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Abstract

Cellular geometries can vary significantly, how they influence signaling remains largely
unknown. In this article, we describe a new model of the most extensively studied sig-
nal transduction pathways, the Janus kinase (Jighal transducer and activator of
transcription (STAT) pathway based on a mixed systetimefir differential equations
(PDEs+ ODESs) coupled by Robin boundary conditions. This model was introduced
to analyze the influence of the cell shape on the regulatory response to the activated
pathway. In this article, we present an analysis of the well-posedness of the resulting
system, i.e., the existence of a unique solution, its non-negativity, boundedness and
Lyapunov stability. As by-product, we show the well-posedness and convergence of
a suitable discretization of this model providing the basis for its reliable numerical
simulation.
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1 Introduction

In multicellular organisms communication between cells is frequently mediated by signal
molecules secreted to the extracellular space which bind to cell surface receptors. The
signal has to be transmitted from the extracellular domain of the cell surface receptors to
the nucleus and thereby regulates gene expression.

How transport from the site of signal transducer and activator of transcription (STAT)
phosphorylation at the plasma membrane to the site of action in the nucleus is mediated is
still unclear. Whether STATs freely flluse through the cytoplasm to reach the nuclear en-
velope or are actively transported along the cytoskeleton remains a matter of debate. More-
over, itis not known whether STATs can in addition be phosphorylated by membrane-bound
kinases on endosomes present in the cytosol. This would reduce the distance between the
site of phosphorylation and nuclear envelope. To answer these questions and to analyze the
influence of the cell shape on the regulatory response to the activated pathway, a new model
was introduced which takes the geometry of the cell into account. The key components
of the pathway are modeled with a system of ordinaffedéntial equations (ODES) to es-
timate the parameters that can not be measured experimentally. The ODE model is then
enlarged to include the transport of STAT5 through the cytoplasm, which is modeled by a
heterogeneous reactionflilision process. A mixed system off@irential equations (PDEs
+ ODESs) coupled by linear, time-dependent Robin boundary conditions is obtained, which
is analyzed upon well-posedness, i. e., existence of a unigue solution, its non-negativity,
boundedness and Lyapunov stability. For this analysis, we employ an “energy technique”
using the Banach fixed-point theorem rather than the abstract semigroup approach in order
to cover generaton-autonomousettings and also to prepare for an extension to more real-
istic nonlinearmodels. This will be the subject of a forthcoming paper. As by-product, we
also obtain the well-posedness and convergence of a suitable discretization of this model
yielding the basis for its reliable numerical simulation. Such a simulation is carried out
using the in-house finite element package Gascoigne [10].

2 Biological Processes

One of the most extensively studied signal transduction pathways is th&JAK pathway

(see Pfeifer et al. [19]). Several members of the signal transducer and activator of transcrip-
tion (STAT) protein family have been implicated in various cancers. Briefly, after binding

of ligand to the receptor two receptor associated Janus kinases (JAK) transphosphorylate
each other and subsequently tyrosine phosphorylate the cytoplasmic domain of the recep-
tor. STAT proteins can then bind to the phospho-tyrosine residues via their SH2 domains

and are phosphorylated by JAK. Phosphorylated STATs dissociate from the receptor, dimer-
ize, move to the nucleus and regulate transcription of target genes. After gene transcription,
the phosphorylated STATs are deactivated and exported back to the cytoplasm. Meanwhile
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STATs are permanently imported and exported from the cytoplasm to the nucleus. The
kinetics of these processes is given through the following reactions:

act

2(pJAK+ (STAT)) Lo, (PSTAT,)2 Jime2, (pPSTAT, 102

(PSTAT, )2 —2 2(STAThu) —> 2(STATey) — 2(STAThu)
The model resulting from the kinetics is relaxed by a fixed sojourn tigagy Tor STAT
in the nucleus. It takes into account the processes in the nucleus like gene expression and
deactivation, which are not the focus of this paper. The introduction of a distribution of the
delay in four reactions improved the description of the experimental data significantly (see
Timmer et al. [24]):

ldelay ldelay l'delay

(PSTAT, )2 — (PSTAT )2 — (PSTAT, )2 — (PSTAT;hu02

Idelay Idelay

(PSTAT,,,02 — (PSTAT,ud2 —— 2(STAThwo).

2.1 Biological Data

A major limitation in systems biology often remains the lack dfisient high-quality quan-

titative data for diferent variables of investigated systems. To overcome this constraint, we
have based our mathematical modeling on experimental data acquiretfdremti exper-
imental techniques (described in Friedmann et al. [9]), all generating quantitative data of
high quality. Our collaborators, the group of U. Klingiter (Systems Biology of Signal
Transduction, German Cancer Research Center, DKFZ Heidelberg) provides us with quan-
titative measurements of activation, localization and transport dynamics of several compo-
nents of the JAKZSTATS pathway by immunoblotting and fluorescence microscopy (time
lapse imaging, FRAP, FCS) in a NIH-3T3 fibroblast model system presented in Swameye
et al. [23] and Pfeifer et al. [19] as well as in CFU-E cells communicated in Bachmann [3].
Nevertheless, the restrictions of each method have to be assessed carefully to avoid misin-
terpretations of data. In addition, it is advisable to establish standard procedures for cell
culture, sample preparation and experimental setup to guarantee comparable results (see
Schilling et al. [20, 21]).

3 Model Formulation

As mentioned above the key components of the pathway are modeled with a system of
ordinary diferential equations (ODESs), which is supplemented by a heterogenous reaction-
diffusion model (PDESs) for the transport of STAT through the cytoplasm. This mixed sys-
tem oflinear differential equations (PDEsODES) is coupled by likewise linear, btitne-
dependenRobin boundary conditions. In comparison to Swameye et al. [23], we focus on
the dimeric description of the STAT molecules in the model, which results in a simplified
linear model without being restrictive. We consider also a simplified receptor module. The
binding of the ligand Epo to the extracellular part of the receptor, which leads to activation
by phosphorylation of the JAK at intracellular cytoplasmic domain of the receptor, does not
need to be modeled in detail. This is due to the possibility of measuring the phosphorylation
function pJAK(t), the evolution in time of the activated cytoplasmic domain of the receptor.
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3.1 An ODE Model

Models which describe the interaction between two domains, here the molecule exchange
between the cytoplasm and the nucleus, are called two-compartment models. In such mod-
els the volume of the compartments play a crucial role in the equations.

We denote byup the concentration of unphosphorylated STATS andythat of
phosphorylated STATS in the cytoplasm, while denotes the concentration of unphos-
phorylated STAT5 andi; that of phosphorylated STAT5 in the nucleus, respectively. The
variablesu,, ..., u7 are introduced to describe the processes in the nucleus by linear delay
equations, they are so-called “fictitious concentrations”. The model for determining the
state vectou(t) = (up(t),...,uz(t)) looks as follows:

VeytUg(t) = —TacPIAK () Uo(t) — FimpUo(t) + rexpliz(t), (3.1)
Veyt Uy () = —Timp2U(t) + racPJAK(t) Uo(t), (3.2)
VnueUs(t) = —TexpU2(t) + FimpUo(t) + rderayuiz(t), (3.3)
VnueUs(t) = =T delayu(t) + rimp2u(t), (3.4)
Viucl (t) = —Tgelayli (1) + rdelayi-1(t), 1=4,5,6,7. (3.5)

Summing all these equations, we see that the quantity
o (U) = veyt(Ug + U1) + vinuc(U2 + Uz + Ug + Us + Ug + U7) (3.6)

is conserved in time as required for physical reasons. This model was considered for two
different cell types: a spherical-shaped CFU-E and a NIH3T3 fibroblast cell. We have two
sets of parameters, one for each cell type. The initial values are

u1(0) = u3(0) = Us(0) = us(0) = ue(0) = u7(0) = 0 (3.7)
CFU-E: ug(0) =50 mol/um?®, uy(0) = 18 moyum? (3.8)
NIH3T3:  ug(0) =16 molum?®, ux(0) =20 mol/umq, (3.9)

where the number of molecules (mol) per compartment was determined using a combina-
tion of immunoprecipitation and immunoblotting as described in Friedmann et al. [9].

