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Abstract

Cellular geometries can vary significantly, how they influence signaling remains largely
unknown. In this article, we describe a new model of the most extensively studied sig-
nal transduction pathways, the Janus kinase (JAK)/signal transducer and activator of
transcription (STAT) pathway based on a mixed system oflinear differential equations
(PDEs+ ODEs) coupled by Robin boundary conditions. This model was introduced
to analyze the influence of the cell shape on the regulatory response to the activated
pathway. In this article, we present an analysis of the well-posedness of the resulting
system, i.e., the existence of a unique solution, its non-negativity, boundedness and
Lyapunov stability. As by-product, we show the well-posedness and convergence of
a suitable discretization of this model providing the basis for its reliable numerical
simulation.
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1 Introduction

In multicellular organisms communication between cells is frequently mediated by signal
molecules secreted to the extracellular space which bind to cell surface receptors. The
signal has to be transmitted from the extracellular domain of the cell surface receptors to
the nucleus and thereby regulates gene expression.

How transport from the site of signal transducer and activator of transcription (STAT)
phosphorylation at the plasma membrane to the site of action in the nucleus is mediated is
still unclear. Whether STATs freely diffuse through the cytoplasm to reach the nuclear en-
velope or are actively transported along the cytoskeleton remains a matter of debate. More-
over, it is not known whether STATs can in addition be phosphorylated by membrane-bound
kinases on endosomes present in the cytosol. This would reduce the distance between the
site of phosphorylation and nuclear envelope. To answer these questions and to analyze the
influence of the cell shape on the regulatory response to the activated pathway, a new model
was introduced which takes the geometry of the cell into account. The key components
of the pathway are modeled with a system of ordinary differential equations (ODEs) to es-
timate the parameters that can not be measured experimentally. The ODE model is then
enlarged to include the transport of STAT5 through the cytoplasm, which is modeled by a
heterogeneous reaction-diffusion process. A mixed system of differential equations (PDEs
+ ODEs) coupled by linear, time-dependent Robin boundary conditions is obtained, which
is analyzed upon well-posedness, i. e., existence of a unique solution, its non-negativity,
boundedness and Lyapunov stability. For this analysis, we employ an “energy technique”
using the Banach fixed-point theorem rather than the abstract semigroup approach in order
to cover generalnon-autonomoussettings and also to prepare for an extension to more real-
istic nonlinearmodels. This will be the subject of a forthcoming paper. As by-product, we
also obtain the well-posedness and convergence of a suitable discretization of this model
yielding the basis for its reliable numerical simulation. Such a simulation is carried out
using the in-house finite element package Gascoigne [10].

2 Biological Processes

One of the most extensively studied signal transduction pathways is the JAK/STAT pathway
(see Pfeifer et al. [19]). Several members of the signal transducer and activator of transcrip-
tion (STAT) protein family have been implicated in various cancers. Briefly, after binding
of ligand to the receptor two receptor associated Janus kinases (JAK) transphosphorylate
each other and subsequently tyrosine phosphorylate the cytoplasmic domain of the recep-
tor. STAT proteins can then bind to the phospho-tyrosine residues via their SH2 domains
and are phosphorylated by JAK. Phosphorylated STATs dissociate from the receptor, dimer-
ize, move to the nucleus and regulate transcription of target genes. After gene transcription,
the phosphorylated STATs are deactivated and exported back to the cytoplasm. Meanwhile



78 E. Friedmann, R. Neumann, R. Rannacher

STATs are permanently imported and exported from the cytoplasm to the nucleus. The
kinetics of these processes is given through the following reactions:

2(pJAK+ (STAT))
ract
−−→ (pSTATcyt)2

r imp2
−−−→ (pSTATnuc)2

(pSTATnuc)2
r̃delay
−−−−→ 2(STATnuc)

rexp
−−−→ 2(STATcyt)

r imp
−−−→ 2(STATnuc)

The model resulting from the kinetics is relaxed by a fixed sojourn time ˜rdelay for STAT
in the nucleus. It takes into account the processes in the nucleus like gene expression and
deactivation, which are not the focus of this paper. The introduction of a distribution of the
delay in four reactions improved the description of the experimental data significantly (see
Timmer et al. [24]):

(pSTATnuc)2
rdelay
−−−−→ (pSTAT1nuc)2

rdelay
−−−−→ (pSTAT2nuc)2

rdelay
−−−−→ (pSTAT3nuc)2

(pSTAT3nuc)2
rdelay
−−−−→ (pSTAT4nuc)2

rdelay
−−−−→ 2(STATnuc).

2.1 Biological Data

A major limitation in systems biology often remains the lack of sufficient high-quality quan-
titative data for different variables of investigated systems. To overcome this constraint, we
have based our mathematical modeling on experimental data acquired by different exper-
imental techniques (described in Friedmann et al. [9]), all generating quantitative data of
high quality. Our collaborators, the group of U. Klingmüller (Systems Biology of Signal
Transduction, German Cancer Research Center, DKFZ Heidelberg) provides us with quan-
titative measurements of activation, localization and transport dynamics of several compo-
nents of the JAK2/STAT5 pathway by immunoblotting and fluorescence microscopy (time
lapse imaging, FRAP, FCS) in a NIH-3T3 fibroblast model system presented in Swameye
et al. [23] and Pfeifer et al. [19] as well as in CFU-E cells communicated in Bachmann [3].
Nevertheless, the restrictions of each method have to be assessed carefully to avoid misin-
terpretations of data. In addition, it is advisable to establish standard procedures for cell
culture, sample preparation and experimental setup to guarantee comparable results (see
Schilling et al. [20, 21]).

3 Model Formulation

As mentioned above the key components of the pathway are modeled with a system of
ordinary differential equations (ODEs), which is supplemented by a heterogenous reaction-
diffusion model (PDEs) for the transport of STAT through the cytoplasm. This mixed sys-
tem of linear differential equations (PDEs+ ODEs) is coupled by likewise linear, buttime-
dependentRobin boundary conditions. In comparison to Swameye et al. [23], we focus on
the dimeric description of the STAT molecules in the model, which results in a simplified
linear model without being restrictive. We consider also a simplified receptor module. The
binding of the ligand Epo to the extracellular part of the receptor, which leads to activation
by phosphorylation of the JAK at intracellular cytoplasmic domain of the receptor, does not
need to be modeled in detail. This is due to the possibility of measuring the phosphorylation
function pJAK(t), the evolution in time of the activated cytoplasmic domain of the receptor.
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3.1 An ODE Model

Models which describe the interaction between two domains, here the molecule exchange
between the cytoplasm and the nucleus, are called two-compartment models. In such mod-
els the volume of the compartments play a crucial role in the equations.

We denote byu0 the concentration of unphosphorylated STAT5 and byu1 that of
phosphorylated STAT5 in the cytoplasm, whileu2 denotes the concentration of unphos-
phorylated STAT5 andu3 that of phosphorylated STAT5 in the nucleus, respectively. The
variablesu4, ...,u7 are introduced to describe the processes in the nucleus by linear delay
equations, they are so-called “fictitious concentrations”. The model for determining the
state vectoru(t) = (u0(t), . . . ,u7(t)) looks as follows:

νcytu
′
0(t) = −ractpJAK(t)u0(t)− r impu0(t)+ rexpu2(t), (3.1)

νcytu
′
1(t) = −r imp2u1(t)+ ractpJAK(t)u0(t), (3.2)

νnucu′2(t) = −rexpu2(t)+ r impu0(t)+ rdelayu7(t), (3.3)

νnucu′3(t) = −rdelayu3(t)+ r imp2u1(t), (3.4)

νnucu′i (t) = −rdelayui(t)+ rdelayui−1(t), i = 4,5,6,7. (3.5)

Summing all these equations, we see that the quantity

σ(u) := νcyt(u0+u1)+ νnuc(u2+u3+u4+u5+u6+u7) (3.6)

is conserved in time as required for physical reasons. This model was considered for two
different cell types: a spherical-shaped CFU-E and a NIH3T3 fibroblast cell. We have two
sets of parameters, one for each cell type. The initial values are

u1(0)= u3(0)= u4(0)= u5(0)= u6(0)= u7(0)= 0 (3.7)

CFU-E: u0(0)= 50 mol/μm3, u2(0)= 18 mol/μm3 (3.8)

NIH3T3: u0(0)= 16 mol/μm3, u2(0)= 20 mol/μm3, (3.9)

where the number of molecules (mol) per compartment was determined using a combina-
tion of immunoprecipitation and immunoblotting as described in Friedmann et al. [9].

