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Abstract. Dyson's power counting theorem is proved for the case of Minkowski
metric.

1. Introduction

A major complication in conventional renormalization theory has
been the fact that even in renormalized form Feynman integrals are only
conditionally convergent [1]. In this paper a simple method of circum-
venting this difficulty is discussed. We propose to write the Feynman
propagator in the form

With this convention it is easy to see that the Feynman integrals are
absolutely convergent for ε > 0 provided the hypothesis of the power
counting theorem applies (Section 2). Of course, the integrals are not
relativistically covariant as long as ε > 0. But it will be shown in sec-
tion 3 that the limit exists and defines a covariant distribution.

2. Power Counting Theorem for Minkowski Metric

We consider Feynman integrals of the form

I(qμε)=fdk . P{Jc<l) (2.1)

3=1

where

3 = (3i SV) > * = ( * ! • . .km) ,

ί* = i * ! . . . dkm , (2.2)

μ = (μi --μn)> μa ^ o ,

with #3 , ki denoting Minkowski four vectors. The functions /3 denote
Feynman denominators in the modified form

ff{k q,μjε) = lf0 - If - μf + iε(lf + μf) • (2.3)
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Science Foundation.
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The four vectors ls are of the form

m

h = Σ CJΪ h' + ii (2.4)

We further introduce the Euclidean integral corresponding to (2.1)

IE{qμ)=fdk n

P { h q ) (2.5)

with

The following theorem shows that both integrals (2.1) and (2.5) have the
same convergence properties.

Theorem 1. The Minhowshian integral (2.1) is absolutely convergent
(a.c.) if and only if the corresponding Euclidean integral is ax.

Proof. The inequalities

μ>)\

imply

72 12 2 L * (12 J_ 2\ ~ ^
t<Q I Ŵ ~J~ % ε\h ~τ~ /^ / ^

The Minkowskian integral (2.1) is therefore majorized by the Euclidean
integral (2.5). Also (2.5) is majorized by (2.1) according to the inequality

Combining Theorem 1 with Weinberg's version of the power counting
theorem for Euclidean metric [1—3] one obtains

Theorem 2. Let all masses μό Φ 0. The integral (2.1) is a.c. if (2.1)
and any subintegral

(2.9)

have negative dimension. H denotes a hyperplane in i?4OT described by a set
of linear equations

m

Σdijk^u, i = l , . . . , * . (2.10)

The dimension of a rational integral is defined by d = d' + d" where dr is
the number of integration variables and d" the degree of the integrand with
respect to the integration variables.
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3. Parametrized Integrals

Introducing Feynman parameters α = (α x . . . ocn) in the usual manner
we obtain from (2.1)

I(qμε) = (n - 1)! f dk [doc P ( ^ (3.1)

with

dec = d<xx. . . docn^.v ocn = 1 - 2 ? α *

^ is the set of all points (αx . . . αn_ x) satisfying

αj ^ 0, . . ., ocn ̂  0 and J£ α, = 1 . (3.2)

For deriving the parametrized integral it is necessary to interchange the
k- and α-integration in (3.1). To justify this we prove the following
Lemma.

Lemma 1. // the k-integral (2.1) is a.c. the k-oc-integral (3.1) is also a.c.
Proof. According to Theorem 1 the a.c. of (2.1) implies the con-

vergence of

/ J £ M . (3.3)

3 = 1

Hence also

IB=(n-l)\fdkfd». „ lP(k«)l .„ (3.4)

is convergent. Since
n

27 α i /j (& q. fas)
3 = 1

the integral

fdtfd* . | J > (^' , (3.6)

is majorized by (3.4). Hence (3.1) is a.c.
By FuBiNi's theorem it is therefore permitted to interchange the

k- and α-integration in (3.1). We thus obtain

I(qμε) = fdocB(qμocε)= f doc B(q μ ocε) , (3.7)

. (3.8)

Here <o denotes the set of all α ζ 9> for which at least one α$ = 0
(i = 1, . . ., w). The integral B can be evaluated by standard methods.
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We shortly indicate the derivation. Since

θχ > 0, . . ., On > 0 in Qj _ g

we need compute B for positive α only. We consider the quadratic form

F(kqa) = Σ<*il* = Σ"ijhkj+2ΣQjkj+Q- (3 9)
ΐ = l

The matrix a^ depends on α only and has the properties

(3.10)
d(oc) = det(α ί 3 ) > 0 for ocv . . ., ocn > 0 .

The stationary value of .F is

Fo(qoc)=F(V>qcc) (3.11)

where &° is the solution of
m

Σaatf + Qi^O. (3.12)
7 = 1

One obtains
m

F = Σ *u K H + Fo(qoc)= Σ h ? + ̂ o(g «) (3-13)
7 = 1

with the transformations

^ = Jfc. — JfcP , ^ = £ Oί;. i ; , O = (On) orthogonal. (3.14)
? = i

With this result we obtain for the denominator of (3.8)

n m m

Σ*ifj(k%μ?ε)= Σ λjkf+iε Σλi&f+C,
j ~ i 7 = 1 -i

C = F0(qκ) + iε F0(q α) - (1 - i ε) Σ *i μf > ( 3 15)

Fo(qoc) = Fo(qoc) with qf = 0 .

Introducing the polynomial P by

P{kqoc) = P(kq)

- λ^iλiδa) (3.16)

we obtain

B - ~iw~ J W W
We decompose P into parts which are homogeneous in each hiμ separately

_ m 3

P(kqx)= Σ Π IKkμ)
rι»Πno_Vm3(qX). (3.18)

»Ί0 vm 3 i = 0 μ = 0

So 5 becomes
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with the coefficients
( n - 1 ) ! Γ foo)2m(fem,)2ym»)! Γ

J
The remaining integrations are elementary and can easily be carried
out. We state the final result in the following lemma.

