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Abstract. Dyson’s power counting theorem is proved for the case of Minkowski
metric.

1. Introduection

A major complication in conventional renormalization theory has
been the fact that even in renormalized form Feynman integrals are only
conditionally convergent [1]. In this paper a simple method of circum-
venting this difficulty is discussed. We propose to write the Feynman

propagator in the form
1

B—0—p+ie@+p?)”
With this convention it is easy to see that the Feynman integrals are
absolutely convergent for ¢ > 0 provided the hypothesis of the power
counting theorem applies (Section 2). Of course, the integrals are not
relativistically covariant as long as ¢ > 0. But it will be shown in sec-
tion 3 that the limit exists and defines a covariant distribution.

(1.1)

2. Power Counting Theorem for Minkowski Metric
We consider Feynman integrals of the form

Pk
I(qys)=fdlc (kg)

—_—— (2.1)
1gfi(k g5 1 €)

where
= -0, k=(.. kp),
dk=dk,...dEk,, (2.2)
.u=(,u1"',un): ,ujgoy

with ¢;, k; denoting Minkowski four vectors. The functions f; denote
Feynman denominators in the modified form

filk gy ) = o — U — i + e (@ + uf) (2:3)
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The four vectors I; are of the form

m
L= 21 ey by + ¢ - (2.4)
§'=

We further introduce the Euclidean integral corresponding to (2.1)

Pk
Iyqu) = [dk—00 (2.6)
ﬂ e;(k q; uy)
with
ek g 1) = o + G + uf - (2.6)

The following theorem shows that both integrals (2.1) and (2.5) have the
same convergence properties.

Theorem 1. The Minkowskian integral (2.1) is absolutely convergent
(a.c.) if and only if the corresponding Euclidean integral is a.c.

Proof. The inequalities

12+M2 S_l__
B—P—@+ic@ o = e
1 V 1
Bop—@+e@ @ =T
imply
B4+ 1 ‘/”’T
l%—lﬁ—u‘«*+is(l2+,ﬂ)§?+ 1+_8"’—' 2.7

The Minkowskian integral (2.1) is therefore majorized by the Euclidean

integral (2.5). Also (2.5) is majorized by (2.1) according to the inequality

B =1 — 3 +ia® 4 ) _

B+ 0+ u =

Combining Theorem 1 with Weinberg’s version of the power counting
theorem for Euclidean metric [1—3] one obtains

Theorem 2. Let all masses u; =+ 0. The integral (2.1) is a.c. if (2.1)

and any subintegral

P(kq)

I(qysH)= AV —"" (2.9)
Hf j]]lf:‘(k q; ps €)

1+ . (2.8)

have negative dimension. H denotes a hyperplane in R,,, described by a set
of linear equations
m
2d,~,~k,~=7‘,-, Z.= 1,...,t. (2.10)
i=1
The dimenston of a rational integral is defined by d = d’ + d'’ where d’ is
the number of integration variables and d'’ the degree of the integrand with
respect to the integration variables.
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3. Parametrized Integrals

Introducing Feynman parameters a = (o, . . . o) in the usual manner
we obtain from (2.1)

P(kq)
Ique) = n_1yjdkfd Fortamd] 3.1)

with
n—1
da=doy ... day, 1,00, =1— 3 «
j=1

2 is the set of all points (e . .. a,—;) satisfying

n
g=0,...,0,=0 and Y o;=1. (3.2)
i=1
For deriving the parametrized integral it is necessary to interchange the
k- and o-integration in (3.1). To justify this we prove the following
Lemma.
Lemma 1. If the k-integral (2.1) is a.c. the k-a-integral (3.1) is also a.c.
Proof. According to Theorem 1 the a.c. of (2.1) implies the con-
vergence of

o= [ap—200 (3.3)
H e;(k g; us)
Hence also
7 _ |Pkgl
Ig=(n—-1)![|dk | da (3.4)
/ f (Zmetkan)
is convergent. Since
f‘ o e;(k g; ps)
J?—_-—§%+nVLP$ (3.5)
ijg;“i filk g p; €)
the integral
fdkfda~TJ£QQL—7 (3.6)
2 jﬁ‘:’laifj(k% U €)

is majorized by (3.4). Hence (3.1) is a.c.
By Fusint’s theorem it is therefore permitted to interchange the
k- and «-integration in (3.1). We thus obtain

