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Abstract. All inequivalent continuous unitary irreducible representations of
SU(N, 1) (N^. 2) have been determined and classified. The matrix elements of
the infinitesimal generators realized on a certain Hubert space have been derived.
Representations of the groups 8ϋ(N91), 8U(N, l)/ZN+l, U(N,1) and U(N, 1)
are classified in a similar manner.

Introduction

Besides the identity representation all continuous unitary irreducible
representations (CUIR) of SU(N, 1) are infinite-dimensional. In this
paper we shall explicitly classify all the infinite-dimensional CUIR for
N ^ 2, and we shall further calculate the matrix elements of the corre-
sponding infinitesimal operators, which are realized on a certain Hubert
space. The representations of SU(1, 1) have previously been derived by
BABGMANN [1], The method emploid here is the same as the one pre-
viously used in [2] to calculate the CUIR of S00(N, 1). The method is
based on the following facts:

(i) In the decomposition of a UIR of SU(N, 1) with regard to the
maximal compact subgroup U(N) each UIR of U(N) occurs at most
once [3, 4].

(ϋ) All UIR of U(N) are known and they have been classified [5, 6],

(iϋ) There is a one to one correspondence between algebraically irre-
ducible unitary representations of su(N, 1) and CUIR of SU(N, 1), the
universal covering group of SU(N, 1) [7, 4].

(iv) A CUIR of SU(N, 1) satisfies locally the commutation relation
of su(N, 1) and the conditions for unitarity.

(v) A representation of SU(N9 1) satisfies global conditions so that
the unit element is represented by the unit operator on a Hubert space.

Some authors [8] have discussed problems similar to those considered
here, but for various reasons no complete and explicit classification of
the CUIR of SU(N, 1) has previously been given.
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The Algebras u(N), u(N91) and su(N, 1)

An element g(ε) of U(N) in the neighbourhood of the unit element
can be written

g(ε) = I + %'xtli + φyt, + efo + 0(ε*). (1)

A summation is performed over i from 1 to / — 1 and over / from 1 to
N, έ^i, ££ and ε^ are real numbers and xitί, yίyί and z$ are matrices of
the form /

1/2

.-1/2.

*/2

• </2

where all matrix elements of xit} and yit $ except those in the places (i, /)
and (j, i) are zero and only the matrix element in the place (j, j) is
different from zero in zjf

From these generators we construct

which span a basis for the algebra u(N) and satisfy the commutation
relations

The operator
T 1 —

i, 3 J L k, 11 —

N

Σ

forms an ideal corresponding to the invariant subalgebra u(I). The com-
plement of this operator corresponds to the su(N) subalgebra.

An element in the neighbourhood of the unit in U(N, 1) can be
written in the same fashion as above (1) except that the summation over
j goes from 1 to N + I and
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We also form the linear combinations

which together with the previously defined operators satisfy the com-
mutation relations (2).

The operator
JV+l

Σ ii.i
ί=l

spans a one dimensional ideal, The complement of this ideal is the
su(N, 1) subalgebra.

As the basis operators of the algebra su(N, 1) we may choose

J —v <n,q — 1 N + 1
A \~τ

Λ Γ + Ί Σ1V "T x .

These operators fulfill the same commutation relations as IptQ and
furthermore they satisfy the equation

The Representations of 17 (JV)

We will now state some wellknown results [5] on the representations
of U(N). Since the complex Lie algebra u(N) is isomorphic to the com-
plex Lie algebra gl(N, R) the UIR of U(N) may be classified similarly
to the way in which the finite dimensional irreducible representations
of GL(N9 E) were classified by GELFAND and TSEITLIN [6].

Therefore, every UIR of the group U(N) is specified by N integers
mltN ^ m2 >jv ^ * ^ WN-I N = mN,N- Consider all possible arrays of
integers of the form

oc =

where the integers mί)) q satisfy the conditions
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To each array α we assign a vector |(α). The irreducible representations
of the Lie algebra u(N), which are related to representations of the
group U(N), act on the finite dimensional vector space R spanned by
the vectors |(α). Let the infinitesimal generator IίtlD be represented by
the operator Djf k acting on E. To specify the matrix form of Dίt k in the
basis (£(α)} it is sufficient to give the form of the operators Dk+lί k, Dkf k

and Dk,k+ι as the others may be obtained from them by means of the
commutation relations.