The determination of the parameters in the above model is a delicate matter. For illus-
tration, we briefly describe the basis of the choices made in our simulations. The parameters
veyt and vnye, Which represent the average volume of the cytoplasm and nucleus were mea-
sured by transmitted light microscopy. We use the valygs= 429umd, vyyc= 268um?
for the CFU-E cell, andigy; = 1758um3, viyc = 366 um? for the NIH3T3 cell. The nuclear
import and export ratesmp andreyp can be measured only for the unphosphorylated STAT
in NIH3T3 cells by FRAP experiments. The import rate of the unphosphorylated STAT in
the CFU-E cells is assumed to be approximately the same as in the NIH3T3 cells, so that
the same value is used for both cell types in our model. Another input function in this model
is the phosphorylation function pJAK( Its time distribution is given in form of discrete
measurements, which are smoothly interpolated by splines. We assume that after some
initial phase [0T] the function pJAK(t) becomes constant in time, i. e., pJAK{pJAK
for t > T. Further, to get the right amount of molecules, we assume that at the plasma
membrane the number of JAK molecules is equal to the number of EpoR molecules.
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parameten unit | CFU-E cell | NIH-3T3 cell
Fact min~t 11 187

Fimp min~* 39 242
imp2 min~? 58 1010
Fexp min~* 265 174.93

I delay min~t 225 194.31
Veyt pum? 429 1758
Viue ume 268 323
pJAK(t) - [0,4.5] [0,2.5]

Table 1. Parameters for the twdldirent cell types.

With the system (3.1) - (3.5) parameter estimation has been performed using the soft-
ware PottersWheel (see Maiwald & Timmer [17] and Friedmann et al. [9]). This tool has
been developed for data-based modeling of partially observed and noisy systems like signal
transduction pathways, i. e., for determining the unknown parameters, whichfteremt
in the diferent cell lines: For the CFU-E cell the phosphorylation rate of STAT, its export
rate, the import rate of phosphorylated STAT and the time delay for the processes in the nu-
cleus (act rexp, limp2 andrgeiay) are unknown, and for the model of a NIH3T3 cell three of
the parametergact, limp2 andrgelay, are unknown. In Table 1, we summarize the parameter
values used in our simulations.

The following theorem establishes the well-posedness of the above ODE system, par-
ticularly that its solution is uniformly bounded and for non-negative data also non-negative.
The proof employs a standard result from Numerical Linear Algebra, which is stated in
Lemma 3.2, below. This analysis is intended as preparation for corresponding results in the
context of the more realistic mixed PDE-ODE models, which are the main theme of this
paper.

Theorem 3.1. For the given set of data the system (3.1) - (3.5) is well-posed. There is a
unique global solution & (ug,...,u7), with u € C1[0,0). This solution is smooth, non-
negative, uniformly bounded, and Lyapunov stable. Fer &, it converges to a limit state

u>.

Proof. (i) Rescaling:We introduce the new scaled variables

Vii=vepli, 1=0,1,  Vii=vpueli, i=2,...,7.
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Using this notation the ODE system (3.1) - (3.5) can be rewritten in the form

racpJAK(t) limp lexp

Vo) = =55 =) - () + v, (3.10)
V)= 2., ) + %’A:K(t)vo(t), (3.11)
\/(t)—_ﬂ’ Va(t) + m;pvo()';)+ j:'ay 1(t), (3.12)
V() = - de'ay Vs(0)+ - ZmP2y. (0), (3.13)
V() = - de'ay () + Olez”‘yv. W), 1=4567. (3.14)

This is a homogenous linear system for the new state vecto(v, ..,v7), which can be
formulated in an abstract form as follows:

V() +ADVE) =0, t>0, v(0)=\°, (3.15)
with the system matrix
[ raCthA::(t)'*'rimp 0 _:/::_Xu[(): 0 0 0 0 0
—rac'pfﬁm) 0 0 0 0 0 0
w0 @ 0 0 0 0 i
_ 0 _Ompz gl g 0 0 0
A(t) - ron ‘;réLtjatl:ay Idelay

0 0 0o - V 0 0 0
0 0 o0 0 -l L 5 g
0 o 0 o0 0 -l few

0 o o0 o0 0 0 oy oo |

We discuss some special properties of the matrig) A((a;(t))/
dominant transpose 8( , i. e., there holds

ij=1- It has a diagonally

,
D a0 <@L i=1..7. (3.16)

j=1j#i

Since all diagonal elements; (t) are real positive, this implies that all Gerschgorin circles
of A(t)T lie in the right complex halfplane. Obviously(t) = 0 is a simple eigenvalue
with eigenvector

WO (t) = Veyt  Tdelay Veyt rdelayC I delay(ractPJAK(L) + Fimp) C)
Viue FacPJAK(L) ™ Viuc Fimp2 lexplactPJAK(t) U
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for any c € R, which is obtained as solution of the homogeneous system

Vnue(FacpJAK(t) + rimp)wgo)(t) - vcytrexpw(zo)(t) =0,
~racPIAK(E) - W) + Fimpa (1) = 0,
~VeytT delagt ) (£) + Voytl expWe (£) — Viud impWo (1) = O,
~Voudimp2 Wi (t) + Veytl detahly (1) = O,

1 gelagM (1) + Tdeiapt 1 (1) =0, 1=3,4,5,6.

This reflects the conservation property (3.6). All other eigenvajugs), j = 1...,7} have
positive real part and are likewise simple. Corresponding eigenvectors can be explicitly
determined. The details of this tedious calculation are omitted. In particular, there are no
purely imaginary eigenvalues, i. e., for the flag@ents given the solution cannot develop
time-periodic behavior.

Since the & 8-matrix A(t) has 8 simple eigenvalues it is diagonalizable and possesses
a basis(wO(t),...,w()(t)} of (normalized) eigenvectors. The corresponding reguag8
matrix W() := [wWO(t),...,w)(t)] then transforms A into diagonal form,

WHOADW(D) = A(t) = diagi(t)Zo- (3.17)

For our choice of caicients in the matrix Af) the eigenvaluesli(t) as well as the cor-
responding eigenvectors® (t) can be assumed to be continuouslfetientiable functions

with respect to time, which become constant fat T, i. e., &;j(t) = aj, A(t) = A, and
Wity =w-1 fort>T.

(il) Existence and uniquenesSince the system (3.15) is linearwmand continuous in the
existence of a unique global solution follows by standard results on ODE systems (theorem
of Picard-Lindedf and extension theorem). Further, on each finite time interval the solution
depends Lipschitz continuously on the initial dai@) .

