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Abstract. Free fields and Wick products without smearing are studied as ope-
rators in a nested Hubert space. It is shown that Wick products are entire analytic
in complex space-time and that products of field operators are holomorphic in the
forward tube. The Poincare group is represented by unitary automorphisms of the
Fock space.

I. Introduction

A quantized field at a point cannot be a reasonable operator in the
Hubert space of states [I]. It is known, however, that free fields at a
point are mappings from a suitable topological vector space into its
dual [2]; one expects therefore that they are operators in some nested
Hubert space1.

It will be shown here that this is indeed so. The construction is un-
eventful and involves only Hubert spaces that are very similar to the
"physical" one. The norms in these spaces are not Lorentz invariant.
Nevertheless, the Poincare group is represented by unitary automorphisms
of the "Fock nested Hubert space".

Some of the results are stated below:
Theorem. Let X be the positive hyperboloid of mass M ^ 0, and let μ

be the Lorentz invariant measure on X. Denote by H^(X\ μ) the nested

Hilbert space corresponding to ( X ; μ) (see Section 2a) and by Tj (X; μ)

the tensor algebra over H^(X; μ) (see Section 2b). Then:

(i) For any v space-time points xly . . ., xv (v ̂  1) the Wick product

:A(x ̂  . . . A(xv}\ belongs to L(T^\ TL). In particular, the free2 field

operator A (x) belongs to L(T^\ Tj) for every x.

(ii) The operator family : A (#-,) . . . A (xv): is the restriction, to real x,

of a family : A (%) . . . A (zv): which is entire analytic (in the sense de-

scribed in Section 2g) in the arguments z1? . . . zv.

(iίi) The product A(z1) . . .A(zv) (without Wick ordering) is holo-

morphic in the domain

Im (*,-«,_!)£ 7+ (j = 2,...,v)

* Present address: Physique Theorique, Universite Aix-Marseille, Place Victor
Hugo, Marseille.

1 We shall use the terminology and notation of [3] and [4].
2 For the sake of simplicity, we consider only neutral scalar fields.
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in the variables z1} . . . zv. Here V+ is the interior of the forward light cone.
(iv) The usual representation {a, Λ} -> U00(aίΛ) of the Poincare group

is the {o, (^-representative of a representation {α, Λ}-> U(a, Λ) of the
Poincare group by unitary automorphisms of Tτ. Consequently
U(a, Λ) A (x) U~l(a, A] is defined. One has

U(a,A)A(x) U-l(A,Λ) = A(Ax + a) .

These statements Λvill be derived from the more general or more
detailed propositions to be proved below.

II. Proofs

a) The space HI (X\ μ)

Let μ be a positive Radon measure on a locally compact space X.
Denote by H0 the Hubert space L@)(X; μ) of (classes of) complex-

valued functions defined on X, measurable and square integrable with
respect to μ, with the obvious scalar product.

Let r (k) (k £ X) be a continuous function defined on X taking strictly
positive values. Denote by / the set of all such functions with the natural
partial order: r ^ p means r(1c) ^ p(k) for all k ζ X. Define in / the
order-reversing involution r <-> r where r(k) = ljr(k). The reader should
keep in mind this somewhat unusual notation.

For every r £ /, consider the measure r~2 μ (the product of the con-
tinuous function r~z(k) = r z ( k ) and of the measure μ) Denote by Hr the
Hubert space L& (X-, r~*μ).

If r ;Ξ> p, then Hr 2 Hυ\ the natural embedding of Hv into Hr is a
nesting Erj) which satisfies

\ErΛ ^ 1 (2-1)

2.1. Proposition. The algebraic inductive limit of the Πilbert spaces
Hτ (r £ /) with respect to the natural embeddings is a nested Hilbert space
which will be denoted by HI(X\ μ).

Proof. The verification of (NHJ of Section 3a of [3] is immediate.
(Take p(k) = min(r(&), q(k}}. In order to see that (NH2) holds, notice
first that the adjoint of ErΊ)is the operator of multiplication by p2 (k)/r2 (k).
Define ujr as the operator of multiplication by r~2(k). It is a unitary
map from Hr onto Hj which satisfies the equation (3.2b) of [3] q.e.d.

b) The spaces H<p>(X;μ)

Let X andμ be as above. Define H^(X μ) as the space HI(X\μ) of
Proposition 2.1. For n>\9 define Hφ*(Σ 9μ) as HI(Xn, μn) where
(Xn,μn) is the cartesian product of n copies of X, with the measure
μ x * x μ. The set jf» consists of all positive continuous functions
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rM(k) = r<n> (k±. . . kn) (kiζX,i= 1,2 . . . n). Notice that o<n> £ /<n> is
identically equal to one.