Let ock

ri denote the array which is obtained from the array α by
changing mit k to mit k + 1 and let αjΓ * denote the array which is obtained
from the array α by changing mitk to mitk — 1. Then we have

= Σ

/ * *-l \

DJC.JC f (α) = \ Σ mi9k- Σ mitk_Λ ξ(oc)
\i = ι i=ι /

Σ

where the numbers a\(oc) and b\(a) are given by the formulae

Ίl/2Jc + l k-l

i=l ' ί=1

Πβv-ti*- 1) (

where the notation

has been introduced.

To get all the Hubert space representations of u (N) we must generalize
the scheme above and let mPί a also take on non-integral values with the
restriction that miti — mPtQ must always be integers. Hence the numbers
mit j shall have the same integer remainder.

The Hubert Space of the Representations

When we derive the representations of 8U(N91) we will introduce
the requirement (5) last. In this way we obtain the representations of
U(N, 1) as an intermediate result.

The maximal compact subgroup of SU(N, 1) is U(N). An infini-
tesimal generator of the invariant £7(1) subgroup is

K = ~ (N + 1) JN+1,N+1 = Σ ϊr,r - Λ
r = l
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And we find
exp(it^) = l for t = . . ., 0, 2π, 4π, . . .

The maximal compact subgroup of U(N9 1) is U(N) x U(l). As the
infinitesimal generators of the two invariant £7(1) subgroups we may
choose

N N + l

Σ Ir,r ^d Σ Ir.r
r = l r=l

When an irreducible representation of SU(N, 1) is restricted to the
maximal subgroup U (N) the irreducible parts have the multiplicity zero
or one [3, 4]. The corresponding statement holds for U(N, 1), since
U(N,1) is the direct product of two groups U(N, 1) ̂  8U(N, l)/ZN+1

x £7(1), where the £7(1) group enters in the maximal compact subgroup.
This £7(1) subgroup is represented by one fixed representation in a repre-
sentation of U(N9 1). In the construction below we may therefore ignore
this subgroup.

As the Hubert space H for representations of U(N, 1) (and SU(N, 1))
we choose

H = Σ θ H(llfN, 12)N, ...)=Σ® ί («)
ftΛrΛ.*....)^ «

where H(lltNί IZ,N, - •) is the Hubert space of the representation of
U(N) which is labelled by (lιtjy, IZ,N> - •)• Γ indicates which representa-
tions of £7(J!V) that appear in the representation of £7 (N, 1), and f (α) is
a vector in the Hubert space of such a representation.

Without much extra labour we can generalize the above scheme and
get Hubert space representations of the algebras u(N9 1) and su(N, 1).
This can be done by summing over representations to u(N) instead of
representations to U(N), which means that we let the numbers lity
take also non-integral values.

We are now going to find the possible form of the matrix elements

of the representations £>jv,#+ι> DN+I,N an(i DN+I,N+I °̂  ̂ ne operators

Restrictions on the Matrix Elements from the Commutation Relations

We now exploit the full content of the commutation relations. This
can be done in much the same way as in [2]. In the present case it is
somewhat simpler as we here can use commutation relations of the first
order more often. We will not repeat this derivation here but just state
the appropriate order in which the commutation relations should be
exploited to get hold of all conditions with a minimum of calculations.
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We also summarize these conditions. The relations

+I> Ji, il = ° > if * and j<

ι,N+ι>Jt,s] = 0 , if tand 7 ̂

imply that

- Σ 1J,N
/-I

where ^jy+1 is a constant, and where the matrix elements g^(α) and
^•(α) satisfy the equation

N

Σ [<Pi(<*N*) %(<*) - Ψs(*) ψi (αjίrO]
/βl ^ 2 -̂1 (β)

= - ̂ +1 + 22; ϊy.jy ~ Σ k*-ι + ̂
ί - 1 = i

The relations further imply that a set of functions /X^,#), which only
depend on the respective Z^ #, can be defined for all / through the relations

when £,-_!,# =f= ^,jv + 1 and IJ-I,N-I 4= ^,jv + 1, and

Λft,*) = o
when l3 __lίN = litN + 1.