(i) Non-negativity: We note that the matrix A) is of “non-negative type”, i. e., there
holds

ai(t) >0, aj(t)<0, ij=1..7.i#] (3.18)

This together with the diagonal dominance (3.16) of)A(mplies by Lemma 3.2, below,
that for k > 0 the matrix K kA(t) is invertible with an elementwise positive inverses (|
KA(t))" > 0. Now, we discretize the system (3.15) by the backward Euler scheme, which
results in the sequence of stationary equations

(I+KAE)VI =V, m>1, V2 =v0), (3.19)

on an equidistant time gri¢ty, = mk m=0,1,2,...}. For this approximation, we have on
any fixed time interval the following error estimate (see Hairer et al. [13]):

m__ ’
Jnax IV = V(tm)Il < C(t)kr[rg)%xn\/ Il (3.20)

If only ve CY[0, )8, we still have mag_ IVZ'=V(tm)Il = O (k — 0). Then, for our initial
value, v(0) > 0, the monotonicity property @kA(t))~* > 0 implies that allv" >0, m> 0.
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Hence, considering the limk — 0 in the error estimate (3.20), we conclude thiat 0 for
all time.

(iv) Uniform boundedness and asymptotic convergefites conservation of the quantity
(3.6) in time together with the non-negativity of the variablgs...,v; immediately im-

plies the uniform boundedness of this solution. In the next step, we prove its asymptotic
convergence to some limit state, which as a by-product also yields an alternative proof of
its boundedness without referring to the result of Lemma 3.2. Using the relation (3.17) the
initial value problem (3.15) can be rewritten in the form

WLV () + AW I (OV(t) =0, t>0, v(0)=\°,
or with the new variabley(t) := W=1(t)v(t),
Y (1) + Ay(t) = (WL (OV(D) + (A - AD)Y(). t=0, y(0)=W O

From this, we conclude that

dgt(e”‘tyi (©) = " (W V(D) + (A - AB)YD);.

fori=0,...,7, and integrating over time,

{
(D) = ey (0)+ fo eS((W LY (IV(S) + (A - A(9)Y(9); d.

This implies that

.
lim yo(t) = lim {W W)+ fo (WYY (s9v(9)
+ (A= AW HIV(9)pds =: y5 .
and, fori=1,...,7,

-
lim yi(t) = lim {e*{{(W(O)); + fo e (W (IV(S)
+ (A= AW H(9V(9); ds}} = 0.
From these asymptotic relations, we infer that

Jim v(t) = lim W(y(t) = Wy”, (3.21)

wherey® := (yg,0...,0).

(v) Stability: Since the initial value problem (3.15) is linear, the local L-continuity of its so-
lution with respect to the initial value guaranteed by the theorem of Picard-ghielether

with the asymptotic convergence result (3.21) imply that the solution is also Lyapunov sta-
ble, i. e., for givens > 0 there exists @(e) > 0 such that for any initial value*, satisfying

I|1Z°|l < 6(g), the corresponding solution of the inital value problem

Z@t)+AM)Zt) =0, t>t., Z0)=2,
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satisfies
sup|lz(t)|| < e.
t>t,
This completes the proof of the theorem. |

Lemma 3.2. Let A € R™d be a real matrix with the usual additive decompositie: L +

D +R in its lower, main and upper diagonal parts, D and R, respectively. Suppose that
A is of so-called “non-negative type”, i. € is regular and there holds elementwiBe> 0
andL +R < 0. Further, letA or its transposeAT be “(weakly) diagonally dominant”,

d

d
-max{i_ZJaul}Sl, or  max iz jayjlf < 1. (3.22)

Then, for k> 0 the matrixl + kA is a so-called M-matrix, i. e., it is invertible with elemen-
twise positive inverse + kA)~1 > 0.

Proof. Though this result is well-known in Numerical Linear Algebra (see, e. g., Varga
[25] or Bermon & Plemmons [4]), for the sake of completeness, we provide the short proof.
Suppose that the matrix A is diagonally dominant. Then, the matrikA is also of non-
negative type and evestrictly diagonally dominant, i. e., the corresponding inequalities
(3.22) hold with strict inequality signs. Hence by the theorem of Gerschgorin it follows that
the corresponding so-called Jacobi matrix=3-k(I + kD)~1(L + R) > 0 has spectral radius
o(J)< 1. This implies that the matrix-+4J is regular with inverse

(I —J)—lziJk: | +ii‘>o.
k=0 k=1

From this, we infer the regularity of # kA =1+ kD + k(L + R) = (I + kD)(I -J) and (+
kA1 =(1-JyY(1+kD)™* > 0. If AT is assumed to be diagonally dominant the argument
is analogous. O

Remark3.3. As a by-product of the proof of Theorem 3.1, we see that the first-order back-
ward Euler scheme applied to the system (3.1) - (3.5) yields non-negative approximations
U™ > 0 at all discrete time levels, > 0, which satisfy the error estimate

m— <c(T)k o 5
Ogt]ni)%HU u(tm)Il < c(T) tg[loéﬁ')i”u ol (3.23)

In general the error constan{T) grows exponentially inT due to the use of Gronwall’s
inequality in the proof. In the present special situation of a diagonally dominant and di-
agonalizable system matrix 8(this growth can be shown to be only linear, which, how-
ever, will not be further pursued here. Analogous results do not necessarily hold true for
higher-order time-stepping schemes, such as for example the backiardrting formu-

las BDFR) (R > 2). In the computations described in Section 4, below, we have therefore
used the simple backward Euler method though it is only of first order.
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3.2 A PDE-ODE Model

To address the biological question described above, we dlididin for unphosphorylated

and phosphorylated STAT in the cytoplasm in our modeffddent transport processes can

be modeled by dierent difusion codicients. At first, we model free fiusion using a con-

stant difusion codicient based on measurements by fluorescence correlation spectroscopy.
The difusion codicient D = 15 um?/s was used in the simulations. The additional trans-
port of the molecules along the microtubules is modeled for the NIH3T3 cell through an
anisotropic difusion codficient whereas the mainstream direction of STAT movement was
set in the y-direction of the cell. Our goal here was not to compare tfiesitin processes
where the trace of the filusion codicient must be equal. We introduced additional trans-
port on the microtubule by inserting a fasteffdsion codicient in the direction towards the
nucleus (y-direction). Of coarse, the more realistic description would be to add a transport
term to the equations.

