely owing to Eq. (A 2.8). This relation
shows that ρ(A) does not exceed r(A). More generally, one has

(σc) S (re) Q (ρc),

σ(A)7zr(A)>ρ(A).

If A (x, y) is the kernel of an operator A in (rc)} the kernel of A* is given
by Eq. (A 2.6). The product of two operators in (re) is an integral operator
whose kernel satisfies Eq. (A 2.5). For any two functions / and g in
L2(X), and any operator A in (re), one has

j\g{x)A{x,y)f(y)\dxdy<\\f\\\\g\\r(A). (A 2.11)

In defining the class (re), use is made of the special realization of the
Hubert space. The class (re) can therefore not be expected to have the
same general significance as the classes &v. To be specific, the quan-
tity r(A) has the properties of a norm, thus defining (re) as a Banach
algebra. Unlike the ρ-norm, however, the r-norm does not have the
properties (A 1.8) and (A 1.9). In [35] an example is given of an operator
in (ρc) which is not in (re). The present paper is essentially devoted to
studying operators in (re) which are not in (ae).
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In dealing with products of operators, the following lemma is useful.
Lemma A2. Let A be an operator in the class (re) of the space L2(X1)i

let its kernel be A(xvyx), and let its r-norm in L2(X1) be denoted by rx(A).
Let B be an operator in the class (re) of the space L2(XX x X2), let its kernel
be B(xx, x2\ yXί y2), and let its r-norm be denoted by r(B). Then the products
A B and BA are integral operators in the class (re) of the space L2 (Xx x X2).
Their kernels are given by

(A B)(xli x2\ yx, y2) = f A (xv zx) B(zv x2; yv y2) dzx, (A 2.12)

(BA){xl9 x2\ yv y2) = f B(x1} x2\ zx, y2)A{z1, yx) dzx. (A 2.13)

The r-norms satisfy

r(AB) ^ r1(A)r(B) , (A 2.14)

r(BA) rg r1{A)r{B). (A 2.15)

Proof. Consider the operator G whose kernel is given by

G(xx, x%\ y1 y2) = / \A (xx, zx) B(zx, x2; yl9 y2)\ dzx . (A 2.16)

It is not difficult to show that C belongs to (re). In fact, straight forward
application of Schwarz's inequality yields

r(C) g rx(A)r(B) . (A 2.17)
Owing to Eq. (A 2.11),

/ \g{%!> X2) A (xv zi) B(zi> »a> Vi> 2/2) f(Vi> 2/2)1 dxx dx2 dyx dy2 dzx

^\\f\\\\g\\r1(A)r(B).

The theorems of FUBINI and TONELLI on repeated and multiple integrals
now immediately yield Eq. (A 2.12). Next, Eq. (A. 2.14) follows with
Eq. (A. 2.17). The relations (A 2.13) and (A 2.15) can be proved by
regarding BA as the adjoint of A* B*. This completes the proof of the
lemma.

A 3. Integrals of Operators

Let t take values in a measurable set T in Rn. Suppose that, for every
t in T, there is a bounded operator A (t) acting on some Hilbert space ίj.

Define^by (Af.g)-f(A{()f,g)dt, (ΔS.l)
T

for every / and g in § .
Lemma A3. Let A (t) be an operator on a space L2(X) for every t in T,

let it be in the class (re), and suppose that

fr(A(t))dt<oo. (A 3.2)
T

Then the operator A defined by Eq. (A 3.1) is in (re). If A(x,y; t) stands
for the kernel of A (t), then the kernel of A is given by

A(x,y) = fA(x,y;t)dt, (A 3.3)
T
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the integral converging absolutely for almost every x, y. Also,

r{A) g fr(A(t))dt, (A 3.4)

ρ(A) ^ fρ(A(t))dt. (A 3.5)
T

Proof. Choose / and g in L2(X). By virtue of Eq. (A 2.11)

fdtf \g(x)A(x, y; t) f(y)\ dxdy g ||/|| ||^|| / r(A(t)) dt < oo . (A 3.6)
T T

Hence
(Af, g) = fdtf g(x) A (ar, y ; t) f(y) dx dy

T (A 3 7)
= / g(x) Γ / A (x, y; t) dt\ f (y) dx dy .

This yields Eq. (A 3.3). The relation (A 3.4) follows from this with the
help of Eq. (A 2.8) and Schwarz's inequality. Similarly, Eq. (A 3.5)
follows with Eq. (A 2.9). The argument requires certain integrations to
be interchanged this is permitted because all integrals involved converge
absolutely.

A 4. Some Integrals

Let a and b be complex numbers such that

b — a = 21 exj)(iφ) , (A 4.1)

where I is positive and 0 < φ < 2π. Let C be the path in the complex
z-plane given by

^ = Y (# + b) + t exp ί Y iφ\ (- oo < t < oo) . (A 4.2)

Consider the integral

Ji = / V ~ α|α[Im(z - α) 1 ^]-^ \dz\

= /|&-2|«[Im(6-2;) 1/2]-^|i25|, ( 4 ' 3 )

c

where

α ̂  - 1, ~β- col. (A 4.4)

In the second member of Eq. (A 4.3), z may be replaced by the variable
ω defined according to

t + I cos γ φ = I cos -^ φ coshcα + sinhω . (A 4.5)

This yields

-lβ/ l . \i + « (A 4.6)
/ (1 + coshω) 2 I coshω + cos γ φ sinhω I dω .
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Owing to Eq. (A 4.4) the integral is bounded uniformly in φ, and so

Jj ^ const \b - α | 1 + α [Im(δ - α)1/*]-? . (A 4.7)

Now consider the integral

J 2 = / \z - a\«>llm{z - α)V2]-Λ |& - z|α*[Im(& - z)V2]-^ \dz\ , (A 4.8)
c

where ,v _i_ ~ >̂ i i / ? *, _i_ JL /? ~ \ i

Oi > - 1 , ft > 0 , y ft - <% > 0 , (A 4.9)

α2 > - 1 , /?2 > 0 , y ft - α2 > 0 .

The conditions (A 4.9) are necessary and sufficient in order that there be

numbers p, q such that

p > 1 , q > 1 , (1/2?) + (1/g) = 1 , o^p ^ — 1 ,

Ί n \ ^ . (I n \ ( A 4 1 0 )

Holder's inequality and Eq. (A 4.7) thus yield

J 2 ^ const |δ - α|α i + α* + 1 [Im(δ - α)Va]-Λ-Λ . (A 4.11)

This result leads directly to lemma 5.1.3.
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