Before we proceed it is conveneant to define some notations. Let
Z2 ,jvr fmm and ^ ,jv,maχ denote the minimal and the maximal values respec-
tively of litN in a representation. In the calculations the lit N : s take their
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maximal values for certain values of i and their minimal values for other
i:s. We let a number ίQ determine the conditions for each particular
lif N. Let lίt Nf extr denote lit yt min for i less than or equal to i0, and lit Nί max

for i greater than i0. We further define :

F = {r I lTt Nί min φ lr> 2V, max}

T(iQ) = {r\lr,N,extτ Φ Wι,tf,extr + 1 and r < N}

JR(i0) = {r\r £ F and, Zr,jy,eχtr Φ Zr-ι,tf,eχtr - 1 or r =

Z7(i0) = {r | reΓ '( i 0 )andr6F}

Γ(ί0) - {r|r ζ F and Zr,^,extr = ̂ r-ι,^,eχtr - 1}

^(*θ) = (r\r £ V and r = *0' or ^r,ΛΓ Φ Zr.

•̂ W = (r\r 6 ^ and r - *0> or ^,J\τ Φ Zr,

i = {rKr,Λ Φ Jf+l.tf + ! and r < N}

M = {r|Zr,^ Φ Zr+1,^ + 1 or r = N} .

When a set S or tS(i0) is defined we let

Finally let ^(*0) and λ be the number of elements in T(ί0) and L respec-
tively.

We proceede to find all solutions /^ and χy+1 of the Eq. (6). The
details in the calculations will vary from case to case. One may distinguish
between a large number of different subcases. The large number of sets
was defined to compensate for this difficulty. The main feature in the
calculation is the same in all these cases, and the sets enable a rather
unified derivation. The strategy we follow is first to show that the ft : s
are polynomials, then that they are the same polynomial for different
values of i and then find its properties and finally to calculate
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The Eq. (6) can be written on the standard form

Π (li.N-l,N-l + l)fi(li,N)

/_ \\
Π ft.* - lr.N + 1) Π (li,N ~ lr.

rζM fφ<

fφί

Π (kN - lr,N-l) ίi(k» - 1) (7)

rφi

jy

Σ lr,N + Σ1 Zr,JV ~ 27 lr,N-l + ̂
r = l rζ.M rζL

Identifying terms with the same dependence on the £r,jv -ι yields

(lijr ~ lr,N + 1) Π (li>N -
) rφi

rφi

_

^ * y ~ ω Π (li'N ~ lr'» ~rζM(ί0) rφί
rφi

(8)

N

Σ lr,N

v ,_

Π (l*

-i
~

if λ
and

, n<

_ p / i \i

- ̂  + 1) 77 ftjr ~ /rj
)

rφί

•
fφί

fφi

for v = 0, . . ., λ - 2 if λ ̂  2 .

We next choose i0 and further we let all the li,χ:s for i different from
j take their extremal values Zif#fθxte .
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By starting with the extremal value on lJtN and then shifting it by
one unit at the time we get a series of equations from which we can
calculate f3 (l3 ίN). Thus for n(ίQ) ^ 2,j £Q(i0, -) and ^,max ^ 13 ,N

< j We find

Π (liJSt - Uextr + 1) Π (kN ~ ̂ .e
r£'

r

Y"» f

77

1

Jί,tf.min — ? + 1) (k,N.mto — '

lj.N

~ )

V-T / Ί W π(%jy.min) ( .̂Jy — ^.JV.min "h 1)

) 77 (^i,JV.min ~~ .̂extr + 1) 77 (^,min ~" .̂.ZV.e

, , v ^ fi(ljtN,max. — 1) (lj,N — ^jy.mln ~1~ 1)

so that

= 77 ft,ΛΓ ~ 4,^,extr +1) 77 ft,j
)

77

77 ( .̂rnίn "~ ^.extr + 1) 77 (̂ .min

°

- 77 Vi.N ~ ^^,extr + 1) 77 ft,J»- - ^.extr)
r = l

Λftyr.™. - 1) 77 Ajr ~ Umax + 1)

77 (^.max ~~ ^.extr) 77

r φ ΐ °
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Similarly when n(i0) ^ 2, j ζ V(iQ, +) and lJtNtmin < 13-,N ̂  lj,N9Ώua