To answer the biological question posed only the cytopl&¥p has to be dissolved
spatially. The processes in the nucleus such as DNA binding and dephosphorylation of
STAT do not have to be known in detail. For their description it iisient to use time de-
lays as black box elements. As already described in the previous section, phosphorylation
as well as nuclear import and export of STAT only occurs at the boundaries of the cyto-
plasm. For this specific question, we therefore obtain a mixed system of linfsreditial
equations: two dfusion equations with linear Robin boundary conditions and six ODEs,
two of them are coupled to the PDEs through the import terms and the other four describe
the processes in the nucleus by linear delay equations:

i) CytoplasmQcyt, for (t,x) € (0,00) X Qeyt:

OtUp(t, X) = DAuUp(t, X), (3.24)
otup(t, X) = DAug(t, X). (3.25)

i) Nucleus Qnyc, forte (0,00):

"
Viuc(t) = —Texpli2(t) + M delayp7(t) + —= f Uo(t, X) dox, (3.26)
10Qnud
aQnuc

, limp2
VhudUz(t) = —rdelaiz(t) + ——— f ua(t, X) doy, (3.27)

10Qnud

6QHUC

Viuck (t) = —Tdetayti (1) + rdelayi-1(t), 1=4,5,6,7. (3.28)

The initial conditions are essentially the same as used in the previous section for the pure
ODE model, (3.29)-(3.31):

U1(0,X) =0, x€Qeyt,  U3(0) = usa(0) = us(0) = Ug(0) = u7(0) = O, (3.29)
CFU-E: up(0,x) =50 mol/um?3, xeQ, uy(0)= 18 moyum?, (3.30)
NIH3T3:  up(0,Xx) = 16 moyum®,xe Q, up(0) = 20 mol/um?>. (3.31)

We only have to observe that the concentrations of unphosphorylated and phosphorylated
STAT molecules in the cytoplasmyp(t,x) and ui(t,x), are now space dependent. The
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phosphorylation as well as the import and export of molecules enter through the linear
Robin boundary conditions:

Donup(t, X) = 7] 8QC |pJAK(t ,X)Uo(t,X), 0N 0Qcyt, (3.32)
Dénto(t, X) = —| ) Q uo(t 0+ a;nud (),  ON 0 (3.33)
Donus(t, X) = | anyt| pJAK(t X)Uo(t,X), 0N 0Qcyt, (3.34)
Dila(t,X) = - ag:jc| Wt ¥), on dQnuc (3.35)

where dQ,: denotes the outer boundary of the cell, i.e. the membrane ofiag. the
boundary of the nucleus. A problem with prescribing these spatially constant Robin-boundary-
conditions is that this may introduce incompatibilities with the initial conditions along the
boundary preventing the solution from being smooth dowh=d. In fact, there holds:

Donup(0,X) = — | HQ |pJAK(O X)Uug(0,X) =0, X € Qeyt,
C
DAnUo(O, M6 (0, 0)=C ~ 24 0Qnuc
nuo(0, X) = |aQnuc|UO( X)+|aQnuc|UZ() 3  X€0Qnuc
DAtz (0, ) = —2% pJAK(O, X)Up(t X) =0, X € 3y,
Iaﬂcyl
DOn1(0,%) = —— P2 14 (0,) =0, X € Inuc.
" 10Qnud

On the boundary)Qcy: the Robin boundary conditions are compatible with our initial con-
ditions, only the boundary condition fap on 9Q,,c does not fit the proposed simplified
initial condition which, however, is also not fully biologically correct. The non-activated
molecules shuttle permanently between the cytoplasm and the nucleus fiétiernti im-
port and export parameters which are cell-type dependent. Thus, the concentration of
the molecules cannot stay constant up to the bound@&ry,.. We will introduce a lit-
tle change in the initial condition to guarantee the smoothnesg afown to timet = 0.
This is accomplished by introducing a smooth functjgfx), which fits the constant ini-
tial value in the interior domain to the value which fulfills the Robin boundary conditions
uo(0,s) = renfpuz(O) on 0Qnye. For the CFU-E cell there holdsy(0, s) ~ 6.8u,(0) = 122,
S0 y(X) has to fit smoothly the endvalues 50 to 122, whereas for the NIH3T3 cell there
holds ug(0, s) ~ 0.7uy(0) = 14, so the values 16 and 14 have to be connected smoothly.
The modified initial condition is themip{0, X) = x(X)u(0, X). On Q2 the presence of the
smooth parameter function pJAK(t,x) guarantees the smoothness of the solution down to
timet=0.

Using the space-independent averaged unknowns

w0 = f bt )dx  Tut) = chytl | wt0x
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we reformulate equations (3.24) and (3.25) as

1Qeytl
Up(t) = Aup(t,X)dx= OnUo(t, X)doy
D Qeyt 9eytU0nuc
—_ad PIAK(t, X)uo(t, X) doy
10Qcytl Jogeywoone
limp
- Uo(t, X) doy + u
00md Jogyy, 2 mnud 2(t)
[ CVtI TM= [ Awtxdx= f Anua (t, X) doy
Qeyt 0QeytUQnuc
lact limp2
=— JAK(t, X)ug(t, X)doy — ——— u1(t, X)doy.
|8Qcyt| HQCytp ( )0( ) |aQnuc| 0Qnuc 1( )

Adding these two equations with (3.26) - (3.28), we see that now the quantity
o := D™ HQeytl(Uo + Up) + [Qnud (Uz + Uz + Ug + Us + Ug + U7)

is conserved in time as required for physical reasons. For the state uest@up, us, U, ..., uUy7),
we have the following system of ODEs:

[Qcytl r
5 BbO="ae | PIAKE XU do,
r_°yt o (3.36)
imp
Uo(t, X) doy + uo(t
6% Jor, 0" |asznuc| 2D
¥ Cyt' () = |a§“| PJAK(t. X)uo(t, X)dox
rcyt eyt (3.37)
imp2
- uz(t, X)doy,
|aQnuc| 0Qnuc 1( )
r.
[QnudUp(t) = —Texpliz(t) + Faelap7(t) + ==— [ Uo(t, x)doy, (3.38)
10Qnud
3nue
, limp2
[QnudU3(t) = —Tdelayus(t) + us(t, x) doy, (3.39)
10Qnud
aQnuc
[Qnud Ui (t) = —Tderayli(t) + rdelayi-1(t), i=4,5,6,7. (3.40)

The following theorem contains the main results of this paper. For its formulation, we
use the standard notation of space-time function spaces. For a real function Banach space
X, with norm ||-|| on a bounded domaif®2 c R", the spacelLP(0,T;X) consists of all
measurable functions: [0, T] — X with

T 1/
lulusaroo = ([ IOIPd)" <o, (3.41)

for 1 < p <o, and |JUllL~(oT;x) := €SS SUR.T) [Ju(t)|] < oo. In the present case, we take
V := HY(Q) with dual spacevV* = H™1(Q) and H := L?(Q) and consider the usual Gelfand
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triple V < H < V*. We denote by {,-)o and (., -)r the usualL? scalar products over
the domainQ and a partl” c 9Q of its boundary, respectively, and liy|lo and||-||r the
corresponding norms.

Theorem 3.4. For the given set of data the initial-boundary value problem (3.24) - (3.35)
is well-posed. There is a unique global solutios: Quy,...,u7), with w,u; € L2(0,T;V),

Ao, dyug € L2(0,T;V*), and ,...,u; € C0,T] on any time interval[0,T]. Further,

for syficiently smooth and compatible data this solution is likewise smooth, non-negative,
uniformly bounded and Lyapunov stable.

The proof of this theorem will be given in the following two sections. Though the
problem (3.24) - (3.28) is linear, we use an “energy technique” and a fixed-point argument
based on its variational formulation rather than the common spectral or semigroup approach
in order to prepare for more general non-autonomous and nonlinear versions of the model
such as described in Remark 3.5.