If r<w> ζ /<w> and #(n> £ /<n>, define r(w> x g<n) by

(rW x <?(">) (*!... fcm+«) = rW (*!... /O £<»> (km+1 . . . *w+n) . (2.2)

Then
#<* + w) = ff<w)Θ#<Λ) (2.3)

where ® denotes the (completed) tensor product of Hubert spaces.
Furthermore: If z<w> ^ r<w> (in /M) and if s<w) ^ g<») (in 7<n)) then

z(m) χ s(n) ̂  r(m) χ g(n) (in /(m+n))

-pim + n)
MZX srx q

Here <g> denotes the tensor product of operators; the E^-s are the natural
embeddings between the Hubert spaces of H^n\

The nested Hubert space Hψ^ ("the vacuum state") is one -dimensional
the set /(°) consists of all positive numbers r(°), and the Hubert space
H^ is the set of complex numbers with the scalar product {z, w] ->
->s*w/(r(°>)2.

c) The space Tj

2.2. Proposition. The spaces H(^ satisfy the conditions (DSj), (DS2)
CO

of [4] so that the direct sum (J) H^ is defined.
n = 0

Proof, (a) The condition (DSj) follows from (2.1), which is valid for
all n.

(b) In order to verify (DS2), define p^ 5j r(n\ qW by

pW (k) - min [rW (k), q^ (k)]

for every k. Let E$\]P be the operator which maps every f^ £ H^ into

/ Λ κ\

By Theorem 3.9 of [3] this operator is bijective. Now it will be shown
that the bound norm of its inverse does not exceed one, independently of
n\ this will verify the condition (DS2). It is sufficient to show that
Effiqty increases all norms. The square of the norm of the vector (2.5) is

This proves the proposition.
Define TΊ = T^X; μ) as the direct sum
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In accordance with the notations of [4], denote by «/<**) the natural
embedding from H^ into TΣ and by ^<w> the adjoint of «/"<»> which
projects T^ onto H^. A vector / ζ T^ can be identified to a sequence
{/<°>, . . . f(n\ . . .} where /<w> = ^<»)/ is the "^-particle component" of /.
We shall now show that, — under our assumptions — there are no
restrictions on /(w) as n -> oo. This is due to the fact that the set /<w) con-
tains, together with any qW(k), also every multiple λqW(k) (λ > 0) and
is in contrast with the familiar situation in the case of Hubert spaces.

2.3. Proposition. Let /<°>, /ω, . . . /<«0, ...be arbitrary; (/<™> ζH^\
m = 0, 1, 2, . . .). Then there exists an r ζl such that

£(#»>, #»>)<oo. (2.6)
m = 0

It follows by Proposition 3.2 of [4] ίto / = {/<°>, . . . /<w>, . . .}
to TL.

Proof. For every m, let #(m) ζJ(f^) so that the representative /£m)

exists.
Let Σm^m ^e any convergent series of positive numbers. Define

r <«) (i) by

Then

|/<w>(t)|a dμ(k)

= 2,\*<>m«x>

which proves the proposition.

d) The operator \f

This section is devoted to the operator [/(»»>)<# which acts in TL and
"creates m particles described by the vector /<m) ξJ3^m)". (Usually one
has m = 1.) Symmetrization will be discussed later.

Our main result concerns the set J(|/<w>>(i)) which describes the
"goodness" of the operator |/W)(ί) ζL(TL\ TL). It reads:

2.4. Proposition. Let /<m> ζ H^ be arbitrary. Let q ζ / be arbitrary and
let r<m> be any element of J(/<w>). (That is, r<m> ζl<mϊ~is such that the vector

1 has a representative in the Hilbert space H^). Define s ζl by

(m+n)^S((l)'^S(n) ^ ™bltrary (2.7)

{q, s} ζJ(\f^y(D). In particular,

-I. (2.8)
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The intuitive meaning of this is very simple : Starting with any state
in Tj, one can create additional particles in arbitrary states. One obtains,
however, a state that is "no better than its ingredients".