N

(- l ) J Λ ft,tf) = Π (lj,N - ϊr,tf.extr + 1) Π (ti.N - ίr,tf,extr)
r€JF(iβ) r = l

Mfar.mln) 77 &.JV — ^.JV.mln +

y» /__ j u
"

) 77 (

~ Π (ll.N ~ Ir.N.ate + 1) Π

# πιax ~~ r,2V.extr φ .Λ'.max "~ r.llΓ. extr
ί* Φ Ί

rφi

When n (i0) = 1, ? ξ Q (*0) and when n (iϋ) ^ 1, j ζ W (i0) we can derive the
same expression as befor on /5 (£/,#) with similar calculations.

When n(i0) = 0 there are three possibilities for the set F; it can be
{!}, {N} or {1, N}. We find when 1 ζ W(i0) for some <0

and when N ζ T(i0) for some ί0

+ (ϊjy.jy - ^,tf,max + 1) /7 (fo.JV ~ ίr, if, extr)
r = l

The Eqs. (11)— (14) show that jj are polynomials. We want to show
that it is the same polynomial independently of j. All {j where / lies on
the same side of ίQ must, according to the equations, have the same form.
By taking iQ on the both sides of an element in F we can show that the
form is the same on both sides of ί0. This is possible except in the case

when F = {1, N} and neither litff9jD&x nor ^NtN,mm exists. This case will
be handled separately. By the Eq. (9) we can determine the degree of
the polynominal. As (9) holds for an infinite set of arguments the overall
degree of the fraction in the left member is one. The degree in the
denominator is N + λ — 1. So the degree of / is N + 1. It also follows
immediately from the Eq. (9) that the coefficient in front of the term of
the higest power is (— I)3'. Therefore we can write

Π (lj,N-lr,
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when j ζ F(i0, -) and l3 ,N,min - 1 ̂  ^ ,^,max and w^en ? € F(*Ό» +) and

^ ,jv,min = '̂,̂  = ^ ,^,maχ By the construction fj(ljttf) has to be zero for
^,ΛΓ,maχ and ^,tf,min ~ 1 for ? 6 F BY inspection of the Eqs. (11)-(14)
we find that fj(lj,χ) is zero for all lrtN when F does not contain r and
^ ,tf,min — 1 when r £ ίP'(i0) for some ί0. This puts restrictions on the
number lr> #,max and ^,jv,min "~ 1 as at most N + 1 of these can be
different.

In the case when F = {1, N} and neither ^jv^max nor ^,jy,mίn exists
we can establish that /x and fN have the same form in the following way.
That they are polynomials of degree N + 1, that they have N — 1 roots
in common and that the coefficient in front of the term with the degree
N + 1 is — 1 and (— 1)̂  respectively follows as before. Let the remaining
roots be u, v and x} y respectively. From Eq. (10) with both llfN and
lNt N free follows then that

v — χ — y] ~
shall hold identically in lltN and ltftχ. Therefore the remaining roots
must be the same, so that /j and fN have the same form even in this case.

From Eq. (8) we can easily evaluate ^+1 by putting a very large
^i, N (or if Ί, jv,maχ exists, a negative lNtN with a very large absolute value)
into Eq. (8). This yields

N + l

XN+1= Σ

Conditions for Unitarity, Irreducibility and Inequivalence

The unitarity of the representations and the Eq. (3) requires that

XN+I

We can change the phases of the vectors |(α) by multiplying them by
N

a factor fj ωr (lrt N) of modulus one so that ψj become positive or zero
r = l

on Γ. We have, therefore,

= Σ

= Jί

Cy + i ^ \
Σ I I . N + I - Σ l,.N + N+l £(α)
=ι ?=ι /
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where
N+l N—l
Π (Ij.N ~ Ir.N + l) Π (Ij.N ~ lr.N-1 + 1)

r = l r=l

Π (li.N - Ir.N + 1)

1/2

and

For conveneance the expression for φj(oc) has been extended. Owing to
this the denominator may become zero for certain choice of α. When
this occur ψj(oc) is zero.

That the representations obtained in this way are irreducible follows
immediately from the fact that the representations of u (N) occur at most
once, and that we can not devide Γ into two parts so that all matrix
elements between vectors in the different parts are zero.