Remark3.5. We note that the cdicients pJAK(, x) in the Robin boundary condition ex-
plicitly depends on time making the coupled system (3.24) - (3.28) non-autonomous. Fur-
thermore, our simplified model involves already dimerized molecules with concentrations
u, i =0,...3. By considering every monomer and every reaction taking place in the cyto-
plasm, the resulting system would contain nonlinear terms sucf: & dimers,u?, u?u;,

and uujux for trimers and so on for multicomplexes. For these additional equations must
be considered (see [8]),

OtUp(t, X) = DAUg(t, X), (3.42)
AUy (t, X) = DAUL(t, X) — 2kg U3 U3 + 2kaU, (3.43)
Arua(t, X) = DAUR(t, X) + kg UZug — kousp, (3.44)
ug(t, X) = DAU3(t, X) — kg UZuz + kaUp. (3.45)

As mentioned before, due to the possibility of measuring the activated JAK molecules for
this model, we do not need to consider the detailed receptor model. Otherwise, additional
non-linear terms would appear in the Robin boundary conditions (3.32) and (3.34) of the
form
DonUo(t, 0Qcyt) = _Ym,

which describes the cooperativity of binding to the receptor. FeamG< 1 the reaction is
negatively cooperative, fan= 1 non-cooperative and far> 1 positively cooperative. The
general argument used below for proving the well-posedness dihtar coupled system
(3.24) - (3.28) is expected to be extendable to cemainlinearmodels of this type. This
will be the subject of a forthcoming paper.

3.3 Proof of global existence and uniqueness

The mixed system (3.24) - (3.35) of reactiorffdsion equations and ordinaryfigiren-
tial equations is coupled through the concentratin(t) of the non-activated STAT in the
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boundary condition (3.33) on the nucleus boundé®, .. This motivates the iterative de-
coupling of the two system parts and the use of the Banach fixed-point theorem for proving
the existence of a solution to the coupled system [18].

(i) Fixed-point mappingOn some finite time intervaltd, t;] c [0, o) and for a certain
givenae R, we define

Calto, t1] := {ve Clto,t1] | V(to) = a}.

On this manifold, we consider the mapping Cy[to,t1] — Ca[to,t1], acting on the cou-
pling variable up, which for some giveru; € Cy[to,t1] is defined byu, = y(02) where
u=(Up,...,Uy) is the solution of the following coupled PDE-ODE system:

CytoplasmQcyt, for (t,X) € (to, t1] X Qeyt:

OtUp(t, X) = DAUg(t, X), (3.46)
AU (t, X) = DAL (L, X). (3.47)

NucleusQnye for t e (to,t1]:

I'delay limp
u)' (t) + ——up(t uz7(t) + ——— Up(t, s)doy, 3.48
(L) ® |Qnuc| 120) = T 7Y Qnud00nud olt-) (3.48)
delay limp2
uz)’(t) + ——ugz(t |futsdox, 3.49
O 100 = raddoue " 49 (349)
delay delay .
u) (t) + ——ui(t t), 1=45,6,7, 3.50
(W) )+ 5T = (), (3.50)
with the Robin boundary conditions
Donup(t, X) = B Q |pJAK(t)uo(t ,X), 0N 0Qcyt, (3.51)
Fim lex
Danug(t, X) = t, X t oQ 3.52
nUO( s X) |aQnucl uo( ) |aQnuc| u2( ) on nuec, ( )
Donus(t, X) = pJAK(t)uo(t X), 0N 0Qcyt, (3.53)
|c')QCy
r
Donus(t,X) = — mp ul(t X), 0N dQnuc, (3.54)
10Qnud

and the initial values

UO(tO, X)9 ul(th X)a X€ -Qcyt, u2(t0)5 seey U7(t0), (355)

chosen according to (3.29) - (3.31).

For proving that the mapping : C4[to,t1] — Ca[to,t1] is well defined, we use stan-
dard methods from the literature. Existence results for parabolic problems with Dirichlet
boundary conditions can be found in LadySkaja et al. [15], Jost [14], Wloka [26], Lieber-
mann [16], for those with Neumann boundary conditions in [15], [14], and those for Robin
boundary conditions also in [15] and [16]. In the following, we will use a generic constant
¢ >0, which may vary with the context.



90 E. Friedmann, R. Neumann, R. Rannacher

Lemma 3.6. Let D be a positive constant,adC([0, T]) a continuous non-negative function
and Q = Qcyt With 0Q = 0Qcyt U 0Qnye. Then, for any initial value ye H and boundary
data gx,t) € L?(0, T; H"Y?(9Q)) the initial-value problem with Robin boundary conditions

ov(t, X) = DAV(L, X), (t,X) € (0, T]xQ,
Donv(t, X) + d(t)v(t,x) = g(t,x), (t,X) € (0, T] x 0L, (3.56)
v(0,X) =V°, xeQ,

has a unique solution « W(0, T), where
W(O,T) := {ve L%0,T,V)NC([0,T],H) |dv € L%(0, T, V*)}.
Further there holds the a priori estimate
IMIL=0.7;H) + IMIL2(0.7:v) < SVl + Clgll oo 1:H-22(a0))- (3.57)

Proof. We consider the usual variational formulation of the system (3.56) using test func-
tionsp eV forte[0,T]:

(0tv, @) + D(VV, V) + d(t)(V, 0)ac = (9, ¥)ac- (3.58)
For the following, we introduce the abbreviations
a(t; . @) == D(Vi, Vo) + d(t) (¥, 9)aa, h(t; ) == (9, 9o

The boundedness of the bilinear fomt; -, -) can be shown by using a (suboptimal) trace
inequality (see Adams & Fournier [1] or Wloka [26]),

< DIIVyllIVell + d®)llvllsallellan

(3.59)
< DIVUIlVell + d®)llvilely
< cllyliviieliv,
and its coercitivity by applying the generalized Poiricarequality,
a(t;y, ¢) = DIV +d®)lIvli5g = clivl’. (3.60)

In virtue of (3.59) and (3.60), we obtain from the standard theory (see WIloka [26]) the
existence of a unigue solutione W(0, T) of the parabolic problem

@v.p)+atvig) =h(tig), VYeeV, te(0,T], Vio=\’, (3.61)
and the a priori estimate
ulleo.1;H) + Ull20.:v) < SVl + Cligll 2o 7:H-v2(50)- (3.62)

This concludes the proof of the lemma. O
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In the considered PDE-ODE model the boundargbtonsists of two disjoint parts,
0Q = 0QnucU 0Qqyr. We have the trivial embeddinGalto,t1]  L2(to,t1; H-Y2(6Q) by
interpreting constants as constant functiongbrHence, for giveru; € C4[tp,t1] on some
time interval [o,t1], from Lemma 3.6, we obtaing € W(tp, 1) , which solves (3.46) together
with (3.51) and (3.52). Further, there holds

fuo(-,x)dox € C[to,t1],  Uolan, € L2(to, tz; H™2(0Qcyt)).
00

Then, again from Lemma 3.6, we also obtaine W(tp,t1) satisfying (3.47) together with
(3.53) and (3.54) and also

[ - 9doce Cltot

0Q
Thus, the right hand side of (3.49) is continuous in time implying the existence of a solution
us € C[tp,t1]. Following the same arguments, we conclude the existenag,0f, us, U7 €
C[to,t1] and consequently also ak € C[tp,t1]. Observingux(tg) = a, we see thag(u,) €
Calto, ta].