The determination of the parameters in the above model is a delicate matter. For illus-
tration, we briefly describe the basis of the choices made in our simulations. The parameters
νcyt andνnuc, which represent the average volume of the cytoplasm and nucleus were mea-
sured by transmitted light microscopy. We use the valuesνcyt = 429μm3, νnuc= 268μm3

for the CFU-E cell, andvcyt = 1758μm3, νnuc= 366μm3 for the NIH3T3 cell. The nuclear
import and export ratesr imp and rexp can be measured only for the unphosphorylated STAT
in NIH3T3 cells by FRAP experiments. The import rate of the unphosphorylated STAT in
the CFU-E cells is assumed to be approximately the same as in the NIH3T3 cells, so that
the same value is used for both cell types in our model. Another input function in this model
is the phosphorylation function pJAK(t). Its time distribution is given in form of discrete
measurements, which are smoothly interpolated by splines. We assume that after some
initial phase [0,T] the function pJAK(t) becomes constant in time, i. e., pJAK(t) = pJAK
for t ≥ T . Further, to get the right amount of molecules, we assume that at the plasma
membrane the number of JAK molecules is equal to the number of EpoR molecules.
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parameter unit CFU-E cell NIH-3T3 cell
ract min−1 11 187
r imp min−1 39 242
r imp2 min−1 58 1010
rexp min−1 265 174.93
rdelay min−1 225 194.31
vcyt μm3 429 1758
vnuc μm3 268 323
pJAK(t) - [0,4.5] [0,2.5]

Table 1. Parameters for the two different cell types.

With the system (3.1) - (3.5) parameter estimation has been performed using the soft-
ware PottersWheel (see Maiwald & Timmer [17] and Friedmann et al. [9]). This tool has
been developed for data-based modeling of partially observed and noisy systems like signal
transduction pathways, i. e., for determining the unknown parameters, which are different
in the different cell lines: For the CFU-E cell the phosphorylation rate of STAT, its export
rate, the import rate of phosphorylated STAT and the time delay for the processes in the nu-
cleus (ract, rexp, r imp2 andrdelay) are unknown, and for the model of a NIH3T3 cell three of
the parameters,ract, r imp2 and rdelay, are unknown. In Table 1, we summarize the parameter
values used in our simulations.

The following theorem establishes the well-posedness of the above ODE system, par-
ticularly that its solution is uniformly bounded and for non-negative data also non-negative.
The proof employs a standard result from Numerical Linear Algebra, which is stated in
Lemma 3.2, below. This analysis is intended as preparation for corresponding results in the
context of the more realistic mixed PDE-ODE models, which are the main theme of this
paper.

Theorem 3.1. For the given set of data the system (3.1) - (3.5) is well-posed. There is a
unique global solution u= (u0, . . . ,u7) , with ui ∈ C1[0,∞) . This solution is smooth, non-
negative, uniformly bounded, and Lyapunov stable. For t→∞ , it converges to a limit state
u∞ .

Proof. (i) Rescaling:We introduce the new scaled variables

vi := νcytui , i = 0,1, vi := νnucui , i = 2, . . . ,7.
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Using this notation the ODE system (3.1) - (3.5) can be rewritten in the form

v′0(t) = −
ractpJAK(t)

νcyt
v0(t)−

r imp

νcyt
v0(t)+

rexp

νnuc
v2(t), (3.10)

v′1(t) = −
r imp2

νcyt
v1(t)+

ractpJAK(t)
νcyt

v0(t), (3.11)

v′2(t) = −
rexp

vnuc
v2(t)+

r imp

νcyt
v0(t)+

rdelay

νnuc
v7(t), (3.12)

v′3(t) = −
rdelay

νnuc
v3(t)+

r imp2

νcyt
v1(t), (3.13)

v′i (t) = −
rdelay

νnuc
vi(t)+

rdelay

νnuc
vi−1(t), i = 4,5,6,7. (3.14)

This is a homogenous linear system for the new state vectorv = (v0, ..,v7) , which can be
formulated in an abstract form as follows:

v′(t)+A(t)v(t) = 0, t ≥ 0, v(0)= v0, (3.15)

with the system matrix

A(t) =




ractpJAK(t)+r imp

νcyt
0 −

rexp

νnuc
0 0 0 0 0

− ractpJAK(t)
νcyt

r imp2

νcyt
0 0 0 0 0 0

−
r imp

νcyt
0

rexp

νnuc
0 0 0 0 −

rdelay

νnuc

0 −
r imp2

νcyt
0

rdelay

νnuc
0 0 0 0

0 0 0 −
rdelay

νnuc

rdelay

νnuc
0 0 0

0 0 0 0 −
νdelay

νnuc

rdelay

νnuc
0 0

0 0 0 0 0 −
νdelay

νnuc

rdelay

νnuc
0

0 0 0 0 0 0 −
νdelay

νnuc

rdelay

νnuc




.

We discuss some special properties of the matrix A(t) = (ai j (t))7
i, j=1 . It has a diagonally

dominant transpose A(t)T , i. e., there holds

7∑

j=1, j,i

|ai j (t)| ≤ |aii (t)|, i = 1, . . . ,7. (3.16)

Since all diagonal elementsaii (t) are real positive, this implies that all Gerschgorin circles
of A(t)T lie in the right complex halfplane. Obviously,λ0(t) = 0 is a simple eigenvalue
with eigenvector

w(0)(t) =
( vcyt

vnuc

rdelay

ractpJAK(t)
c,

vcyt

vnuc

rdelay

r imp2
c,

rdelay(ractpJAK(t)+ r imp)

rexpractpJAK(t)
c,c, . . . ,c

)
,



82 E. Friedmann, R. Neumann, R. Rannacher

for any c ∈ R, which is obtained as solution of the homogeneous system

vnuc(ractpJAK(t)+ r imp)w(0)
0 (t)−vcytrexpw

(0)
2 (t) = 0,

−ractpJAK(t) ∙w(0)
0 (t)+ r imp2w

(0)
1 (t) = 0,

−vcytrdelayw
(0)
7 (t)+vcytrexpw

(0)
2 (t)−vnucr impw(0)

0 (t) = 0,

−vnucr imp2w
(0)
1 (t)+vcytrdelayw

(0)
3 (t) = 0,

−rdelayw
(0)
i (t)+ rdelayw

(0)
i+1(t)) = 0, i = 3,4,5,6.

This reflects the conservation property (3.6). All other eigenvalues{λ j(t), j = 1. . . ,7} have
positive real part and are likewise simple. Corresponding eigenvectors can be explicitly
determined. The details of this tedious calculation are omitted. In particular, there are no
purely imaginary eigenvalues, i. e., for the coefficients given the solution cannot develop
time-periodic behavior.

Since the 8×8-matrix A(t) has 8 simple eigenvalues it is diagonalizable and possesses
a basis{w(0)(t), . . . ,w(7)(t)} of (normalized) eigenvectors. The corresponding regular 8×8-
matrix W(t) := [w(0)(t), . . . ,w(7)(t)] then transforms A(t) into diagonal form,

W−1(t)A(t)W(t) = Λ(t) := diag(λi(t))
7
i=0. (3.17)

For our choice of coefficients in the matrix A(t) the eigenvaluesλi(t) as well as the cor-
responding eigenvectorsw(i)(t) can be assumed to be continuously differentiable functions
with respect to time, which become constant fort ≥ T, i. e., ai j (t) = ai j , Λ(t) = Λ , and
W−1(t) = W−1, for t ≥ T .

(ii) Existence and uniqueness:Since the system (3.15) is linear inv and continuous int the
existence of a unique global solution follows by standard results on ODE systems (theorem
of Picard-Lindel̈of and extension theorem). Further, on each finite time interval the solution
depends Lipschitz continuously on the initial datau(0) .

(iii) Non-negativity: We note that the matrix A(t) is of “non-negative type”, i. e., there
holds

aii (t) > 0, ai j (t) ≤ 0, i, j = 1, . . . ,7, i , j. (3.18)

This together with the diagonal dominance (3.16) of A(t)T implies by Lemma 3.2, below,
that for k > 0 the matrix I+ kA(t) is invertible with an elementwise positive inverse, (I+

kA(t))−1 > 0. Now, we discretize the system (3.15) by the backward Euler scheme, which
results in the sequence of stationary equations

(I +kA(tm))Vm
k = Vm−1

k , m≥ 1, V0
k = v(0), (3.19)

on an equidistant time grid{tm = mk,m= 0,1,2, . . . } . For this approximation, we have on
any fixed time interval the following error estimate (see Hairer et al. [13]):

max
0≤tm≤t

‖Vm
k −v(tm)‖ ≤ c(t)kmax

[0,t]
‖v′′‖. (3.20)

If only v∈C1[0,∞)8 , we still have max0≤tm≤t ‖Vm
k −v(tm)‖→ 0 (k→ 0) . Then, for our initial

value,v(0)≥ 0, the monotonicity property (I+kA(t))−1 > 0 implies that allVm
k ≥ 0, m≥ 0.
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Hence, considering the limitk→ 0 in the error estimate (3.20), we conclude thatv≥ 0 for
all time.