Lemma 2. // the integral (2.1) is ax. it can be brought into the para-
metrized form

I(qμe) = JdocB{qμocε) (3.21)
2

where (except for the set £* of measure zero) the integrand B is given by

B{qμaε) = Σ Byio...ymM*ε) Π2vi*,...,zvmM a) (3.22)

The Π are polynomials in q defined by (3.18). The functions B are explicitly

Ώ _ (^lo) (Y**) (n - γ - 2m - l)\ π 2 ίm

nvιo ..Vms 2v(iε- l)βd(a)2 Cn-y-*m {o.tό)

with
n

-iεFo(qoc) - (1 - is) }
w 3

y = Σ Σ

^ = ^ £y,,, + J j L , (3-24)

(iV) = l 3 5 . . . ( 2 Λ r - 1) for JV=1,2, . . . ,

(0) = 1 .

Formula (3.23) is still unsatisfactory insofar as the denominator con-
tains terms which are not covariant. The following theorem, however,
shows that these terms may be dropped in the limit ε -> + 0. Since this
limit will be considered in the sense of distributions we have to specify
the domain of definition for the variables qλ . . . qn. We assume that q
varies over a 4 r-dimensional vector space described by

ϊ = βP
(3.25)

β = ( β u ) > P = { P i - - P r ) > r ^ n

where the pj are arbitrary four vectors and the nxr matrix β has rank r.
This assumption covers all situations where Feynman integrals are con-
sidered as distributions in the external variables.

Theorem 3. For ε -> + 0 the functions I(q(p), μ, ε) converge strongly in
6ff(Rίr) to a tempered distribution

>*) ^ «9"(Λ4 r) (3-26)
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I(q(p), μ) can as well be expressed as the strong limit of covariant para-
metrized integrals

Φ(q{p),μ,e) in &" (RAr) (3.27)
1 6—•-{- 0

where
Φ{qμe) = f docΨ(qμocε)

9

Ψ(qμocε) = Σ Snfi_Ym9

A =FQ(qoc)- Σ<*?μf + ie Σ*jμf -
? = i j = i

The distribution I(q{p), μ) is explicitly given by the mapping

ψ(p)^]jmJdpφ(p)Φ(q(p),μ,ε) for φζ<?(Rir). (3.29)

Proof. The limit ε -> + 0 of parametrized Feynman integrals has
been discussed by H E P P [4]. Since the integral (3.21—23) is of a slightly
different type we first reformulate the problem such that Hepp's method
can be applied.

The function I{q μ ε) is of the form

feb) μ> <*> e)

B($(P)> μ, α, ε) = {iε_lyCn-2m

where N is a polynomial in p and ε. The function I(q(p), μ, ε) converges
in SP' (B±r) to a distribution if the limit

lim fdpφ(p)I(q(p),μ,ε) (3.31)
ε—> + 0

exists for every φ ζ £f(Bir). Hence the existence of (3.31) must be shown.
We have

fdpφ{p)I(q(p))μ,ε)

- Σ

where N^QttVrS denote the coefficients of the polynomial N with respect
to p and ε

,*,e)= Σ Nίt..vJμcc)ε'p^...p^. (3.33)

Each term on the right hand side of (3.32) is a.c. with respect to the
p- and α-integration as can be seen in the following way. First we note
that (3.30) is a.c. since

P(kq)
Jdoc\B(qμccε)\ ̂  (n - 1)! Jdoc Jdk
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(Lemma 1, p. 3). The a.c. of (3.30) implies the a.c. of

fdocN(qμocε) (3.34)

because
\C\^M for ocζ@.

Applying Lemma 3 a of ref. [3] we obtain that

fdocNi'l.^Jμoc) is a.c. (3.35)
2

On the other hand we have \C\ ̂  γ > 0 for α ζ 3l since μt > 0. Hence
each term on the right hand side of (3.32) is a.c. according to

fdpfdx φ(p)

Pio° •••P7i\fd<x\

It is therefore permitted to interchange the p- and α-integration in (3.32)
and we obtain

fdpφ(p)I(pμε)

For proving the existence of (3.31) it is therefore sufficient to show
that the limit ε -> + 0 of

(3.37)
2

exists for every ψ ζ 6^{Rir). C is given by (3.24) with q(p) substituted
for q. F0(q(p), α) is a quadratic form in the ps

)= ΣAiS(*)piPi (3.38)

(3.37) has the form of the parametrized integrals for which the limit
ε-> + 0 was studied by H E P P (Eq. (4.9-10) of ref. [4]). According to
(3.35) the coefficients N^QttVr2 are absolutely integrable in 3ι. We will
further show that the coefficients Ai:}(<χ) (originally defined for ocj > 0)
can be extended to continuous functions of α in OCJf ^ 0. To this end we
introduce the quadratic form

i = l

n r

= Σ Cijχi+ Σ (
7 = 1 j = 1



8 W. ZIMMERMAN^: Power Counting Theorem. I I

which is obtained from F(k, q(p), α) by replacing the four vectors Jcj} pj

by real variables x^ or y^ resp. Then we define

£o(V α) = Inf 0(x y α) = £ Λ ; (α) 3fc Vi (3-40)

Here the -4^(α) are continuous functions of α in αt ^ 0 and coincide
with the coefficients of (3.38) for OCJ > 0.

Following H E P P it can now be shown that the limit (3.31) exists.
Hence I(q(p), μ, ε) approaches a distribution in &" [R±r) for ε -> + 0.

By a similar argument it follows that also Φ(q(p), μ, ε) converges in

We further have

εlimo (I(#{p), μ, ε) - Φ(q(p), μ, ε)) = 0

since

}™0 f
for every ψ

This completes the proof of the theorem.
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