To determine equivalence conditions it is suitable to establish the
conditions which must be satisfied by a unitary operator that transforms
one Gelfand-Tseitlin base into another Gelfand-Tseitlin base and is con-
sistent with the phase convention. Clearly it must not mix the irreducible
spaces of the %(^)-subalgebra since they correspond to inequivalent re-
presentations. This then implies that the unitary transformation irre-
spective of an irrelevant scalar phase-factor, reduces to a direct sum of
unitary transformations in the irreducible spaces of u(N). We can now
proceed to u(N — 1), u(N — 2), . . . and repeat the argument. So we find
that irrespective of an irrelevant scalar phase factor the unit operator is
the only unitary transformation that transfers one Gelfand-Tseitlin base
into another Gelfand-Tseitlin base. Therefore two representations are
equivalent if and only if all the matrix elements are the same in the
two representations.

The Representations of u (N91)

Let us now summarize the results for the representations of u(N, 1).
We distinguish between nine kinds of representations distributed on
three classes. For each class we give the requirements on all representa-
tion in the class, and thereafter we list the different cases. In each case
we first write the notation of the representations D(j, x\ lίfj^+1) . . .,
IN+I.N+I) where the integer j indicates the class and together with the
letter x the kind of the representation. The numbers IIN+D •> IN+I,N+I
then indicate the particular representation. The notation is followed by
a prescription for the numbers litN+ι which ends with a period. There-
after follows a prescription for the range of the numbers lit N. To clearify
the conditions we show in a diagram for a typical representation of the
particular kind the values of lit^+ι an(i ^ne range of the values lJtN.
9 Commun. math. Phys., Vol. 10
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For every different choice of the numbers ^,#+1 that satisfies the
conditions below u(N, 1) has an inequivalent unitary irreducible
representation .

Class 1. ljyttf bounded from below

The numbers ^ ,#+1 are ordered so that II,N+I > I%,N+I > ' ' '
> IN,N+I> and II,N+I ~ k,N+ι are integer for * = 2, . . ., N.

0(1>*5 h,N+ι> •» Wι,tf+ι)» where ^jv +i - ly+ι t Jy+ι is integer,
IN,N+I < IN+I,N+I < II.N+I and li,N+ι = IN,N+I + N - ί when liίN+1

II,N ^ II,N+I + 1; ^,# = ^,jy+ι + ^ when ^ ,jv+1 <
when ,̂ #+1 >

=

=

5 4 3 6
1 1 1 1

I

5 4 3
. 1 1 1

2 1
1 1 r

2 1

1 1 1 1 1 1 1 1 I fc

I

Fig. 1, s. The representations of ^(5) in the representation D(l ,θ ;Z + 13, Z - f 8 ,

; ^1,^+u •> Zjsr+ι,jvr+ι), where Z^+lfdy+1 is real,
+ !> ^ ,^+ι = ^,jv+ι + N - i when ΛΓ ^ i ^ N + lNίN+1

1 for < = 2, . . ., ΛΓ.

5 463

L_LLJ
I

j= 5 4 3 2 1

- — i — i — i i i ί mn — i i i — i i i — ̂  ιjtN
i

Fig. 1, e. The representations of u(5) in the representation D(19 e; I + 11, I + 8,

2. lltN bounded from above

The numbers Ii9 N+1 are ordered so that Il9 N+1 > I^N+I > > IN,N+I>
and Zjy+1 — ζ ,jv+ι is integer for i = 2, . . ., 2V.

Z>(2, 5; ^tf H, - >Z2r+ι,jy+ι)> wnere ^1,̂ +1 - ^+1,̂ +1 is integer,
l - * wnen z<,
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IN,N = IN,N+I'> k,N+i = h,N ^ k+ι,N+ι + 1 when ^,jy+1 < IN+I,N+I'>
when ^,j\r+1 >

»= 5 4 6 3 2 1

I I I I I I ^ 7
% # +1

I

j= 5 4 3 2 1

i i i i i i i i ] l I I » ιJtN

I
Fig. 2, s. The representations of u(5) in the representation D(2, s; I + 13, I + 12,

1 + 11,1 + 5,1,1 + 10) of tt(δ, 1)

> e; ζι,^+ι> •> ^+1,^+1)* where ^+1,#+1 is real, l2rN+1

> IN+I,N+I > IN.N+I - 1> ^,^+1 = ^1,̂ +1 + 1 — < when 1 ̂  i ^ 1

1 for < = 1, . . ., ΛΓ — 1.