(iv) Uniform boundedness and asymptotic convergence:The conservation of the quantity
(3.6) in time together with the non-negativity of the variablesv0, . . . ,v7 immediately im-
plies the uniform boundedness of this solution. In the next step, we prove its asymptotic
convergence to some limit state, which as a by-product also yields an alternative proof of
its boundedness without referring to the result of Lemma 3.2. Using the relation (3.17) the
initial value problem (3.15) can be rewritten in the form

W−1(t)v′(t)+Λ(t)W−1(t)v(t) = 0, t ≥ 0, v(0)= v0,

or with the new variabley(t) := W−1(t)v(t) ,

y′(t)+Λy(t) = (W−1)′(t)v(t)+ (Λ−Λ(t))y(t), t ≥ 0, y(0)= W−1(0)v0.

From this, we conclude that

d
dt

(
eλi tyi(t)

)
= eλi t((W−1)′(t)v(t)+ (Λ−Λ(t))y(t)

)
i ,

for i = 0, . . . ,7, and integrating over time,

yi(t) = e−λi t
{
yi(0)+

∫ t

0
eλi s((W−1)′(s)v(s)+ (Λ−Λ(s))y(s)

)
i ds

}
.

This implies that

lim
t→∞

y0(t) = lim
t→∞

{(
W−1(0)v0)

0+

∫ T

0

(
(W−1)′(s)v(s)

+ (Λ−Λ(s))W−1(s)v(s)
)
0ds

}
=: y∞0 ,

and, for i = 1, . . . ,7,

lim
t→∞

yi(t) = lim
t→∞

{
e−λi t

{(
W−1(0)v0)

i +

∫ T

0
eλi s((W−1)′(s)v(s)

+ (Λ−Λ(s))W−1(s)v(s)
)
i ds

}}
= 0.

From these asymptotic relations, we infer that

lim
t→∞

v(t) = lim
t→∞

W(t)y(t) = Wy∞, (3.21)

wherey∞ := (y∞0 ,0. . . ,0) .

(v) Stability: Since the initial value problem (3.15) is linear, the local L-continuity of its so-
lution with respect to the initial value guaranteed by the theorem of Picard-Lindelöf together
with the asymptotic convergence result (3.21) imply that the solution is also Lyapunov sta-
ble, i. e., for givenε > 0 there exists aδ(ε) > 0 such that for any initial valuez∗ , satisfying
‖z∗‖ < δ(ε) , the corresponding solution of the inital value problem

z′(t)+A(t)z(t) = 0, t ≥ t∗, z(0)= z∗,



84 E. Friedmann, R. Neumann, R. Rannacher

satisfies

sup
t≥t∗
‖z(t)‖ < ε.

This completes the proof of the theorem. �

Lemma 3.2. Let A ∈Rd×d be a real matrix with the usual additive decompositionA = L+

D+R in its lower, main and upper diagonal partsL , D and R, respectively. Suppose that
A is of so-called “non-negative type”, i. e.,D is regular and there holds elementwiseD≥ 0
and L +R≤ 0. Further, letA or its transposeAT be “(weakly) diagonally dominant”,

max
i=1,...,d

{ 1
|aii |

d∑

j=1, j,i

|ai j |
}
≤ 1, or max

j=1,...,d

{ 1
|aj j |

d∑

i=1,i, j

|ai j |
}
≤ 1. (3.22)

Then, for k> 0 the matrixI+kA is a so-called M-matrix, i. e., it is invertible with elemen-
twise positive inverse,(I +kA)−1 > 0.

Proof. Though this result is well-known in Numerical Linear Algebra (see, e. g., Varga
[25] or Bermon & Plemmons [4]), for the sake of completeness, we provide the short proof.
Suppose that the matrix A is diagonally dominant. Then, the matrix I+kA is also of non-
negative type and evenstrictly diagonally dominant, i. e., the corresponding inequalities
(3.22) hold with strict inequality signs. Hence by the theorem of Gerschgorin it follows that
the corresponding so-called Jacobi matrix J := −k(I +kD)−1(L +R)≥ 0 has spectral radius
%(J)< 1. This implies that the matrix I−J is regular with inverse

(I −J)−1 =

∞∑

k=0

Jk = I +
∞∑

k=1

Jk > 0.

From this, we infer the regularity of I+ kA = I + kD+ k(L +R) = (I + kD)(I − J) and (I+
kA)−1 = (I −J)−1(I +kD)−1 > 0. If AT is assumed to be diagonally dominant the argument
is analogous. �

Remark3.3. As a by-product of the proof of Theorem 3.1, we see that the first-order back-
ward Euler scheme applied to the system (3.1) - (3.5) yields non-negative approximations
Um≥ 0 at all discrete time levelstm≥ 0, which satisfy the error estimate

max
0≤tm≤T

‖Um−u(tm)‖ ≤ c(T)k max
t∈[0,T]

‖u′′(t)‖. (3.23)

In general the error constantc(T) grows exponentially inT due to the use of Gronwall’s
inequality in the proof. In the present special situation of a diagonally dominant and di-
agonalizable system matrix A(t) this growth can be shown to be only linear, which, how-
ever, will not be further pursued here. Analogous results do not necessarily hold true for
higher-order time-stepping schemes, such as for example the backward differencing formu-
las BDF(R) (R≥ 2). In the computations described in Section 4, below, we have therefore
used the simple backward Euler method though it is only of first order.
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3.2 A PDE-ODE Model

To address the biological question described above, we add diffusion for unphosphorylated
and phosphorylated STAT in the cytoplasm in our model. Different transport processes can
be modeled by different diffusion coefficients. At first, we model free diffusion using a con-
stant diffusion coefficient based on measurements by fluorescence correlation spectroscopy.
The diffusion coefficient D = 15μm2/s was used in the simulations. The additional trans-
port of the molecules along the microtubules is modeled for the NIH3T3 cell through an
anisotropic diffusion coefficient whereas the mainstream direction of STAT movement was
set in the y-direction of the cell. Our goal here was not to compare two diffusion processes
where the trace of the diffusion coefficient must be equal. We introduced additional trans-
port on the microtubule by inserting a faster diffusion coefficient in the direction towards the
nucleus (y-direction). Of coarse, the more realistic description would be to add a transport
term to the equations.

To answer the biological question posed only the cytoplasmΩcyt has to be dissolved
spatially. The processes in the nucleus such as DNA binding and dephosphorylation of
STAT do not have to be known in detail. For their description it is sufficient to use time de-
lays as black box elements. As already described in the previous section, phosphorylation
as well as nuclear import and export of STAT only occurs at the boundaries of the cyto-
plasm. For this specific question, we therefore obtain a mixed system of linear differential
equations: two diffusion equations with linear Robin boundary conditions and six ODEs,
two of them are coupled to the PDEs through the import terms and the other four describe
the processes in the nucleus by linear delay equations:

i) CytoplasmΩcyt, for (t, x) ∈ (0,∞)×Ωcyt :

∂tu0(t, x) = DΔu0(t, x), (3.24)

∂tu1(t, x) = DΔu1(t, x). (3.25)

ii) NucleusΩnuc, for t ∈ (0,∞) :

vnucu
′
2(t) = −rexpu2(t)+ rdelayu7(t)+

r imp

|∂Ωnuc|

∫

∂Ωnuc

u0(t, x)dox, (3.26)

vnucu
′
3(t) = −rdelayu3(t)+

r imp2

|∂Ωnuc|

∫

∂Ωnuc

u1(t, x)dox, (3.27)

vnucu
′
i (t) = −rdelayui(t)+ rdelayui−1(t), i = 4,5,6,7. (3.28)

The initial conditions are essentially the same as used in the previous section for the pure
ODE model, (3.29)-(3.31):

u1(0, x) = 0, x ∈ Ωcyt, u3(0)= u4(0)= u5(0)= u6(0)= u7(0)= 0, (3.29)

CFU-E: u0(0, x) = 50 mol/μm3, x ∈ Ω, u2(0)= 18 mol/μm3, (3.30)

NIH3T3: u0(0, x) = 16 mol/μm3, x ∈ Ω, u2(0)= 20 mol/μm3. (3.31)

We only have to observe that the concentrations of unphosphorylated and phosphorylated
STAT molecules in the cytoplasm,u0(t, x) and u1(t, x), are now space dependent. The
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phosphorylation as well as the import and export of molecules enter through the linear
Robin boundary conditions:

D∂nu0(t, x) = −
ract

|∂Ωcyt|
pJAK(t, x)u0(t, x), on ∂Ωcyt, (3.32)