In order to prove the proposition, one must of course give a precise
definition of \f(m^ί\ This is done in three steps:

1°: Given any qW ζ/ίn> and any vector f^ in the Hubert space
H(

r

m\ consider the mapping |/ίw))^^nί^ (from^w) into#<™ + n)) defined
by

|/(mh(w + n\n}π(ri) __ /(w) κ> o(n) (a(n) r fί(n)\ /% q\
I"' ' r X < Uo. ~~'r ^ #4 \"<l ^ ? '' ^ '

It is clear from (2.9) that the bound norm of l/^)^*^ is \\f(™}\\,
independently of n and of q(n).

2° : Let /<m> be any vector in the nested Hubert space H^. Then, for
every n, there exists an operator |/(™))(w> £ L (Hφ> H^f + n)) such that,
for every rM ^J(f^) and for every qW £/<w), the representative of
|/«><Ό between H(»> and H% + n) is l/^)^^ n;^. Here /?

(.w) is the represen-
tative of /<w> in H^m\

In order to prove this statement, let rW ζJ(f<m>), fW ζ J ( f W ) 9

q(n) ζ/(») and qW ζ/<n>. Let 5<n> ^ q^,q(n); let 2<w> ^ r<m), r<w> and
^(Λ) < gr(»), £<*). By (2.4) and (2.9) one has then

77J(^3^ + n) I /(m)\(m + n; ??) EJ(W) __ //j(w 4- w) j /(m)\(m + w: w) 7?(ίi) π p rl
^ 2Xs r x f f l / r /rx t f q ^VP ~~ ^z*s f x 5 l/f V > < ί 5 «p 4 e α

We have just shown that the set J(|/(w))(w)) contains all the pairs
{q(*)9 r<m) x qW] where q^ ζlW is arbitrary and where r<w> ζJ(f^).

3°: The operator |/M><i> ζ ^(ίΓj; !ΓZ) is now defined by

CO

|^(m)yi) ̂  JΓ jf(m + w) |^(w)yn)^ί(n) _ (2.10)

n =0

The operators J^ and ̂  have been defined in Section 2 c then: properties
were studied in [4]. The assertion of Proposition 2.4 follows now imme-
diately from the definition (2.10).

Remark. If <i></<™)| denotes the adjoint of |/<™)><ί) then Proposition 2.4,
(together with the general results of [3]) shows that the product
|/(m)y/)(/)^(m)| is defined for any two /<w> ^H(}n\ gW ^H(^\ but that

the product (ί^(m) j/wyi) need to be defined. This is already essentially
the well-known result [2] that Wick products are "better" than others.
The picture is not changed by symmetrization and by normalization,
as will be seen below.

Remark. If / = Σ J^(m)/(m) ζ Tτ is arbitrary, one can study the

operator (/><*> - Σ |/(m)>(1) and show that it satisfies D ((/><*>) = /. So
m

Tτ is actually an algebra, in contrast again to the case of Hubert spaces.
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e) Functions of the number operator
CO

Since the space TL contains all the sums Σ </(n)/(n> (/(w) £ #/n)) (see
n = 0

Proposition 2.3) it is clear that the "particle number operator" N is
defined on all of Tj . A slightly more precise statement will be proved
below.

Let φ (n) be a sequence satisfying φ(n) ^ 1 for n = 0, 1, 2, . . . .
If r ζ / is arbitrary, define 992; ζ / by

(φr)W(k) = 0>(rc) r^(k) (n = 0, 1, 2, . . .) .

Notice that φr ^ r. Consequently J5 r̂ is defined for all n.
2.5. Proposition. Let φ be as above. Then there exists a unique φ (N) ζ

ζL(T z; TL) such that 0>Wφ(N)JfW = φ(n) Kw> for % = 0, 1, 2, . . . .
For every r £/, ^e ^pαzV {r, 99 r} belongs to J(φ(N)). In particular,
D(φ(N)) = I and R(φ(N)) - /.

Proof, (a) For every n and for every r^ ζ 1^ one has

llyίn)^,! = 1 . (2.11)
Indeed, one has

lE^r/Wl = [φWl-M/ t» w(*)]-2 !/<«>(&) I2 *^«}1/2 = [y(w)]-1 1/^I
for every /<»> ζ H<κ>.