(ii) Contraction property: Next, we show that the mappi(@) : Ca[to,t1] — Calto,t1]
is a contraction with respect to the natural nafril., of C[to,t1]. Let Op, ¥, € C4[to,t1] be
given and letu,v be the corresponding solutions constructed in (i), suchuhaty(02), vo =
x(0) € Cyto,t1]. We will derive a priori estimates for the ffierencew := up, — vo, with
initial value w(tg) = 0, in terms ofw':= 0, — V». For simplicity, we set all the parameters in
the equations (3.46) - (3.55) equal to one. The following argument works in the same way
with the specific values because all parameters are constant and positive and pJAK(t) is a
continuous, positive, and bounded function.

First, using the variational form of equations (3.46) and (3.47), we can bound the first
two componentsvp andw; in terms ofw,. On the time intervaltp,t1], we have

(0two, p)a + (VWo, Vo)a + (W0, 9) a0 + (Wo, ©)aae: = (W2, 0)a0ne (3.63)
for ¢ € V. We choosep = wp and estimate the right hand sidex(Wo)aq,,. Using Hlder’s
and Young'’s inequality as follows:

(W2, Wo)aan,e < €lWoll5q,  +Ce W5, &> 0. (3.64)

For & suficiently small the first term in the right hand side can be absorbed into the left
hand side of (3.63) yielding

(B:wo, Wo)a + IVWolIZ, + Iwoll5g, < A3, (3.65)

Integrating this with respect to time and using the trace theorem, we conclude that
ty t1 1
. IWoll5,,,, dt+ . IWoll5, dt<c . W3 dt. (3.66)
For the second componemi;, we proceed in the same way. Using the corresponding
variational formulation withy = w;, we get

(Bewr, Wa)q + [IVWA I3 + IWall5g, = (Wo, Wa)age,.- (3.67)
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Again using Hlder's and Young's inequality, we estimate
(Wo, W1)a, < ellWall3g,, + e~ o5, &> 0. (3.68)
We apply the trace theorem and the generalized Pdrinaquality to obtain
[IWallge, < cliwallv < c(l[VWalla + [IWallag,.)- (3.69)
With a suitable choice of, we can absorb the term from the right hand side in (3.69) into

the left hand side of (3.67) and obtain after integration over time

1 t1
a5, dt<c [ Wadt (3.70)
to to
The solution componentas,...,wy are not space dependent. From the equations (3.49)
and (3.50), we obtain

t1 6] t1
w3dt < cf Al dt<c | Wadt, (3.71)
to to to
1 1 t1
f wizdtscf vviz_ldtscf Wadt, i=4,5,6,7. (3.72)
to to to

So far, we have bounded each of the functiensi = 0,1,3,...,7, in terms ofw,. Finally,
from equation (3.48), we derive in the standard way

11 1
f (sz’2+w§)dt:f (W7W2+W2f wods)dt
to to

6QI"IUC

4 c (3.73)
<e w§dt+-f (W2 +[lwoll2, }dt.
to 8 tO nuc
Hence, takings suficiently small and using (3.66) and (3.72), we obtain
] 1
FWa(tr)? < f (3W3) +wh)dt<c [ Whdt< clty - toll Wl (3.74)
to to

Consideringt; > tg as a free variable, we finally obtain on the time intentglt{] that
I (U2) —x (V2)II%, = IWll, < oty — to)lMell3, = oty — to)ll02 - %ll%.  (3.75)

Hence, for a sfiiciently small time interval tp,t1], we havec(t; —tp) < 1 such that the
fixed-point mappingy(-) becomes a contraction. The spaCHo,t;] equipped with the
maximum norm is a Banach space and the linear mani@jdo,t1] is a closed subset of
Clto,t1]. Hence, the Banach fixed-point theorem applies and yields the existence of a unique
fixed pointu, € C4[to,t1] of the mappingy(-). This then gives us a unique local solution
u= (ui)i7=0 on the time intervaltp,t;] of the system (3.24) - (3.35).

For later purposes, we note that this fixed-paigpie C4[to,t1] is obtained as limit of the
usual fixed-point iteration (successive iteration)

Ukt = y (), keN, (3.76)
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with starting valueud := a.

Since the generic constantused in the above argument is independent of time, as
long as all coéicient functions are bounded uniformly in time, this local solution can be
extended to the hole time interval,[0]. To this end, we consider a sequence of time
intervals of equal lengths:

[tO = O’tl]’- --,[tl—l,tl],---’[tm—l’tm = T]’ tl _t|—1 = h

To each of these subintervals, we apply the above existence result, chhasifigiently
small, and taking as initial valug := ux(t;) on the interval {,t.1] the end value of the
solution on the preceding intervat ;,t]. For the first time interval, we use the initial
value of ux(0) from (3.30) or (3.31). The solutiong € C[t},t;,1] from the respective time
intervals [,t.1] can then be used to construct the global solutipre W(0, T). Having
constructedu,, we obtain from Lemma 3.6 the solution componemysand u; € W(0, T)

and furtherus, us, Us, Us, U7 € Cl[O,T]. This proves the existence of a unique global solution
of the system (3.24) - (3.35), which depends continuously (even Lipschitz continuously) on
the initial data.

3.4 Proof of non-negativity

(i) An auxiliary result: We will use the following non-negativity result, which is an exten-

sion of Lemma 3.6 for the case of non-negative initial and boundary data. Usually such
results are derived from maximum principles which are standard for Dirichlet boundary
conditions. However, for the case of Neumann or Robin boundary conditions, other more
subtle arguments have to be used (see, e.g., ZeadKaja et al. [15]). Here, we provide

an alternative proof by rather elementary arguments based on discretization such as already
used in the proof of Theorem 3.1 for ODEs. Again, as a byproduct, we obtain a correspond-
ing result for a discretized version of (3.56).

Lemma 3.7. Suppose that additionally to the assumptions of Lemma 3.6 there hal@s g
and V¥ > 0. Then, the corresponding unique solutior W(0,T) also satisfies ¥ 0 on
Qr :=[0,T]xQ.

Proof. The proof employs finite dierence discretization in space and time, the inverse
monotonicity ofM-matrices (as already used in the proof of Theorem 3.1), and uniform
convergence properties towards continuous limits.

For discretizing the initial-boundary value problem (3.56), we use the Shortley-Weller
scheme in space (see Shortley & Weller [22] for the definition of tHieince approxima-
tion and for its error analysis, e. g., Forsythe & Wasow [11], Bramble & Hubbard [5] and
Hackbusch [12]) combined with the backward Euler scheme (3.19) in time. To this end,
we cover the computational domah by a uniform cartesian grid of width and the time
interval | = [0,T] by a uniform grid of widthk. The set of “interior” spatial grid points
(i. e., those contained if2) is denoted by, while the intersections of the grid lines with
the boundarydQ form the setdQ, of “boundary” grid points. We se€, 1= Qn U Q.
Further, we denote byzﬂ the set of all interior grid points for which all next neighbors in
distanceh are either also interior grid points or lie on the boundacy. At grid points
in Qﬂ the Laplacian operator is discretized by the usual second-order cerffesiedces
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R
Py o hy ~  he 0
T (a—hw.xg) RYPxwx) ~ T(x\he, x2) d Qh
h hs
0
D D G O O\
T ‘.:(Xls xo—hs) T
n x 0

Figure 1. Sketch of Shortley-Weller discretization and of the discretization of Robin bound-
ary conditions in 2D.