5 4 3 6 2 1
I _ I _ I I I I- - —

I

j= 5 4 3 2 1

i i i i—i i i—ί i i i EH—I—I ,. ιJtN

I

Fig. 2, e. The representations of ^(5) in the representation D(2,e; I + 11, I + W,

Class 3. Neither is lljN bounded from above nor lNt N from below
The numbers lit^+ι are ordered so that

II.N+I > k,N+ι > ' * ' > IN-i, N+i9 an(i ^1,̂ +1 — ̂ ,^+1 is integer for
i = 2, . . ., tf - 1.

•£(3, S-, 11)N+1) . . ., IN+I,N+I)> where ̂ +1 - lN,N+ι an^ II,N+I
- 1N+1,N+1 are integral, lN-ltN+1 < ^+1,^+ι < IN.N+I < ^1,̂ +1 an(i

= Z - < for some I when Z^+lf^+1 < k,N+ι < IN.N+I

H,N + 1

I

Fig. 3, s. The representations of %(5) in the representation D(3, s; I + 13, I + 8,

, or

9*

—

1

4 3

I

5 4
i i i 1 i Γ Π

6 2 5
1 1 1

3 2

1

1

1 1 1
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1 an(l ^+ι,jv = li,N+ι when lN+ltN+l < lit

where fo,tf+ι and Wι,tf+ι are real>
N+I < h,N+ι + 1» ^,#+1 = Z — ό f or

some I when ^+1,̂ +1 ^ k,N+ι = ^,^+ι> l^ ,JV+ι " ^,-y+ιl < !
~~ ^jv+ι,jv+ι I < 1 f°r some^' ^ JV" — 1 and some k ^ N — I .

,N^ lι,N+ι+ 1; ̂ -1,2^+1 ̂  li,N^ li,N+ι+ 1 for ί = 2, . . ., JV - 1

6 3 52

I

5

+ lί>N + l

I Γ

I

Fig. 3, e. The representations of u(5) in the representation Z>(3, e; Z + 13, I -f 5,
/ + 4, Z, / + 4.6,1 + 3.2) od w(6,1)

D(3, m; Z1>Λr+1, . . ., lff+ι,N+l), where Zj^+j - lN,N+ι is integral,

^1,̂ +1 > Zy,#+ι» ^+I,ΛΓ+I is real, ^,^+χ + 1 > ϊ^+x.^+i > ~ 1 + min
{^-ι,jr+ι> ,̂#+1}, ^ ,^+ι = 1 - i for some Z when Z^+i^+i ^ Z,%J^+1

< IN,N +I or IN,N+I < k,N+ι ^ ^+ι,^+ι> l^,jv+ι ~ IN+I,N+I\ < 1 f°r

some j ^ N or there is no ^-,#+1 such that lN+ltN+1 < Z^^r+i < IN,N+I
or IN.N+I < k,N+i < ϊjy+ι,jv+ι

Z l f jγ ^ Zι,#+ι + 1; ζ _1,^+1 ̂  Z«,^ ̂  ^,^+1 + 1 when lίfN+1 > IN,N+I
or k-ι,N+ι < IN,N+I'> IN,N+I ^ ^,jv ̂  ^,^+1 + 1 when li_1)N+1 > lN,N+ι

4 5 3 26 1
I i i i i i

I

5 4 3 2 1

~l I I I I I I ' I I I !

Fig. 3, m. The representations of u(5) in the representation Z>(3, m; I + 13, I + 9,

D(3, d\ lι,2r+it •> ^+ι,jv+ι)> where Z^,^+1 and Z^+lί^+1 are real,
IN,N+I ^ tv+i, JV'+i* *ne relation Zjy, #+1 ̂  Zls ̂ +1 + / ̂  Zj^+1} ̂ +1 is not ful-
filled for any integer j\ \ lNtN+1 — Z ί f^+11 > 1 for i = 1,..., JW- 1.