00

(b) Consider the orthogonal sum 0 φ(n)E(^)fr of operators. By (2.11),
n = Q

it is a bounded operator from Hr into Hφr, to be denoted by (φ(N)}φLL.
(c) Verify that the operator φ(N), defined by (b) satisfies the con-

ditions of the proposition.

f) Symmetrization

Let π be any permutation of 1,2, . . . n. For every r^ ζ /(n), denote
by πr (w) the element of /(n) defined by

Denote by Πζ0 the unitary mapping of H^ onto itself defined by

(/7»0/) (*lf ...,*„) = / (*nl, ...,*„„) (/ ζ H<«>) .

Let /7π ζ L (H^n) H^) be the operator having 77j0 as {o, o}-represen-
tative.

2.6. Proposition. The operator Πn is a unitary automorphism of Hty\
Proof, (a) Verify that, for every r<n) ζ.1^, the representative Π"rr

exists and is unitary. (The superscript n has been omitted for the sake
of typographical simplicity.)

(b) Notice that πr = πr for every r ζ I(n\ It follows that

7P*
q.e.d.
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Remark. The set J(Ππ) does not contain, in general, the diagonal of
7<n) x /(n)φ if πr(n) φ r(n) then J(77π) need not contain the pair {r<n>, r<n>}.

Define now S^ £L(Hp>; H<f>) by

so that S^Q is the usual symmetrization operator in H^\ Notice that
$<w) is in general not a homomorphism.

The symmetrization operator in T^ is defined by

2.7. Proposition. Let r ζI be arbitrary. Let s ζl be such that, for every
n, sW is a common successor of the nl elements πr^. Then the pair {r, s}
belongs to J(S). In particular, D(S) = I.

Proof, (a) Verify that, for every n, the representative 8$ exists and
satisfies

11/8^11 ^ 1 . (2.12)
CO

(b) It follows from (2.12) that the orthogonal sum 0 S$ = 8,r

is a bounded operator from Hί into H, q.e.d.

Remark. The repetition of a well-known argument [5] shows that

#!/(«) )<!)$ = 8\fW)(D . (2.13)

It is clear that 8 commutes with φ(N).

g) The operators a+(f^) and a~(f^)

Since D(|/(w)>^>) = D(8) = D(φ(N)) = I, the product

α+(/M) = S|/<™)>(*> φ(N)8 = 8\f(m^φ(N) ζL(Tf, TL)

is defined for every /<m) ζH(f^. Its "goodness" is described by

2.8. Proposition. Let qζl be arbitrary and let r^ 6t7(/ (w>). Define
uζlby

uW, . . .,u(m~l) are arbitrary

u(m+n) _ φ(γι] (r(w) χ q(n)J ^ _ Q I 2? . . .) .

Let s ζ/ be such that, for I = 0, 1, 2, . . . and for every permutation π,
o(i) ^> <jr/Ίj,\ / Then

{2,β}€J(o+(/<»))) (2.14)
and

\\n + (f(ιn)\\\ <" ll/(w)| | /9 1 κ\
\\ sq\l / l l \\lr II V^ *-*-'/

Proof. The assertions are obtained by a straightforward application
of results of Sections 2a—2f.
15 Commun. math. Phys., Vol. 4
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It is important to notice that the definition of u involves the products

f <")*,..., *

in which the arguments of r^ are different from the arguments of qW.
If rί*1*) is "large" in /<m> (e.g. if it grows fast at infinity) then no choice
of q can make u arbitrarily small in /. If /<m) is "singular", then r<w) has
toloe "large" since the set J(/<m>) does not extend "far to the left" in
J(m)t

The correspondence /<w> -> α+(/<w>) is obviously linear. In order to
discuss further its properties, we need the concept of integrable family
of vectors (or operators) in a nested Hubert space.

Let Ω be a measure space (not to be confused with X). For almost
every x ζΩ, let f(x) (resp. A(x)~) be a vector (resp. an operator) in a
nested Hubert space Hj. (The space HI need not be of the special kind
discussed in this paper.) We shall say that the family f(x) (resp. A (x)) is
integrable if there exists at least one r ζ / (resp. at least one pair {r, r'})
such that the family of representatives fr (x) (resp. Ar>r (x)) is integrable—
considered as a function from x to the Hubert space Hr (resp. the Banach
space L(r, r')).