D∂nu0(t, x) = −
r imp

|∂Ωcyt|
u0(t, x)+

rexp

|∂Ωnuc|
u2(t), on ∂Ωnuc, (3.33)

D∂nu1(t, x) =
ract

|∂Ωcyt|
pJAK(t, x)u0(t, x), on ∂Ωcyt, (3.34)

D∂nu1(t, x) = −
r imp2

|∂Ωnuc|
u1(t, x), on ∂Ωnuc, (3.35)

where ∂Ωcyt denotes the outer boundary of the cell, i.e. the membrane, and∂Ωnuc the
boundary of the nucleus. A problem with prescribing these spatially constant Robin-boundary-
conditions is that this may introduce incompatibilities with the initial conditions along the
boundary preventing the solution from being smooth down tot = 0. In fact, there holds:

D∂nu0(0, x) = −
ract

|∂Ωcyt|
pJAK(0, x)u0(0, x) = 0, x ∈ ∂Ωcyt,

D∂nu0(0, x) = −
r imp

|∂Ωnuc|
u0(0, x)+

rexp

|∂Ωnuc|
u2(0)= C ≈ 243, x ∈ ∂Ωnuc,

D∂nu1(0, x) =
ract

|∂Ωcyt|
pJAK(0, x)u0(t, x) = 0, x ∈ ∂Ωcyt,

D∂nu1(0, x) = −
r imp2

|∂Ωnuc|
u1(0, x) = 0, x ∈ ∂Ωnuc,.

On the boundary∂Ωcyt the Robin boundary conditions are compatible with our initial con-
ditions, only the boundary condition foru0 on ∂Ωnuc does not fit the proposed simplified
initial condition which, however, is also not fully biologically correct. The non-activated
molecules shuttle permanently between the cytoplasm and the nucleus with different im-
port and export parameters which are cell-type dependent. Thus, the concentration of
the molecules cannot stay constant up to the boundary∂Ωnuc. We will introduce a lit-
tle change in the initial condition to guarantee the smoothness ofu0 down to time t = 0.
This is accomplished by introducing a smooth functionχ(x), which fits the constant ini-
tial value in the interior domain to the value which fulfills the Robin boundary conditions
u0(0, s) =

rexp

r imp
u2(0) on ∂Ωnuc. For the CFU-E cell there holdsu0(0, s) ≈ 6.8u2(0) = 122,

so χ(x) has to fit smoothly the endvalues 50 to 122, whereas for the NIH3T3 cell there
holds u0(0, s) ≈ 0.7u2(0) = 14, so the values 16 and 14 have to be connected smoothly.
The modified initial condition is then ˜u0(0, x) = χ(x)u(0, x). On ∂Ωcyt the presence of the
smooth parameter function pJAK(t,x) guarantees the smoothness of the solution down to
time t = 0.

Using the space-independent averaged unknowns

ū0(t) :=
1
|Ωcyt|

∫

Ωcyt

u0(t, x)dx, ū1(t) :=
1
|Ωcyt|

∫

Ωcyt

u1(t, x)dx,
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we reformulate equations (3.24) and (3.25) as

|Ωcyt|

D
ū′0(t) =

∫

Ωcyt

Δu0(t, x)dx=
∫

∂Ωcyt∪∂Ωnuc

∂nu0(t, x)dox

= −
ract

|∂Ωcyt|

∫

∂Ωcyt∪∂Ωnuc

pJAK(t, x)u0(t, x)dox

−
r imp

|∂Ωnuc|

∫

∂Ωnuc

u0(t, x)dox+
rexp

|∂Ωnuc|
u2(t),

|Ωcyt|

D
ū′1(t) =

∫

Ωcyt

Δu1(t, x)dx=
∫

∂Ωcyt∪Ωnuc

∂nu1(t, x)dox

=
ract

|∂Ωcyt|

∫

∂Ωcyt

pJAK(t, x)u0(t, x)dox−
r imp2

|∂Ωnuc|

∫

∂Ωnuc

u1(t, x)dox.

Adding these two equations with (3.26) - (3.28), we see that now the quantity

σ := D−1|Ωcyt|(ū0+ ū1)+ |Ωnuc|(u2+u3+u4+u5+u6+u7)

is conserved in time as required for physical reasons. For the state vector ˉu := (ū0, ū1,u2, . . . ,u7),
we have the following system of ODEs:

|Ωcyt|

D
ū′0(t) = −

ract

|∂Ωcyt|

∫

∂Ωcyt

pJAK(t, x)u0(t, x)dox

+
r imp

|∂Ωnuc|

∫

∂Ωnuc

u0(t, x)dox+
rexp

|∂Ωnuc|
u2(t),

(3.36)

|Ωcyt|

D
ū′1(t) =

ract

|∂Ωcyt|

∫

∂Ωcyt

pJAK(t, x)u0(t, x)dox

−
r imp2

|∂Ωnuc|

∫

∂Ωnuc

u1(t, x)dox,

(3.37)

|Ωnuc|u
′
2(t) = −rexpu2(t)+ rdelayu7(t)+

r imp

|∂Ωnuc|

∫

∂Ωnuc

u0(t, x)dox, (3.38)

|Ωnuc|u
′
3(t) = −rdelayu3(t)+

r imp2

|∂Ωnuc|

∫

∂Ωnuc

u1(t, x)dox, (3.39)

|Ωnuc|u
′
i (t) = −rdelayui(t)+ rdelayui−1(t), i = 4,5,6,7. (3.40)

The following theorem contains the main results of this paper. For its formulation, we
use the standard notation of space-time function spaces. For a real function Banach space
X , with norm ‖ ∙ ‖ on a bounded domainΩ ⊂ Rn , the spaceLp(0,T;X) consists of all
measurable functionsu : [0,T]→ X with

‖u‖Lp(0,T;X) :=
(∫ T

0
‖u(t)‖pdt

)1/p
<∞, (3.41)

for 1 ≤ p < ∞, and ‖u‖L∞(0,T;X) := ess sup(0,T) ‖u(t)‖ < ∞. In the present case, we take
V := H1(Ω) with dual spaceV∗ = H−1(Ω) and H := L2(Ω) and consider the usual Gelfand
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triple V ↪→ H ↪→ V∗. We denote by (∙ , ∙ )Ω and (∙ , ∙ )Γ the usualL2 scalar products over
the domainΩ and a partΓ ⊂ ∂Ω of its boundary, respectively, and by‖ ∙ ‖Ω and ‖ ∙ ‖Γ the
corresponding norms.

Theorem 3.4. For the given set of data the initial-boundary value problem (3.24) - (3.35)
is well-posed. There is a unique global solution u= (u1, . . . ,u7) , with u0,u1 ∈ L2(0,T;V) ,
∂tu0,∂tu1 ∈ L2(0,T;V∗) , and u2, . . . ,u7 ∈ C1[0,T] on any time interval[0,T] . Further,
for sufficiently smooth and compatible data this solution is likewise smooth, non-negative,
uniformly bounded and Lyapunov stable.

The proof of this theorem will be given in the following two sections. Though the
problem (3.24) - (3.28) is linear, we use an “energy technique” and a fixed-point argument
based on its variational formulation rather than the common spectral or semigroup approach
in order to prepare for more general non-autonomous and nonlinear versions of the model
such as described in Remark 3.5.

Remark3.5. We note that the coefficients pJAK(t, x) in the Robin boundary condition ex-
plicitly depends on time making the coupled system (3.24) - (3.28) non-autonomous. Fur-
thermore, our simplified model involves already dimerized molecules with concentrations
ui , i = 0, . . .3. By considering every monomer and every reaction taking place in the cyto-
plasm, the resulting system would contain nonlinear terms such asu2

i for dimers,u3
i , u2

i uj ,
and uiujuk for trimers and so on for multicomplexes. For these additional equations must
be considered (see [8]),

∂tu0(t, x) = DΔu0(t, x), (3.42)

∂tu1(t, x) = DΔu1(t, x)−2k1u2
1u3+2k2u2, (3.43)

∂tu2(t, x) = DΔu2(t, x)+k1u2
1u3−k2u2, (3.44)

∂tu3(t, x) = DΔu3(t, x)−k1u2
1u3+k2u2. (3.45)

As mentioned before, due to the possibility of measuring the activated JAK molecules for
this model, we do not need to consider the detailed receptor model. Otherwise, additional
non-linear terms would appear in the Robin boundary conditions (3.32) and (3.34) of the
form

D∂nu0(t,∂Ωcyt) = −γ
kaRun

0

kM +un
0

,

which describes the cooperativity of binding to the receptor. For 0< n< 1 the reaction is
negatively cooperative, forn= 1 non-cooperative and forn> 1 positively cooperative. The
general argument used below for proving the well-posedness of thelinear coupled system
(3.24) - (3.28) is expected to be extendable to certainnonlinearmodels of this type. This
will be the subject of a forthcoming paper.