(“3-point stencil in 1D, “5-point stencil” in 2D and “7-point stencil” in 3D), while at grid
points in Qh\Qﬂ the so-called Shortley-Weller modification is used as indicated in Fig. 1.
At grid points in 0Qy the Robin boundary condition is discretized by first-order backward
differences, in 2D and 3D combined with linear interpolation between neighboring interior
grid points as indicated in Fig. 1. A close examination of thi§edence approximation
shows that the corresponding system mafjxfor the grid variablesm(t) = (vn(t, P))PE§h

is of non-negative type and diagonally dominant in the sense of Lemma 3.2. The Shortley-
Weller-Scheme for a point near the boundagy, X2) € Qn \ Qﬂ, reads as follows:

SWy(t, X1, X2) = D{ Vh(t, X1, X2 + h)

2
hn(hs +hn)
Vh(t, X1 — hw, X2) +(

2 2 2
S — + ——)Vh(t, X, X 3.77
hw(he + hw) hehw hShN) h{t: X1, %2) @.77)

Vh(t, X1 + g, X2) — Vh(t, X1, %2 — hs)}.

2 2
he(he + hw) hs(hs + hy)

The resulting matrix of this scheme is again of non-negative type and diagonally dominant.
For a boundary pointq, x») € 9Q, we have

racPJAK(t) limp 0
d(t) — |agcyt| |aQnuc|
_ TacPJAK(L) limp2
0Qcytl 0Qnudl

and the discretized Robin boundary condition looks as follows:

Vh(t, X1, X2) = Vh(t,R)

D h

+d(tVn(t, X1, X2) = Gn(t, X1, X2),
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where h,, is the distance in negative normal direction of the boundary poinix§) to the
nearest grid line (in 2D) or grid plane (in 3D) with cutting poiRt For the unknown
vh(t,R), we use a linear interpolation of the neighbouring points, where we have to take into
account two situations, the interpolation along andx,-direction:

heVh(t, X1 — hw, X2 — hn) + hwVa(t, X1 + hg, X2 — h)

Vh(t.R) = he + Ty

hsVh(t, X1 — hg, X2 + hn) + hni(t, X1 — he, X2 — hs)
hN + hs '
The final scheme for a boundary point (x2) € 0Qp then reads

__ Dhe
hn(he + hw)

Vh(t,R) =

D
Vh(t, X1 — hw, X2 —hn) + (h_ lo+ d(t))Vh(t, X1, X2)
n

Dh
— = y(t, Xg + M, Xo — ) = Ot X1, X0)

hn(he + hw)

(3.78)

or

Dhs

D
———————W(t, X1 — hg, Xo + hN) + ( — + d(t) Jvi(t, X1, X
(e + 1) h(t, X1 — e, X2 + hn) (n (O)va(t, X2, %)

___ Dhy
hn(hn + hs)

The resulting matrix of this scheme is also weakly diagonal dominant and of non-negative
type. For all interior points we use the 5-point stencil operator which shows the same
properties.

The linear system of ODEs resulting from this spatial semidiscretization has the form

VA () + An(BVa() = br(t), 20, Vn(0) = (V’(P))peg, (3.80)
with right-hand sidebn(t) = (bp(t))pg, :

0, Peqy,
bp(t)::{ n

(3.79)
Vh(t, X1 — hg, X2 — hs) = gh(t, X1, X2).

o(t,P), PeaQp,

and with a matrixA, being non-negative and diagonal dominant. Then, the discretization
in time is by the standard backward Euler scheme resulting in the following sequence of
linear systems:

(In+KAa(tm)) Vi = Vit + kbn(tm), m>1, Ve, = vi(0). (3.81)

For this space-time discretization there holds the following a priori error estimate (for the
argument see, e. g., Hackbusch [12])

max (Vi (P) — V(tm, P)I| < c(u, T){k+h?}, (3.82)

(tm,P)e
wherec(u,T) := C(T){||Dt2V|||_oo(QT) +Mmaxn-34/IV™|L~(or)} . Simple convergence

max IV (P) = V(tm, P)Il = 0 (h,k — 0)
(tm,P)eQr ?
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holds true under the weaker assumption that B%v e C(Qy). Hence, by Lemma 3.2 the
matrix | + kA, is invertible with elementwise positive inversk, ¢ kA,)™* > 0. Since by

assumptionvﬁk >0, by(tm) > 0, we conclude thay{} > 0 for all m> 0. Hence, by the

convergence property (3.82) it follows that- 0 on Qr . |

(i) The non-negativity resultVe recall the fixed-point iteration (3.76) on the time intervals
[t,t1+1] defined in the preceding section. Suppose that the initial valgés, ..., uz(t)),

are non-negative and that the starting valhgeof the fixed-point iteratiom'§+1 = X(u'g) on
[t,,t.1] satisfiesul > 0, on [t;,t,1]. Then, if ug > 0, by the result of Lemma 3.7 the next
iterate satisfies%+1 > 0. Using this result in the boundary conditions (3.53) and (3.54),
we obtain analogously that alséf* > 0. The other unkowns = {u§*%, ..., uk*} are then
determined by an ODE system of the form

Vudll' (1) + AD)i(t) = b(t), (3.83)
with the matrix
[ rexp O 0 0 O _rdelay ]
0 rde|ay 0 O 0 O
~ 0 —rdelay [Idelay 0 0 0
At) = >
® 0 0 —ldelay Idelay 0 0
0 0 0 —ldelay Tdelay 0
0 0 0 0 —ldelay [delay |

and the right-hand-side vector

fimp uk(t, x)doy ]

0l
|arg:uzc| s (t, X) doy
B(t) — nuco
0
0
0

The matrix A(t)T is of non-negative typ and diagonally dominant. Further, the initial val-
uesu{0) and the right-hand sidee are non-negative. Hence, by Lemma 3.2 it follows that
{1 > 0. In particular, there holda§+1 > 0. Repeating this argument for the whole iteration
uk*1 = y(uk), we obtain that in the limit(t, x) > O for (t,X) € [t ti+1] x Q. This eventually
implies thatu > 0 on the whole time interval [00).

Remark3.8. As a byproduct of the above argument, we see that the space-time discretiza-
tion of the PDE-ODE system (3.24) - (3.35) by the second-order Shortley-Weller finite
difference approximation in space and the first-order backward Euler scheme in time yields
non-negative approximatioris;}, > 0 at all discrete time level, > 0, and there holds the
error estimate

max [|U™ (P) - u(tm, P)Il < o(T){k +h?}, (3.84)
(tm,P)EQT '
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provided that the solution is ficiently regular. This shows that problem (3.24) - (3.35) can

be numerically approximated. Analogous results hold true for any space-time discretiza-
tion, which yields system matrices of M-matrix type. In the computations described in Sec-
tion 4, below, we have used a low-order finite element discretization in space with piecewise
(isoparametric) Biri-linear shape functions and the first-order backward Euler scheme in
time. This combined space-time discretization does not satisfy the M-matrix requirement
on general meshes but converges with the above order. However, in our computations, we
have not observed any problems with the required non-negativity of the discrete solution.