If f(x) is integrable, then the integral / f(x) dΩ(x) is defined by

/ / (x) dΩ (x) = EIrffr (x) dΩ (x) .
It is unique.

We return now to the operators α+(/<m>).
Let f(™)(x) be an integrable family of vectors in H^. Then the

operator family α+(/(m)(ίc)) is integrable and

/ α+(/<™> (a?)) dΩ (x) = a+(f /<m> (x) dΩ (x)) . (2.16)

This assertion is an immediate consequence of (2.15).
We consider next families of operators depending on z ξ Cκ i.e. on κ

complex arguments (κ ̂  1).
Let Hj and FΓ be nested Hubert spaces and B(z) a family3 of

elements <ΛL(HI\FΓ). For each z± ζ Cκ, define a (possibly empty) subset
Jan(B(z1)) g J(B(zJ) QlxΓ by:

A pair {r, r'} belongs to Jan(B(zl)} if and only if there exists an open
neighbourhood 0 (z-^ of z1 in C* such that

1°: {r, r'} ζ J(B(z)) for every z ζ Ofe).
2°: The family Br>r(z) (z ^0(zl)) of representatives — which is a

function from 0 (z ̂  to the fixed Banach space L (r, r') — is holomorphic

family B(z) is said to be holomorphic at the point z1 if Jan(B(z1)) is
not empty. It is called holomorphic in an open set Δ £ Cκ if it is holomorphic
at every point of A.

3 Dummy variables have carets above them if there is a possibility of confusion.
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Notice that we do not require the existence of one pair {r , r'} such
that Br*r(z) be holomorphic in all of A. The existence of such a pair is
obvious only if A can be covered by a finite number of sets 0 (z) considered
above.

The principle of analytic continuation holds: A holomorphic family
is determined by its values in any open set.

The definition of holomorphic vector families is of course entirely
analogous.

Concerning the product of v holomorphic operator families we have
the following statement

2.9. Proposition. Let B^^), . . ., B(v)(zv) be families of operators
belonging^ to L(HI\ Hj). Let zv . . . , zv be points in Cκ. Assume that there
exist in I elements q1} . . . , <£„+ 1 such that

Then the product of v factors B<V (z ̂  . . . B^ (zv) is defined and the family
BW (zj . . . BM (zv) is holomorphic at the point {zv . . . , zv} ζ C*v.

Proof. It is sufficient to notice that the cartesian product of open
neighbourhoods 0(Zj) is an open neighbourhood in Cκv.

We return now again to the operators α+(/<m)).
2.10. Proposition. Let /(w>2) (z ζA C Cκ) be a holomorphic family of

vectors. Then the operator family α+(/<w;2)) is also holomorphic in A. If
zlζA, if r<w> ζjanydn zj} anft y |̂  ̂  ̂  defined as in Proposition 2. 8,

then {q, s} ζ J™ (a+ (/<m« ^))).
Proof. The correspondence 2-» «^(/(m;z)) is the product of the holo-

morphic map z -> f(™>z) (from 0(z1) into H^) and of the bounded linear
map /<™> -> α^(/(w>) (from H(™> into L(q, β)).

It is convenient to define α~(/(w)) in such a way that α~(/(w;2)) is
analytic (rather than antianalytic) in z whenever /(m;z) is.

For every /(™) ζ#^m) define α~(/(™)) by

α-(/(w)) = (α+(/(w)*))* (2.17)

where the function /<m> * (k) is the complex conjugate of /<w) (k) and where
(α+)* is the adjoint of a+.

Notice that J(/(m>*) = J(/(m)) since the norm in any #£m) involves
only \fW(k)\*.

It is seen from Proposition 2.8 that D(a+(f^)) = I for every
f(m) ζ#ω but tnat R(a+(fW)) Φ / in general. Consequently (see [3])

one has R(a~(f^)) = I but D(a~(f^)) φ / in general. So: If /<m> and
g(™> are any two vectors in H^ then the products α+(/<m>) α~(</(w)),
α+(/(w)) α+(^(m>) and a~(fW) a~(g(m)) are all defined. The product
α~(/(w)) α+(<jKm)) need not be defined.

4 The consideration of operators between spaces would only complicate nota-
tions.

15*
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We shall need more detailed information about J(α-(/(m>)) in order
to study the existence and analyticity of multiple products.