3.3 Proof of global existence and uniqueness

The mixed system (3.24) - (3.35) of reaction-diffusion equations and ordinary differen-
tial equations is coupled through the concentrationu2(t) of the non-activated STAT in the
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boundary condition (3.33) on the nucleus boundary∂Ωnuc. This motivates the iterative de-
coupling of the two system parts and the use of the Banach fixed-point theorem for proving
the existence of a solution to the coupled system [18].

(i) Fixed-point mapping:On some finite time interval [t0, t1] ⊂ [0,∞) and for a certain
given a ∈ R+, we define

Ca[t0, t1] := {v ∈C[t0, t1] | v(t0) = a}.

On this manifold, we consider the mappingχ : Ca[t0, t1] → Ca[t0, t1], acting on the cou-
pling variable u2, which for some given ˆu2 ∈ Ca[t0, t1] is defined byu2 = χ(û2) where
u= (u0, . . . ,u7) is the solution of the following coupled PDE-ODE system:

CytoplasmΩcyt, for (t, x) ∈ (t0, t1] ×Ωcyt :

∂tu0(t, x) = DΔu0(t, x), (3.46)

∂tu1(t, x) = DΔu1(t, x). (3.47)

NucleusΩnuc, for t ∈ (t0, t1] :

(u2)′(t)+
rexp

|Ωnuc|
u2(t) =

rdelay

|Ωnuc|
u7(t)+

r imp

|Ωnuc||∂Ωnuc|

∫

∂Ωnuc

u0(t, s)dox, (3.48)

(u3)′(t)+
rdelay

|Ωnuc|
u3(t) =

r imp2

|Ωnuc|∂Ωnuc
|
∫

∂Ωnuc

u1(t, s)dox, (3.49)

(ui)
′(t)+

rdelay

|Ωnuc|
ui(t) =

rdelay

|Ωnuc|
ui−1(t), i = 4,5,6,7, (3.50)

with the Robin boundary conditions

D∂nu0(t, x) = −
ract

|∂Ωcyt|
pJAK(t)u0(t, x), on ∂Ωcyt, (3.51)

D∂nu0(t, x) = −
r imp

|∂Ωnuc|
u0(t, x)+

rexp

|∂Ωnuc|
û2(t), on ∂Ωnuc, (3.52)

D∂nu1(t, x) =
ract

|∂Ωcyt
pJAK(t)u0(t, x), on ∂Ωcyt, (3.53)

D∂nu1(t, x) = −
r imp2

|∂Ωnuc|
u1(t, x), on ∂Ωnuc, (3.54)

and the initial values

u0(t0, x),u1(t0, x), x ∈ Ωcyt, u2(t0), ...,u7(t0), (3.55)

chosen according to (3.29) - (3.31).
For proving that the mappingχ : Ca[t0, t1] → Ca[t0, t1] is well defined, we use stan-

dard methods from the literature. Existence results for parabolic problems with Dirichlet
boundary conditions can be found in Ladyˇzenskaja et al. [15], Jost [14], Wloka [26], Lieber-
mann [16], for those with Neumann boundary conditions in [15], [14], and those for Robin
boundary conditions also in [15] and [16]. In the following, we will use a generic constant
c≥ 0, which may vary with the context.
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Lemma 3.6. Let D be a positive constant, d∈C([0,T]) a continuous non-negative function
and Ω = Ωcyt with ∂Ω = ∂Ωcyt∪ ∂Ωnuc. Then, for any initial value v0 ∈ H and boundary
data g(x, t) ∈ L2(0,T;H−1/2(∂Ω)) the initial-value problem with Robin boundary conditions

∂tv(t, x) = DΔv(t, x), (t, x) ∈ (0,T] ×Ω,

D∂nv(t, x)+d(t)v(t, x) = g(t, x), (t, x) ∈ (0,T] ×∂Ω,

v(0, x) = v0, x ∈ Ω,

(3.56)

has a unique solution v∈W(0,T) , where

W(0,T) := {v ∈ L2(0,T,V)∩C([0,T],H) |∂tv ∈ L2(0,T,V∗)}.

Further there holds the a priori estimate

‖v‖L∞(0,T;H) + ‖v‖L2(0,T;V) ≤ c‖v0‖Ω +c‖g‖L∞(0,T;H−1/2(∂Ω)). (3.57)

Proof. We consider the usual variational formulation of the system (3.56) using test func-
tionsϕ ∈ V for t ∈ [0,T]:

(∂tv,ϕ)+D(∇v,∇ϕ)+d(t)(v,ϕ)∂Ω = (g,ϕ)∂Ω. (3.58)

For the following, we introduce the abbreviations

a(t;ψ,ϕ) := D(∇ψ,∇ϕ)+d(t)(ψ,ϕ)∂Ω, h(t;ϕ) := (g,ϕ)∂Ω.

The boundedness of the bilinear forma(t; ∙ , ∙ ) can be shown by using a (suboptimal) trace
inequality (see Adams & Fournier [1] or Wloka [26]),

|a(t;ψ,ϕ)| = |D(∇ψ,∇ϕ)+d(t)(ψ,ϕ)∂Ω|

≤ D‖∇ψ‖‖∇ϕ‖+d(t)‖ψ‖∂Ω‖ϕ‖∂Ω
≤ D‖∇ψ‖‖∇ϕ‖+d(t)‖ψ‖V‖ϕ‖V
≤ c‖ψ‖V‖ϕ‖V,

(3.59)

and its coercitivity by applying the generalized Poincaré inequality,

a(t;ψ,ψ) = D‖∇ψ‖2+d(t)‖ψ‖2∂Ω ≥ c‖ψ‖2. (3.60)

In virtue of (3.59) and (3.60), we obtain from the standard theory (see Wloka [26]) the
existence of a unique solutionv ∈W(0,T) of the parabolic problem

(∂tv,ϕ)+a(t;v,ϕ) = h(t;ϕ), ∀ϕ ∈ V, t ∈ (0,T], v|t=0 = v0, (3.61)

and the a priori estimate

‖u‖L∞(0,T;H) + ‖u‖L2(0,T;V) ≤ c‖v0‖Ω +c‖g‖L2(0,T;H−1/2(∂Ω)). (3.62)

This concludes the proof of the lemma. �
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In the considered PDE-ODE model the boundary ofΩ consists of two disjoint parts,
∂Ω = ∂Ωnuc∪ ∂Ωcyt. We have the trivial embeddingCa[t0, t1] ⊂ L2(t0, t1;H−1/2(∂Ω) by
interpreting constants as constant functions onΩ. Hence, for given ˆu2 ∈Ca[t0, t1] on some
time interval [t0, t1], from Lemma 3.6, we obtainu0 ∈W(t0, t1) , which solves (3.46) together
with (3.51) and (3.52). Further, there holds

∫

∂Ω

u0( ∙ , x)dox ∈C[t0, t1], u0|∂Ωcyt ∈ L2(t0, t1;H−1/2(∂Ωcyt)).

Then, again from Lemma 3.6, we also obtainu1 ∈W(t0, t1) satisfying (3.47) together with
(3.53) and (3.54) and also ∫

∂Ω

u1( ∙ , x)dox ∈C[t0, t1].

Thus, the right hand side of (3.49) is continuous in time implying the existence of a solution
u3 ∈ C[t0, t1]. Following the same arguments, we conclude the existence ofu4,u5,u6,u7 ∈
C[t0, t1] and consequently also ofu2 ∈C[t0, t1] . Observingu2(t0) = a, we see thatχ(u2) ∈
Ca[t0, t1].

(ii) Contraction property: Next, we show that the mappingχ( ∙ ) : Ca[t0, t1]→Ca[t0, t1]
is a contraction with respect to the natural norm‖ ∙ ‖∞ of C[t0, t1]. Let û2, v̂2 ∈Ca[t0, t1] be
given and letu,v be the corresponding solutions constructed in (i), such thatu2 = χ(û2),v2 =

χ(û2) ∈ Ca[t0, t1] . We will derive a priori estimates for the differencew := u2− v2 , with
initial value w(t0) = 0, in terms ofŵ := û2− v̂2 . For simplicity, we set all the parameters in
the equations (3.46) - (3.55) equal to one. The following argument works in the same way
with the specific values because all parameters are constant and positive and pJAK(t) is a
continuous, positive, and bounded function.