3.5 Proof of boundedness and Lyapunov stability

(i) Boundedness of solutiofrom the conservation property of the quantity= D~|Q|(Ug +
Up) + Vnud(U2 + U3 + Ug + Us + Ug + U7) and the non-negativity of the solutian we obtain

S[(l)Jp) max{uo(t), s (t), Uz(t), .. ., U7 (t)} < oo.
te[0,c0

Then, from the variational form of the equations (3.24) and (3.25),

r.
(3o, @) + D(Vuo. Ve)a + == (Uo- Lo
nuc

Fact Fexp (3.85)
+ ——pJAK() (U0, ¥)ae,: = — (U2, 9)a00c»
Ocyt Onuc
and
limp2 r
(31, @)a + D(VU1, Ve)o + —2= (U1, 0)a0mee = —— PIAK (1) (Uos 90 (3.86)
Onuc Ocyt
for ¢ € V, we conclude that also
sup {lluolla + luzlla} < eo. (3.87)
te[o,oo)
To see this, we choosg= up in (3.85) andy = u; in (3.86), to obtain
1d f
>~ lluoli + DIIVuoli3, + —>luoll3g
2 dt Onuc nuc
; ; (3.88)
act 2 exp
+ —PpJAK()llUoll5q,,, = — (U2, U0)acn,e
Ocyt Yt Onuc
and
1d limp2 r
=— g3 + DI[Vugl 3 + == [luglfZ, =~ pIAK () (Uo, Ur)oge,. (3.89)
2dt Onuc ne - Ocyt

From (3.88), we infer by standard arguments using the generalized Roineguality

lIUolle < c{lIVuolla + lUollognc}s (3.90)

and Young'’s inequality that

d 2 2 2 2 2
1Uoliy + Aol + 719Ul + 1uol,, ) < clluzl,
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with certain data-dependent constants,c > 0. From this, we conclude
dﬂt(ef“nuoné) +ye{IVUol3 + Iuoll3g,, ) < ce™llualiyg, ..
and integrating this with respect to time,
o (®)l3, + e fo teﬂs{HVuonf2 +Iluoll5q, Jds< ce™ fo t e luzllfg, ds
This yields

t
2 ~At 2 2
sup{lluoli3, +ve fe‘S{HVuOIIQ+IIUoIIaQnuc}dS
0

[0,00) (3.91)
< lluo(O)I3 + c,l—l[ﬁup))nuzllfmnuc <o,
In the next step, we will use the estimate
llUollage, < Cliuollv < c{lIVUolla + [Uollaqny}» (3.92)

which follows by a trace inequality and a generalized Poincare inequality (3.90). Then,
from (3.89), we infer using again Young's inequality and the Poiadaequality (3.90) for
u; that

d
a2 2 2
lal, + Al < ol

From this, we conclude

t 2 t 2
i€l < ce"lwolig

and integrating this with respect to time,

t
luy @2 < ce fo & Sluoly,, ds
In view of the estimates (3.91) and (3.92) it follows finally that

supllugl3 < et suplluallfg, < 0. (3.93)
[0,00) [0,00)

This completes the proof of the estimate (3.87).

(i) Lyapunov stability of solutionAgain, we recall the fixed-point iteration (3.76) on the
time interval [o,t1] for z(t,x) being the disturbed zero-solution with disturbed initial data
Z', satisfying||z|| < 6(¢). The estimates (3.91) and (3.93) show that the solutigﬂit, X)

and Z+1(t,x) can be bounded by its initial valueg, z and Z(t), which is the first com-
ponent of the autonomous nonhomogenous system (3.83). All other components of this
system,z}“l, i =3,4,5,6,7, can also be bounded tzg(t) as already shown in the estimates
(3.71) and (3.72). Further, we have

15412, < oty )12/l < &,

with a suitable choice af. This argument can be extended to the hole time intervdl][@s
already mentioned in the existence proof in Section 3.3. This shows the Lyapunov stability
of the solution.
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(a) shape of NIH-3T3 cell (b) recessed nucleus

Figure 2. Computational meshes (created with [2]) for the simulation of the NIH-3T3 cell
(left) and zoom into the cell neighborhood of the nucleus (right).

4 Numerical Computations

In order to obtain numerical solutions of time courses to simulate our biological system, we
used the in-house software package Gascoigne (available under [10]). This software tool
uses a conforming finite element method (FEM) with (isoparametrjt)-bhear shape
functions for spatial discretization and, among others, the backward Euler scheme for time
discretization of the PDE model. For details of such a spatial discretization and the related
notation, we refer to the standard textbook literature, e. g., Ciarlet [7] or Brenner & Scott [6].
The geometry and meshes used in our simulation are shown in Fig. 2.

One goal of this paper is to prove the well-posedness of the model as basis of a reli-
able simulations. Fig. 3 shows the time-dependent Robin boundafiyobeet which was
possible to measure in this case such that the signaling model could be simplified to a lin-
ear one. The results shown in Table 2 confirm that our numerical results are reliable in
the sense that they are “converged”, i. e., they do not change anymore under further mesh
refinement. Some comparison results concerning the use of a pure ODE model and the en-
hanced PDE-ODE model for intracellular signaling are collected in Fig. 3 (b). We conclude
that by considering diusion of the molecules inside the cytoplasm their sojour time there
is longer and, in turn, less molecules are available in the nucleus for binding to the DNA.
The diference for pSTAT5 is here about7nol/um?. We observed a 11% gradient for
the total STAT5 concentration. which corresponds ®riol/um® (mol = molecules). The
main concentration comes from the activated molecyd&sl ATs.

5 Conclusion

In this article, we present the mathematical treatment of a model of the/$ARES sig-
naling pathway, which consists of a coupled system of linegerintial equations (PDEs
ODEsSs) involving high-quality quantitative data from our experimental collaborators. This
model is formulated to analyze théfect of cellular geometries on signaling, i.e., pro-



100 E. Friedmann, R. Neumann, R. Rannacher

mesh level| # nodes|| upn(5) | uin(16) | upp(155)
0 24150/ 2.09198| 2.40505| 1.80197
1 51354 2.09279| 2.4042 | 1.80189
2 160158/ 2.093 2.40399| 1.80186

Table 2. Convergence results for the functional of intetgsat different time instants.

45 ‘ ‘
st pJak
35 8
) 3r - ™
§ 25F . g
S =
g 2y -
= 15¢ 1@
1 |-
0.5 7
0 L L L L Il Il Il 0 L L 1 L 1 1 1 I 1
0O 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 160 180 200
min min
(a) pJak(t) of NIH-3T3 cell (b) space averaged solution on the finest mesh via the
PDE-ODE model (red) and via the pure ODE model
(blue)

Figure 3. Timecourse of the paramefeak entering in the Robin boundary condition
(left) and comparison of the solutiong y(t) = fQ uy(t, X)dx from the PDE model withu (t)
from the ODE model (right).

cesses important for the transport inside the cytoplasm are modeled in detail, while other
processes like the receptor-model or processes taking place in the nucleus (DNA-binding,
dephosphotylation, ...) are simplified due to measured data or by delay-equations. Firstly,
the ODE model is analyzed to show its well-posedness, i.e., the existence, uniqueness, non-
negativity, boundedness, asymptotics and stability of the solution. Then, analogous results
are proven for the more realistic, yet linear, PDE-ODE model. The mathematical techniques
used are chosen in such a way that they apply to the continuous model but also to a suit-
ably discretized version and prepare also for an analysis of more general nonlinear models
coming from signaling processes.
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