Ique)= fdaB(qyaa f da B(guae), (8.7)
P(kq)

B (n—1) [ dE 3.8

(9!1'“8) / (2“51’1(’091#18)) 35)

Here & denotes the set of all « € 2 for which at least one «; =0
(t=1,...,n). The integral B can be evaluated by standard methods.
1*
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We shortly indicate the derivation. Since
“u>0,..,0,>0 in 2-6&

we need compute B for positive « only. We consider the quadratic form
F(kqgo)= Zoctl =2 a;k;l;+23 Qiki+ Q. (3.9)
=1
The matrix a;; depends on o only and has the properties
Lo (3.10)
d(x) =det(a;;) >0 for «,...,0,>0.
The stationary value of F is

Folge) = F (¥ q ) (3.11)
where k0 is the solution of

2 a; k) +Q;=0. (3.12)
One obtains =
F =3 a;kikj+Folga) = mz,-lé2+ Fy(qo) (3.13)
with the transformations =
ki =1k — k&, 210,, 0 = (0;;) orthogonal .  (3.14)
iz

With this result we obtain for the denominator of (3.8)

2 i fik g pse) Zlk +ie Zl K+ C,

j=1 ji=1

C=Fo(qa)+@eF0(qo¢) 1—1¢) Zoc,,u,, (3.15)

j=1
Fo(qa) = Fy(qo) with ¢f=0.
Introducing the polynomial P by
Pkqo)= P(kq)
0 =rike A= (h.) (3.16)

E=0"1A"12F + k°
we obtain

_ (=1 Pkga)
B= d(x)? fdk CEFiel Kk +Op " (3.17)

We decompose P into parts which are homogeneous in each ; , separately

Plhge)= X H H(’cm) I, .0 (@ ) - (3.18)

v10..."m3 t=0 p=

B= ) Bno...y".sH2no.---.27m3 (3.19)

Y10:+.Ym38

So B becomes
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with the coefficients
(n —1)! (k)2 710 . . . (kmg)2¥m3
By...ms = d(e)? fdk (Zkz—}—st'k?-l—C)” :
The remaining integrations are elementary and can easily be carried
out. We state the final result in the following lemma.

Lemma 2. If the integral (2.1) is a.c. it can be brought into the para-
metrized form

(3.20)

I(q,ue)=9fclocB(q,uocs) (3.21)
where (except for the set & of measure zero) the integrand B is given by

Blquoe)= 2 By, ,.s@ae)ly, . o, (qa). (3.22)
710+ Ym3
The IT are polynomials in q defined by (3.18). The functions B are explicitly

(10) -+ - (Ymg) (n — y — 2m — D)1 724
B : 27 (4 83— 1)° d ()2 Cn—7—2m (3.23)

with

C=Fyqa)+ieFylqa)— (1 —i¢) Z;oc,,u, ,
j——

j=1 p=0
n 3
3
o=2% X viut-5 (3.24)
j=1 p=1
(N)=1-3-5...2N—1) for N=1,2,...,
0) =1

Formula (3.23) is still unsatisfactory insofar as the denominator con-
tains terms which are not covariant. The following theorem, however,
shows that these terms may be dropped in the limit £ — + 0. Since this
limit will be considered in the sense of distributions we have to specify
the domain of definition for the variables ¢, .. .q,. We assume that ¢
varies over a 4r-dimensional vector space described by

g=pp

/3=(.Bia’): P=(P1~~-Pr)’ r=mn
where the p; are arbitrary four vectors and the » X r matrix § has rank r.
This assumption covers all situations where Feynman integrals are con-
sidered as distributions in the external variables.