First, using the variational form of equations (3.46) and (3.47), we can bound the first
two componentsw0 andw1 in terms ofw2. On the time interval [t0, t1], we have

(∂tw0,ϕ)Ω + (∇w0,∇ϕ)Ω + (w0,ϕ)∂Ωnuc+ (w0,ϕ)∂Ωcyt = (ŵ2,ϕ)∂Ωnuc, (3.63)

for ϕ ∈ V. We chooseϕ = w0 and estimate the right hand side ( ˆw2,w0)∂Ωnuc using Ḧolder’s
and Young’s inequality as follows:

(ŵ2,w0)∂Ωnuc ≤ ε‖w0‖
2
∂Ωnuc

+cε−1ŵ2
2, ε > 0. (3.64)

For ε sufficiently small the first term in the right hand side can be absorbed into the left
hand side of (3.63) yielding

(∂tw0,w0)Ω + ‖∇w0‖
2
Ω + ‖w0‖

2
∂Ωnuc

≤ cŵ2
2. (3.65)

Integrating this with respect to time and using the trace theorem, we conclude that
∫ t1

t0
‖w0‖

2
∂Ωcyt

dt+
∫ t1

t0
‖w0‖

2
∂Ωnuc

dt≤ c
∫ t1

t0
ŵ2

2dt. (3.66)

For the second componentw1, we proceed in the same way. Using the corresponding
variational formulation withϕ = w1, we get

(∂tw1,w1)Ω + ‖∇w1‖
2
Ω + ‖w1‖

2
∂Ωnuc

= (w0,w1)∂Ωcyt. (3.67)
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Again using Ḧolder’s and Young’s inequality, we estimate

(w0,w1)∂Ωcyt ≤ ε‖w1‖
2
∂Ωcyt

+cε−1‖w0‖
2
∂Ωcyt

, ε > 0. (3.68)

We apply the trace theorem and the generalized Poincaré inequality to obtain

‖w1‖∂Ωcyt ≤ c‖w1‖V ≤ c
(
‖∇w1‖Ω + ‖w1‖∂Ωnuc

)
. (3.69)

With a suitable choice ofε, we can absorb the term from the right hand side in (3.69) into
the left hand side of (3.67) and obtain after integration over time

∫ t1

t0
‖w1‖

2
∂Ωnuc

dt≤ c
∫ t1

t0
ŵ2

2dt. (3.70)

The solution componentsw3, . . . ,w7 are not space dependent. From the equations (3.49)
and (3.50), we obtain

∫ t1

t0
w2

3dt≤ c
∫ t1

t0
‖w1‖

2
∂Ωnuc

dt≤ c
∫ t1

t0
ŵ2

2dt, (3.71)

∫ t1

t0
w2

i dt≤ c
∫ t1

t0
w2

i−1dt≤ c
∫ t1

t0
ŵ2

2dt, i = 4,5,6,7. (3.72)

So far, we have bounded each of the functionswi , i = 0,1,3, . . . ,7, in terms ofŵ2 . Finally,
from equation (3.48), we derive in the standard way

∫ t1

t0

(
w2w′2+w2

2
)
dt=

∫ t1

t0

(
w7w2+w2

∫

∂Ωnuc

w0ds
)
dt

≤ ε
∫ t1

t0
w2

2dt+
c
ε

∫ t1

t0

{
w2

7+ ‖w0‖
2
∂Ωnuc

}
dt.

(3.73)

Hence, takingε sufficiently small and using (3.66) and (3.72), we obtain

1
2w2(t1)2 ≤

∫ t1

t0

(1
2(w2

2)′+w2
2
)
dt≤ c

∫ t1

t0
ŵ2

2dt≤ c|t1− t0|‖ŵ2‖
2
∞. (3.74)

Consideringt1 > t0 as a free variable, we finally obtain on the time interval [t0, t1] that

‖χ(u2)−χ(v2)‖2∞ = ‖w2‖
2
∞ ≤ c(t1− t0)‖ŵ2‖

2
∞ = c(t1− t0)‖û2− v̂2‖

2
∞. (3.75)

Hence, for a sufficiently small time interval [t0, t1], we havec(t1− t0) < 1 such that the
fixed-point mappingχ( ∙ ) becomes a contraction. The spaceC[t0, t1] equipped with the
maximum norm is a Banach space and the linear manifoldCa[t0, t1] is a closed subset of
C[t0, t1]. Hence, the Banach fixed-point theorem applies and yields the existence of a unique
fixed point u2 ∈ Ca[t0, t1] of the mappingχ( ∙ ) . This then gives us a unique local solution
u= (ui)7

i=0 on the time interval [t0, t1] of the system (3.24) - (3.35).
For later purposes, we note that this fixed-pointu2 ∈Ca[t0, t1] is obtained as limit of the

usual fixed-point iteration (successive iteration)

uk+1
2 = χ(uk

2), k ∈ N, (3.76)
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with starting valueu0
2 := a.

Since the generic constantc used in the above argument is independent of time, as
long as all coefficient functions are bounded uniformly in time, this local solution can be
extended to the hole time interval [0,T]. To this end, we consider a sequence of time
intervals of equal lengths:

[t0 = 0, t1], . . . , [tl−1, tl ], . . . , [tm−1, tm = T], tl − tl−1 = h.

To each of these subintervals, we apply the above existence result, choosingh sufficiently
small, and taking as initial valueal := u2(tl) on the interval [tl , tl+1] the end value of the
solution on the preceding interval [tl−1, tl ] . For the first time interval, we use the initial
value ofu2(0) from (3.30) or (3.31). The solutionsu2 ∈C[tl , tl+1] from the respective time
intervals [tl , tl+1] can then be used to construct the global solutionu2 ∈W(0,T). Having
constructedu2, we obtain from Lemma 3.6 the solution componentsu0 and u1 ∈W(0,T)
and furtheru3,u4,u5,u6,u7 ∈C1[0,T]. This proves the existence of a unique global solution
of the system (3.24) - (3.35), which depends continuously (even Lipschitz continuously) on
the initial data.

3.4 Proof of non-negativity

(i) An auxiliary result:We will use the following non-negativity result, which is an exten-
sion of Lemma 3.6 for the case of non-negative initial and boundary data. Usually such
results are derived from maximum principles which are standard for Dirichlet boundary
conditions. However, for the case of Neumann or Robin boundary conditions, other more
subtle arguments have to be used (see, e.g., Ladyˇzenskaja et al. [15]). Here, we provide
an alternative proof by rather elementary arguments based on discretization such as already
used in the proof of Theorem 3.1 for ODEs. Again, as a byproduct, we obtain a correspond-
ing result for a discretized version of (3.56).

Lemma 3.7. Suppose that additionally to the assumptions of Lemma 3.6 there holds g≥ 0
and v0 ≥ 0. Then, the corresponding unique solution v∈W(0,T) also satisfies v≥ 0 on
QT := [0,T] ×Ω .

Proof. The proof employs finite difference discretization in space and time, the inverse
monotonicity ofM-matrices (as already used in the proof of Theorem 3.1), and uniform
convergence properties towards continuous limits.

For discretizing the initial-boundary value problem (3.56), we use the Shortley-Weller
scheme in space (see Shortley & Weller [22] for the definition of this difference approxima-
tion and for its error analysis, e. g., Forsythe & Wasow [11], Bramble & Hubbard [5] and
Hackbusch [12]) combined with the backward Euler scheme (3.19) in time. To this end,
we cover the computational domainΩ by a uniform cartesian grid of widthh and the time
interval I = [0,T] by a uniform grid of widthk. The set of “interior” spatial grid points
(i. e., those contained inΩ ) is denoted byΩh , while the intersections of the grid lines with
the boundary∂Ω form the set∂Ωh of “boundary” grid points. We setΩh := Ωh∪ ∂Ωh .
Further, we denote byΩ0

h the set of all interior grid points for which all next neighbors in
distanceh are either also interior grid points or lie on the boundary∂Ω . At grid points
in Ω0

h the Laplacian operator is discretized by the usual second-order central differences
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(x1, x2+hN)

hN

hE

h

h h

h

Ω0
h

∂Ωh

(x1−hW, x2) (x1+hE, x2)

(x1, x2−hS)

hS

P(x1, x2)
hW

R

Ωh\Ω0
h

R

Figure 1. Sketch of Shortley-Weller discretization and of the discretization of Robin bound-
ary conditions in 2D.