2.11. Proposition. Let q £7 be arbitrary and let rW £ J(/(™>). Define
u £/ by

uM, . . . u^™-1) are arbitrary

s £ J be such that, for I = 0, 1, 2, . . . emd /or even/ permutation π,
. Then

Proof. Since J(/(w) *) = J(/(m>), the assertions follow from Proposition
2.8 and the general results on ad joints (see [3]) with the substitutions
r <-» f, u <-*ΰ and 5 <-> J.

One sees, just as in Proposition 2.10, that r W £ J<™ (f(m'>d) gives

{f > g} ^ </αn(«~(/(w'^)) where {5, g} is defined as in Proposition 2.11.
2.12. Proposition. Let /(»*;2) ^e tt family of vectors holomorphic in an

open set A C Cκ. Consider the product of v factors

α+(/(«;Sι)) . . .a-(f(™>^) (2.18)

where all the creation operators a+ are to the left of all the annihilation
operators or. Then (2.18) is holomorphic in the cartesian product

A x A x A ς Cκv .

Proof. Assume that in (2.18) the first β factors from the left are
creation operators (0 g β ̂  r). Let {%, . . . , zv} be any point of
Δ x x Δ. In order to apply Proposition 2.9, we have to find a
"chain" of elements ql9 . . . qv+l, such that

{2i+1,2iK/e»(a+(/(w;«))) (?= I , . . . / ? )
and

(2m. 2ί} € Jan(a-(f(m'z»}} (j = β + 1, . . . r) .

Choose g^+1 to be an arbitrary element of I. If β < v, define qβ+2 as the
element s in Proposition 2.11, with f(w) ζ Jan(f(m>zβ+ι)). Repeat the
procedure, if necessary, to obtain ^+3 (which can be done since the
element q in Proposition 2.11 is arbitrary) and continue in this way to
£v+1. Similarly, if β ̂  1, use Proposition 2.8 to obtain qβ, . . . qv

h) The automorphism U (A)

We shall now show that certain transformations of X induce unitary
automorphisms of Tj(K\ μ). It is convenient to begin with a general
criterion.
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2.13. Proposition. Let Hτ and F2> be any nested Hίlbert spaces (they
need not be of the special kind studied in this paper). Let γ be a mapping
from I into Γ such that

(yr)= γr .

Let A ££(#/; Fr) be such that

{r,γr}ζJ(A) (2.19)

for every r ζl. Then A ζ Hom(#7; FΓ).
Proof. Let r ζl be arbitrary; then {r, γr} ζJ(A) by assumption.

Consequently {r, γΎ} = {r, γr} ζ J(A). Since (f, γr} is again of the form
(2.19), it belongs to J(A). Consequently {r, γr} ζJ(A)r\ J(A) for every
r ζ/, which verifies the condition (Horn) of [4].

Remark. If γ is surjective, one has also A* ζ Hom(.Fj'; Hj).
2.14. Proposition. Let HI(X\ μ) be the nested Hilbert space defined in

Section 2 a. Let Λ be a bijective bicontinuous map of X onto itself, such that
the measure μ is preserved by Λ. Let U00(Λ) be the unitary operator in H0,
defined by

Let U(Λ) ζ Lt(flι\ Hj) be the operator having U00(Λ) as {o, o} -representa-
tive. Then U(Λ) is a unitary automorphism of HI(X; μ).

Proof. It is sufficient to show that U(Λ) is a homomorphism. For
every r ζ /, define Λr ζ / by (Λr) (k) = r(Λ~lk). (We are using here the
continuity of Λ~l.)

It is easy to verify that the {r, Λ r} -representative of U exists (and is
unitary). Since 2Π* = Λr , the assertion follows from Proposition 2.13.

Notice that U(Λ) does not, in general, define a unitary mapping of
every space Hr onto itself.

Let Tj be the nested Hilbert space of Section 2b. Define Λ^ and
UW in the obvious fashion, and let U(Λ) ζL(Tχ\ Tx) be the orthogonal

sum U(Λ) = 0

It follows then from Proposition 2.11 that U(Λ) is a unitary auto-
morphism of jΓj.