Representations oίSU(N,I) 129

1 fori = 2, . . .,#- 1;

4 3 2 1 65

I _ i _ i _ i _ u

1

I I I I

I

Fig. 3, d. The representations of ^(5) in the representation -D(3, d; I + 13, I + 9,
I + 4, Z, I + 15.6, Z + 15.2) of «(6, 1)

are con

jugated complex, the imaginary part of lχ,N+ι is positive.
1, forί = 2, . . ., ΛΓ- 1;

5

4 + 3 2 1
I i I I

1 6

7= 5 4 3 2 1

i t i i i i i i i i i i Zl i i i i i i i i Z * ιjtN

Fig. 3, c. The representations of w(5) in the representation Z)(3, c; I + 13,1 + 9,
I + 4, Z, Z + 2.6 + i 1.8, Z + 2.6 — i 1.8) of u(δ, 1)

The Representations of su(N, 1)
ΛH-l

The generator Σ ^Jc,k ^na^ appear in the connection (4) between

generators of u(N, 1) and su(N, 1) is represented by the scalar operator
/βj , J\ /^r _j_ gX

H -- ό - * ̂ ° ̂ e ίnfini^esίmal generator

1 N + l
T _ r x y^ r

^ f c j f c — ^fc,*; ~~ jy -f 1 ^ r» r

is represented as r ̂  1

N
lr,k ~ Σ Zr,fc-l ~

The eigenvalue is invariant under the transformation
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where λ is a real number. The same applies to the matrix elements of
the representation of the generators

_ *^fc,fc+l — *fe, fe+l
and

Jjc+l,Jc = Ik+l,k

Transformations with different values on λ therefore give rise to the
same representation of su(N, 1). A way to fix the niveaue on the numbers
IP, q in a representation of su(N, 1) could be to require that

IN-I,N+I = 0
For every representation of u(N9 1) that satisfies this requirement there
is a representation of su(N, 1).

The Representations of SU(N, 1)

From results by GAEDING, HABISH- CHANDRA, NELSON and DIXMIEB
[7], it is known [4], that there is a one-to-one correspondence between
continuous unitary irreducible representations of 8U(N, 1) and the
algebraically irreducible unitary representations of su(N, 1). The pre-
vious classification is therefore applicable both to the group SU(N, 1)
and to the algebra su(N, 1). Among these representations those are
representations also of the group SU(N, 1) that satisfy the global con-
ditions of this group. One such condition is that the unit element of the
group is represented by the unit operator, which means that

exp (it UN + l)Dkfk - Σ A .r)) = 1 for * = 0, 2π, . . .

and for all k. This involves that
N(N -j- n

(

k~l \ N + l

Σ *r.*-l - Σ lr.N+1 -
f = ι / ,. = 1 2

Another condition is that U(N) forms the maximal compact subgroup,
which implies that lrtN are integers. These two conditions imply that
N + I

Σ IT,N+I is integral. This means that we have to require that

is integral for representations of the classes 1 and 2, and that l
+ IN+I,N+I is integral for representations of the class 3. We must also
fix the niveaue on the integers lit 3 which is done by requiring that

N + l

0^ Σ l,,N+ι£N

For every representation of u(N, 1) that satisfies these requirements
there is a representation of SU(N, 1) and besides the trivial one these
are all the representations of SU(N, 1). We do not once again list the
requirements for the different representations as they are almost the
same as in the u(N, l)-case. Let us just notice that the set of representa-
tions of class 1 and 2 is discrete and that there is one continuous para-
meter that classifies the representations only for the D(3,e ; . . . ) >

, ί; . . .) and D(3, c; . . .) cases.
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The Representations of S17(JV,

Representations of SU(N, 1) that represents the center ZN+1 trivi-

ally are also representations of the factor group SU(N, 1)IZN+1. This

occurs if we replace the requirement (15) for the representations of

SU(N,l)}>y
N+l

In this way we get all the representations of SU(N, 1)JZN+1 besides the

trivial one.

The Representations of U(N, 1)

Representations of u(N, 1) that fulfill global conditions analogous to

those of the representation of SU(N, 1) are also representations of

U(N, 1). The nivaue on the integers litί is now essential. Thus, we get

all the representations of U(N, 1) besides the trivial one by applying all

the restrictions of the 8U(N9 1) case except (15) to representations of

u(N, I).

I would like to thank Dr. A. KCELBERG and Professor J. NILSSON for helpful
discussions.
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