(“3-point stencil in 1D, “5-point stencil” in 2D and “7-point stencil” in 3D), while at grid
points inΩh \Ω0

h the so-called Shortley-Weller modification is used as indicated in Fig. 1.
At grid points in ∂Ωh the Robin boundary condition is discretized by first-order backward
differences, in 2D and 3D combined with linear interpolation between neighboring interior
grid points as indicated in Fig. 1. A close examination of this difference approximation
shows that the corresponding system matrixAh for the grid variablesvh(t) = (vh(t,P))P∈Ωh

is of non-negative type and diagonally dominant in the sense of Lemma 3.2. The Shortley-
Weller-Scheme for a point near the boundary, (x1, x2) ∈ Ωh \Ω0

h, reads as follows:

S Wvh(t, x1, x2) := D
{
−

2
hN(hS +hN)

vh(t, x1, x2+hN)

−
2

hW(hE +hW)
vh(t, x1−hW, x2)+

( 2
hEhW

+
2

hShN

)
vh(t, x1, x2)

−
2

hE(hE +hW)
vh(t, x1+hE, x2)−

2
hS(hS +hN)

vh(t, x1, x2−hS)
}
.

(3.77)

The resulting matrix of this scheme is again of non-negative type and diagonally dominant.
For a boundary point (x1, x2) ∈ ∂Ωh we have

d(t) =




ractpJAK(t)
|∂Ωcyt|

+
r imp

|∂Ωnuc|
0

− ractpJAK(t)
|∂Ωcyt|

r imp2

|∂Ωnuc|




and the discretized Robin boundary condition looks as follows:

D
vh(t, x1, x2)−vh(t,R)

hn
+d(t)vh(t, x1, x2) = gh(t, x1, x2),
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wherehn is the distance in negative normal direction of the boundary point (x1, x2) to the
nearest grid line (in 2D) or grid plane (in 3D) with cutting pointR. For the unknown
vh(t,R), we use a linear interpolation of the neighbouring points, where we have to take into
account two situations, the interpolation alongx1- andx2-direction:

vh(t,R) =
hEvh(t, x1−hW, x2−hN)+hWvh(t, x1+hE, x2−hN)

hE +hW
,

vh(t,R) =
hSvh(t, x1−hE, x2+hN)+hNvh(t, x1−hE, x2−hS)

hN +hS
.

The final scheme for a boundary point (x1, x2) ∈ ∂Ωh then reads

−
DhE

hn(hE +hW)
vh(t, x1−hW, x2−hN)+

( D
hn

I2+d(t)
)
vh(t, x1, x2)

−
DhW

hn(hE +hW)
vh(t, x1+hE, x2−hN) = gh(t, x1, x2)

(3.78)

or

−
DhS

hn(hN +hS)
vh(t, x1−hE, x2+hN)+

( D
hn

+d(t)
)
vh(t, x1, x2)

−
DhN

hn(hN +hS)
vh(t, x1−hE, x2−hS) = gh(t, x1, x2).

(3.79)

The resulting matrix of this scheme is also weakly diagonal dominant and of non-negative
type. For all interior points we use the 5-point stencil operator which shows the same
properties.

The linear system of ODEs resulting from this spatial semidiscretization has the form

v′h(t)+Ah(t)vh(t) = bh(t), t ≥ 0, vh(0)= (v0(P))P∈Ωh
, (3.80)

with right-hand sidebh(t) = (bP(t))P∈Ωh
,

bP(t) :=




0, P ∈ Ωh,

g(t,P), P ∈ ∂Ωh,

and with a matrixAh being non-negative and diagonal dominant. Then, the discretization
in time is by the standard backward Euler scheme resulting in the following sequence of
linear systems:

(Ih+kAh(tm))Vm
h,k = Vm−1

h,k +kbh(tm), m≥ 1, V0
h,k = vh(0). (3.81)

For this space-time discretization there holds the following a priori error estimate (for the
argument see, e. g., Hackbusch [12])

max
(tm,P)∈QT

‖Vm
h,k(P)−v(tm,P)‖ ≤ c(u,T){k+h2}, (3.82)

wherec(u,T) := c(T){‖D2
t v‖L∞(QT ) +maxm=3,4‖∇mv‖L∞(QT )} . Simple convergence

max
(tm,P)∈QT

‖Vm
h,k(P)−v(tm,P)‖ → 0 (h,k→ 0)
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holds true under the weaker assumption that Dtv, ∇2v ∈C(QT) . Hence, by Lemma 3.2 the
matrix Ih+ kAh is invertible with elementwise positive inverse (Ih+ kAh)−1 > 0. Since by
assumptionV0

h,k ≥ 0, bh(tm) ≥ 0, we conclude thatVm
h,k ≥ 0 for all m≥ 0. Hence, by the

convergence property (3.82) it follows thatv≥ 0 on QT . �

(ii) The non-negativity result:We recall the fixed-point iteration (3.76) on the time intervals
[tl , tl+1] defined in the preceding section. Suppose that the initial valuesu0(tl), . . . ,u7(tl) ,
are non-negative and that the starting valueu0

2 of the fixed-point iterationuk+1
2 = χ(uk

2) on
[tl , tl+1] satisfiesu0

2 ≥ 0, on [tl , tl+1] . Then, if uk
2 ≥ 0, by the result of Lemma 3.7 the next

iterate satisfiesuk+1
0 ≥ 0. Using this result in the boundary conditions (3.53) and (3.54),

we obtain analogously that alsouk+1
1 ≥ 0. The other unkowns ˜u := {uk+1

2 , . . . ,uk+1
7 } are then

determined by an ODE system of the form

vnucũ
′(t)+ Ã(t)ũ(t) = b̃(t), (3.83)

with the matrix

Ã(t) =




rexp 0 0 0 0 −rdelay

0 rdelay 0 0 0 0
0 −rdelay rdelay 0 0 0
0 0 −rdelay rdelay 0 0
0 0 0 −rdelay rdelay 0
0 0 0 0 −rdelay rdelay




,

and the right-hand-side vector

b̃(t) =




r imp

|∂Ωnuc|

∫

∂Ωnuc

uk
0(t, x)dox

r imp2

|∂Ωnuc|

∫

∂Ωnuc

uk
1(t, x)dox

0
0
0
0




.

The matrix Ã(t)T is of non-negative typ and diagonally dominant. Further, the initial val-
ues ũ(0) and the right-hand sidẽb are non-negative. Hence, by Lemma 3.2 it follows that
ũ≥ 0. In particular, there holdsuk+1

2 ≥ 0. Repeating this argument for the whole iteration

uk+1
2 = χ(uk

2) , we obtain that in the limitu(t, x) ≥ 0 for (t, x) ∈ [tl , tl+1] ×Ω . This eventually
implies thatu≥ 0 on the whole time interval [0,∞) .

Remark3.8. As a byproduct of the above argument, we see that the space-time discretiza-
tion of the PDE-ODE system (3.24) - (3.35) by the second-order Shortley-Weller finite
difference approximation in space and the first-order backward Euler scheme in time yields
non-negative approximationsUm

h,k ≥ 0 at all discrete time levelstm≥ 0, and there holds the
error estimate

max
(tm,P)∈QT

‖Um
h,k(P)−u(tm,P)‖ ≤ c(T){k+h2}, (3.84)
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provided that the solution is sufficiently regular. This shows that problem (3.24) - (3.35) can
be numerically approximated. Analogous results hold true for any space-time discretiza-
tion, which yields system matrices of M-matrix type. In the computations described in Sec-
tion 4, below, we have used a low-order finite element discretization in space with piecewise
(isoparametric) bi/tri-linear shape functions and the first-order backward Euler scheme in
time. This combined space-time discretization does not satisfy the M-matrix requirement
on general meshes but converges with the above order. However, in our computations, we
have not observed any problems with the required non-negativity of the discrete solution.

3.5 Proof of boundedness and Lyapunov stability

(i) Boundedness of solution:From the conservation property of the quantityσ :=D−1|Ω|(ū0+

ū1)+vnuc(u2+u3+u4+u5+u6+u7) and the non-negativity of the solutionu, we obtain

sup
t∈[0,∞)

max{ū0(t), ū1(t),u2(t), . . . ,u7(t)} <∞.