Theorem 3. For ¢ —~ + 0 the functions I (q(p), u, €) converge strongly in
S’ (Ry,) to a tempered distribution

I(a(p) ) = Mm I(g(p),p,8) in S'(By,). (3.26)

(3.25)
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I(q(p), u) can as well be expressed as the strong limit of covariant para-
metrized integrals

Ilgp), w) = lim D(g(p), w,6) in F'(By,) (3.27)
where

Dlque) =9fdoc?f’(qme)

T(q o 8) = 2 E}'m-nyms(q “) H2710,.--,2Vm3(q “)
V10e++eYm3
_ i) (Ymg) (0 —y — 2m — 1)t 2?4
Y10...Ym38 2yd(“)2 Ar—-v-2m

(3.28)

—
-~
o

A =F,(qo)— ZOW;HSZOW]-
The distribution I (q(p), p) s eacplw@tly given by the mapping
o(p) > lim [dpop) O@®),pe) for ¢cS(Ry).  (3.29)

Proof. The hmlt ¢ — + 0 of parametrized Feynman integrals has
been discussed by Hepp [4]. Since the integral (3.21—-23) is of a slightly
different type we first reformulate the problem such that Hepp’s method
can be applied.

The function I (g u ¢) is of the form

I(Q(p)’ Ms 8) =9f B(‘Z(P), s o, 8)

(3.30)
N
B(q(p), p> «, €) = (78_(1';1?2%)__2“

where N is a polynomial in p and e. The function I(g(p), u, &) converges
in &' (R,,) to a distribution if the limit

Jim [dp o) I{q®), . e) (3.31)

exists for every ¢ € & (R4 ,). Hence the existence of (3.31) must be shown.
We have

fdp ¢ (0) I(q(p); . €)
v pY1o Vr3
= Z,' fdpfdw PYND, . (wa) £ Fr0- Prs

ey (ie — 1y Cn—2m

(3.32)

where N f‘{l ., denote the coefficients of the polynomial N with respect
to p and ¢
N, pae)= 3 NP , (ux)epip...pig. (3.33)
V10ee Vr3?
Each term on the right hand side of (3.32) is a.c. with respect to the
p- and a-integration as can be seen in the following way. First we note
that (3.30) is a.c. since

Pk
fd“lB(q‘uas)l = ("_1)!fd“fdk!@a;h((qu)jm))"
2
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(Lemma 1, p. 3). The a.c. of (3.30) implies the a.c. of
[daN(queoe) (3.34)
9

because
I M for «€9.

Applying Lemma 3a of ref. [3] we obtain that
[daN® ., (ux) isa.c. (3.35)
2

710

On the other hand we have |C| = y > 0 for « € & since u; > 0. Hence
each term on the right hand side of (3.32) is a.c. according to

fdpfda

<4 [aplpw) v ... 23] f dalNE). .

V10 Vr3
P P,
Nsﬁy Vr3 IOCn 2mr 3

It is therefore permitted to interchange the p- and a-integration in (3.32)
and we obtain

fdp¢(p)l(pue)
o s (3.36)
= Z, [Nt [ap S D,

2
gy za—l)‘C" m

For proving the existence of (3.31) it is therefore sufficient to show
that the limit ¢ -~ + 0 of

f do [dp p(p ol °O,, oo t02) (3.37)

exists for every y € ¥ (R,,). C is given by (3.24) with ¢ (p) substituted
for q. Fy(q(p), o) is a quadratic form in the p;

FO(Q(p)’ ) 2 Au pz P; (338)

t,j=1
(3.37) has the form of the parametrized integrals for which the limit
e — + 0 was studied by Hepp (Eq. (4.9—10) of ref. [4]). According to
(3.35) the coefficients N) are absolutely integrable in 2. We will
further show that the coefﬁments A;;(e) (originally defined for «; > 0)
can be extended to continuous functions of « in «; = 0. To this end we

introduce the quadratic form

Gya) = 3 a2
(3.39)
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which is obtained from F (k, ¢(p), &) by replacing the four vectors k;, p;
by real variables x; or y; resp. Then we define
Go(y o) = Igf Glrya) = ZlAu(“) Y: Y- (3.40)
1,7 =

Here the A4;;(x) are continuous functions of « in «; = 0 and coincide
with the coefficients of (3.38) for «; > 0.

Following HEPP it can now be shown that the limit (3.31) exists.
Hence I(g(p), p, &) approaches a distribution in &’(R,,) for ¢ > + 0.

By a similar argument it follows that also @ (q(p), u, &) converges in
S (Ry,) for e - + 0.

We further have

Jim (g (p), . €) = (g(p), . €)= 0

since

. 1 1
6215_10 f dq ¢(q) { (1 — ,L'e)a' Orn—2m—y - An—2m—'y} = 0
for every ¢ € ¥ (R,,).
This completes the proof of the theorem.
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