For n = 0, 1, 2 . . . let e^(k) (k ζXn) be a continuous complex-
valued function such that \e^(k)\ = 1. Then multiplication by e^(k)
is a unitary automorphism of H^ίX; μ). The orthogonal sum of these
operators is a unitary automorphism of Tτ.

i) Field operators at a point

The results of the preceding sections can be specialized to the case
where

1°: X is the positive hyperboloid
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2°: μ is the invariant measure

onX.
3°: φ(n) is equal to (n + I)1/2.
4° : The integer m is equal to 1 .
5°: The vectors e& = ft' V ζ H^ are

= (2π)~3/2 exp(ikz) . (2.20)

Here k varies over X and z is a fixed four- vector which may be complex.
The superscript 1 has been omitted in e<2>. We write

z = x+iy (2.21)
where x and y are real.

If r d) ζ /(i) is such that

<oo (2.22)

n(e<*>).
The sum

α+(e(*>) + α-(e(-*>) (2.23)

is denoted by J. (2) and called the (neutral scalar free) field operator at the
point 2. Notice the sign of 2 in the second term. For real z, it compen-
sates the complex conjugation of e^ in the definition (2.17) of a~, so
that A (x) is the usual formal field operator.

We proceed now to prove the assertions of Theorem 1.
The statements (i) and (ii) are immediate consequences of Propo-

sition 2.12 since the sum of a finite number of holomorphic families is
holomorphic.

The statement (iv) follows from the results of Section 2h.
There remains (iii).
Notice first that Proposition 2.8 and 2.10 give
2.15. Lemma. Let z be a complex four-vector. Let r<U £ /ί1) satisfy

(2.22). Define qζl by

g(°) - 1 (2.24)

Then {q, q) ζ J
It is convenient to denote by K (z) the subset of / consisting of the

elements of the form (2.24), where H1) satisfies (2.22). So Lemma 2. 15
states that g £ K ( z ) gives {q, q} ζ Jan(a+(e(zty. By the definition (2.17)
we have also
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2.16. Lemma. IfqζK(-z) = K(z*} then {q, q} ζ Jan(a~(e(-zϊ)).
About A (z) = α+(e<*)) -f α~(e(-z)) we obtain
2.17. Lemma. Let qζ'K(-z) and q' £ K ( z ) be such that q' > q. Then

Proof. Notice that {q, q'} is a common successor, in5 (/ x J)2, of
{g, q} and of {q', q'}. Consequently {q, q'} belongs both to Jan(a+(e^))
and to Jαn(α-(e(-2))) so that the assertion follows.

Let y and y' be real four- vectors. Write y > y' to denote y — yf ξ V+

where V+ is the interior of the forward light-cone. If r^ (k) = eky, rW (k)
= ekyf and if y > y', then H1) > r*1)' in I*1). Consequently also q > q' in /,
where q and q' are defined by (2.24).

Let zv . . . zv be complex four- vectors such that yv > > y% > y±
(see (2.21)). We shall show that the product A(z1) . . . A(zv) is defined
and holomorphic at {z^ . . . , zv}. Choose an arbitrary four- vector yQ

such that yτ > y^ and an arbitrary yv+l such that yv+1> yv. Define

#>,... f?| ̂ /W by

ή»(k) = exp (- 1 (2/._1 + y.)ή (? = 1, . . . v + 1) .

Define gj, . . . g,+1 by (2.24). Then q^ > £2 > > gv+1 in 7.
By Proposition 2.9, it is enough to prove that

{2m,2'} ^ Jan(A (z$ (i = 1, 2, . . . r) . (2.25)
By Lemma 2.17, (2.25) follows from qj+1^K(-z,) and g, ζ jKfo). This
means

ί ι(fc)]2 exp (2%,) iμ(4) - / exp((y, -
and

/ [r̂  (*)]-» exp(-2iy,)

which are satisfied. So the assertion (iϋ) of Theorem 1 is proved.
We have so obtained for operator products (rather than vacuum

expectation values) the initial analyticity domain of the Wightman
theory.

Notice that we have not defined the product A (x) A (x'} for real x
and x' . Equation (2.16) makes it easy, however, to find suitable smearing
functions /^ (x) such that A (x) A (fW) is defined.

The spaces used in this work are much more elementary than, say,
the space of tempered distributions. This corresponds to the elementary
character of the field studied here. Other spaces are needed e.g. in the
reformulation of Wightman axioms in which fields are operators in a
suitable nested Hubert space. Still, the explicit example of free fields can
be used as a guideline in this reformulation. It seems also likely that
similar methods are useful in the study of current algebras.

δ See Section 2e of [3].
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