Then, from the variational form of the equations (3.24) and (3.25),

(∂tu0,ϕ)Ω +D(∇u0,∇ϕ)Ω +
r imp

onuc
(u0,ϕ)∂Ωnuc

+
ract

ocyt
pJAK(t)(u0,ϕ)∂Ωcyt =

rexp

onuc
(u2,ϕ)∂Ωnuc,

(3.85)

and

(∂tu1,ϕ)Ω +D(∇u1,∇ϕ)Ω +
r imp2

onuc
(u1,ϕ)∂Ωnuc =

ract

ocyt
pJAK(t)(u0,ϕ)∂Ωcyt, (3.86)

for ϕ ∈ V , we conclude that also

sup
t∈[0,∞)

{‖u0‖Ω + ‖u1‖Ω} <∞. (3.87)

To see this, we chooseϕ = u0 in (3.85) andϕ = u1 in (3.86), to obtain

1
2

d
dt
‖u0‖

2
Ω +D‖∇u0‖

2
Ω +

r imp

onuc
‖u0‖

2
∂Ωnuc

+
ract

ocyt
pJAK(t)‖u0‖

2
∂Ωcyt

=
rexp

onuc
(u2,u0)∂Ωnuc,

(3.88)

and

1
2

d
dt
‖u1‖

2
Ω +D‖∇u1‖

2
Ω +

r imp2

onuc
‖u1‖

2
∂Ωnuc

=
ract

ocyt
pJAK(t)(u0,u1)∂Ωcyt. (3.89)

From (3.88), we infer by standard arguments using the generalized Poincaré inequality

‖u0‖Ω ≤ c
{
‖∇u0‖Ω + ‖u0‖∂Ωnuc

}
, (3.90)

and Young’s inequality that

d
dt
‖u0‖

2
Ω +λ‖u0‖

2
Ω +γ

{
‖∇u0‖

2
Ω + ‖u0‖

2
∂Ωnuc

}
≤ c‖u2‖

2
∂Ωnuc

,
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with certain data-dependent constantsλ,γ,c> 0. From this, we conclude

d
dt

(
eλt‖u0‖

2
Ω

)
+γeλt{‖∇u0‖

2
Ω + ‖u0‖

2
∂Ωnuc

}
≤ ceλt‖u2‖

2
∂Ωnuc

,

and integrating this with respect to time,

‖u0(t)‖2Ω +γe−λt
∫ t

0
eλs{‖∇u0‖

2
Ω + ‖u0‖

2
∂Ωnuc

}
ds≤ ce−λt

∫ t

0
e−λs‖u2‖

2
∂Ωnuc

ds.

This yields

sup
[0,∞)

{
‖u0‖

2
Ω +γe−λt

∫ t

0
eλs

{
‖∇u0‖

2
Ω + ‖u0‖

2
∂Ωnuc

}
ds

≤ ‖u0(0)‖2Ω +cλ−1 sup
[0,∞)
‖u2‖

2
∂Ωnuc

<∞ .
(3.91)

In the next step, we will use the estimate

‖u0‖∂Ωcyt ≤ c‖u0‖V ≤ c
{
‖∇u0‖Ω + ‖u0‖∂Ωnuc

}
, (3.92)

which follows by a trace inequality and a generalized Poincare inequality (3.90). Then,
from (3.89), we infer using again Young’s inequality and the Poincaré inequality (3.90) for
u1 that

d
dt
‖u1‖

2
Ω +λ‖u1‖

2
Ω ≤ c‖u0‖

2
∂Ωcyt

.

From this, we conclude
d
dt

(
eλt‖u1‖

2
Ω

)
≤ ceλt‖u0‖

2
∂Ωcyt

,

and integrating this with respect to time,

‖u1(t)‖2Ω ≤ ce−λt
∫ t

0
e−λs‖u0‖

2
∂Ωcyt

ds.

In view of the estimates (3.91) and (3.92) it follows finally that

sup
[0,∞)
‖u1‖

2
Ω ≤ cλ−1 sup

[0,∞)
‖u2‖

2
∂Ωnuc

<∞ . (3.93)

This completes the proof of the estimate (3.87).

(ii) Lyapunov stability of solution:Again, we recall the fixed-point iteration (3.76) on the
time interval [t0, t1] for z(t, x) being the disturbed zero-solution with disturbed initial data
z∗ , satisfying‖z∗‖ < δ(ε) . The estimates (3.91) and (3.93) show that the solutionszk+1

0 (t, x)
and zk+1

1 (t, x) can be bounded by its initial valuesz∗0, z∗1 and zk
2(t), which is the first com-

ponent of the autonomous nonhomogenous system (3.83). All other components of this
system,zk+1

i , i = 3,4,5,6,7, can also be bounded byzk
2(t) as already shown in the estimates

(3.71) and (3.72). Further, we have

‖zk+1
2 ‖

2
∞ ≤ c(t1− t0)‖zk

2‖∞ < ε,

with a suitable choice ofδ. This argument can be extended to the hole time interval [0,T] as
already mentioned in the existence proof in Section 3.3. This shows the Lyapunov stability
of the solution.
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(a) shape of NIH-3T3 cell (b) recessed nucleus

Figure 2. Computational meshes (created with [2]) for the simulation of the NIH-3T3 cell
(left) and zoom into the cell neighborhood of the nucleus (right).

4 Numerical Computations

In order to obtain numerical solutions of time courses to simulate our biological system, we
used the in-house software package Gascoigne (available under [10]). This software tool
uses a conforming finite element method (FEM) with (isoparametric) bi/tri-linear shape
functions for spatial discretization and, among others, the backward Euler scheme for time
discretization of the PDE model. For details of such a spatial discretization and the related
notation, we refer to the standard textbook literature, e. g., Ciarlet [7] or Brenner & Scott [6].
The geometry and meshes used in our simulation are shown in Fig. 2.

One goal of this paper is to prove the well-posedness of the model as basis of a reli-
able simulations. Fig. 3 shows the time-dependent Robin boundary coefficient which was
possible to measure in this case such that the signaling model could be simplified to a lin-
ear one. The results shown in Table 2 confirm that our numerical results are reliable in
the sense that they are “converged”, i. e., they do not change anymore under further mesh
refinement. Some comparison results concerning the use of a pure ODE model and the en-
hanced PDE-ODE model for intracellular signaling are collected in Fig. 3 (b). We conclude
that by considering diffusion of the molecules inside the cytoplasm their sojour time there
is longer and, in turn, less molecules are available in the nucleus for binding to the DNA.
The difference for pSTAT5 is here about 0.7 mol/μm3. We observed a 11% gradient for
the total STAT5 concentration. which corresponds to 1.5 mol/μm3 (mol= molecules). The
main concentration comes from the activated molecules,pS T AT5.

5 Conclusion

In this article, we present the mathematical treatment of a model of the JAK2/STAT5 sig-
naling pathway, which consists of a coupled system of linear differential equations (PDEs+
ODEs) involving high-quality quantitative data from our experimental collaborators. This
model is formulated to analyze the effect of cellular geometries on signaling, i.e., pro-
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mesh level # nodes ū1,h(5) ū1,h(16) ū1,h(155)
0 24 150 2.09198 2.40505 1.80197
1 51 354 2.09279 2.4042 1.80189
2 160 158 2.093 2.40399 1.80186

Table 2. Convergence results for the functional of interest ˉu1 at different time instants.
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(b) space averaged solution on the finest mesh via the
PDE-ODE model (red) and via the pure ODE model
(blue)

Figure 3. Timecourse of the parameterpJak entering in the Robin boundary condition
(left) and comparison of the solutions ˉu1,h(t) =

∫
Ω

u1(t, x)dx from the PDE model withu1(t)
from the ODE model (right).

cesses important for the transport inside the cytoplasm are modeled in detail, while other
processes like the receptor-model or processes taking place in the nucleus (DNA-binding,
dephosphotylation, ...) are simplified due to measured data or by delay-equations. Firstly,
the ODE model is analyzed to show its well-posedness, i.e., the existence, uniqueness, non-
negativity, boundedness, asymptotics and stability of the solution. Then, analogous results
are proven for the more realistic, yet linear, PDE-ODE model. The mathematical techniques
used are chosen in such a way that they apply to the continuous model but also to a suit-
ably discretized version and prepare also for an analysis of more general nonlinear models
coming from signaling processes.
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Karls- Universiẗat Heidelberg, 2009.

[19] Pfeifer A.C, Kaschek D., Bachmann J., Klingmüller U., and Timmer J.,Model-based
extension of high-throughput to high-content data, 2008.

[20] Schilling M, Maiwald T, Bohl S, Kollmann M, Kreutz C, Timmer J, and Klingmüller
U., Computational processing and error reduction strategies for standardized quanti-
tative data in biological networks, FEBS J. 272(24):6400-11, 2005.

[21] Schilling M., Pfeifer A.C., Bohl S., and Klingm̈uller U., Standardizing experimental
protocols, Curr Opin Biotechnol., 2008.

[22] Shortley G. H., Weller R.,Numerical Solution of Laplace’s Equation, J. Appl. Phys.
9, 334–348, 1938.

[23] Swameye I., M̈uller T.G., Timmer J., Sandra O., and Klingmüller. U., Identifica-
tion of nucleocytoplasmatic cycling as a remote sensor in cellular signaling by
databased modeling, PNAS Proceedings of the National Academy of Sciences,
100(3):10281033, 2003.

[24] Timmer J., M̈uller T.G., Swameye I., Sandra O., and Klingmüller U., Modeling the
nonlinear dynamics of cellular signal transduction, International Journal of Bifurca-
tion and Chaos, 14, No. 6, 2069-2079, 2004.

[25] Varga R. S.,Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962.

[26] Wloka J.,Partial Differential Equations, Cambridge University Press, 1987.


