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Abstract

Regularization of the Navier-Stokes equations by adding hyperviscosity termμ(−Δ2),
μ> 0 is considered. We proved convergence of Galerkin’s approximations to the strong
generalized solution of the regularized Navier-Stokes equations; existence and unique-
ness of the strong generalized solution.
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1 Introduction

The 3D Navier-Stokes equations describe the motion of a viscous incompressible fluid in
R3. The equations are to be solved for an unknown divergence-free velocity vector-function
u = (ui)1≤i≤3 and scalar functionp called pressure [1], [2]. We use dimensionless coordi-
nates and consider the case when the velocity, pressure and the external forcesfi are real
periodic functions with the period 2π in all space coordinatesxi , i = 1,2,3; that is defined
on a 3D torusΩ := R3/2πZ3. The Navier-Stokes equations in the domainQT = Ω× [0,T)
have the form

∂ui

∂t
− νΔui = −

∂p
∂xi
−

3∑

j=1

uj
∂ui

∂xj
+ fi ; (x, t) ∈ QT , ν > 0,

div u=

3∑

j=1

∂uj

∂xj
= 0, (x, t) ∈ QT ,

u(x,0)= u0(x), div u0 = 0.
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Notations.LetQT =Ω× [0,T),Q∞ =Ω× [0,+∞). Norms in the Sobolev spacesWκ,2(Ω)
are denoted as

‖u‖κ,2 :=

{∫

Ω

[∣∣∣(−Δ)κ/2u
∣∣∣2+ |u|2

]
dx

}1/2

. (1.1)

We also use pre-norms

‖u‖0,κ,2 :=

{∫

Ω

∣∣∣(−Δ)κ/2u
∣∣∣2dx

}1/2

.

For a mapping [0,T] 3 t→ f (∙, t) ∈Wκ,2(Ω) the norm of the elementf (∙, t) ∈Wκ,2(Ω)
is denoted as‖ f (∙, t)‖κ,2 , the L2(Ω) norm of a vector-functionf as‖ f ‖, a scalar product
of vectors f ,g in C3 as f ∙g, magnitude of aC3 vector f as | f | and a scalar product in the
spaceL2(Ω) as (∙, ∙). A scalar product in the Hilbert spaceWκ,2(Ω) is denoted as (f ,g)κ,2, a
norm in the spaceLp(Ω) as‖∙‖p, but for the norm in the spaceL2(Ω) we use notation‖∙‖. A
subspace of functions{u : u ∈ L2(QT), u(∙, t) ∈ J2(Ω)} is denoted asL0

2(QT).
A set of solenoidalvectors inC∞(Ω) we denote asJ(Ω), and a completion ofJ(Ω)

in the normW1,2(Ω) asH(Ω). Let J2(Ω) be the completion of the setJ(Ω) in L2(Ω), and
let P be the orthogonal projection (Leray’s projection) of the Hilbert spaceL2(Ω) onto the
subspaceJ2(Ω). Direct calculations give for Leray’s projectionP an expression

(P f )(x) =
∑

k∈Z3,k,0

{
fk−k( fk ∙k) |k|−2

}
exp{i(k ∙ x)}+ f0. (1.2)

through the Fourier coefficients fk of a function f ∈ L2(Ω) [2]. Evidently on functions
u ∈W2κ,2(Ω)∩H(Ω), κ = 1,2, . . ., we havePΔκu= Δκu.

Applying Leray’s projectionP to the Navier-Stokes equations we exclude the presser
from the equations and write the Navier-Stokes equations in the equivalent form [2]

∂u
∂t
− νΔu= −P(u ∙ ∇)u+P f , (x, t) ∈ QT , u(∙, t) ∈ H(Ω).

The Navier-Stokes equations are regularized by adding to the viscosity termνΔu the hy-
perviscosity term−μΔ2u. So the Cauchy problem for the regularized Navier-Stokes equa-
tions inQT has the form

∂u
∂t
− νΔu+μΔ2u= −P(u ∙ ∇)u+P f , (x, t) ∈ QT , (1.3)

div u= 0, (x, t) ∈ QT ; u(∙,0)= u0, div u0 = 0. (1.4)

Generalized solution to problem (1.3), (1.4) can be found in the spaceWr(T) obtained
as the completion of functions

{
u : u ∈C∞(QT), u(∙, t) ∈ H(Ω)

}
(1.5)

in the norm

‖u‖2Wr(T) := sup
[0,T)

{
‖u(∙, t)‖21,2+ ‖u(∙, t)‖22,2

}
+

∫ T

0

{
‖∂tu(∙, t)‖2+ ‖u(∙, t)‖24,2

}
dt. (1.6)
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Definition 1.1. 1◦ A vector function u∈Wr(T), T <∞ is called the generalized solution
to the regularized Navier-Stokes equations(1.3), (1.4) (abbreviation SRNS) in the cylinder
QT with data

u0 ∈ H(Ω)∩W2,2(Ω), f ∈ L2(QT) (1.7)

if: a)
∥∥∥u(∙, t)−u0(∙)

∥∥∥
2,2→ 0 as t→ 0,

b) div u= 0,
c) the generalized derivatives ut, uxk, uxkxk, uxkxkxmxm belong to L2(QT) and satisfy equa-

tion (1.3).
2◦ A vector function u defined inQ∞ is called the SRNS of problem(1.3), (1.4) in the

Q∞ if it is the SRNS in all cylindersQT, T <∞.

The SRNSsolution is usually referred to as the strong generalized solution. Different
regularizations of the Navier-Stokes equations were considered in numerous publications.
O. A. Ladyzhenskaya and J. L. Lions in the papers [3], [4] proposed to change the viscosity
νΔu for the hyperviscosityνΔu− (−Δ)l , l > 5/4 and proved the existence of the global weak
solution (in the integral sense) to the regularized Navier-Stokes equations. In the casel = 2
we proved the existence of the strong global generalized solution and the convergence of
Galerkin’s approximations to such solution in the spaceWr(T) for all T < ∞. There are
many publications on the Navier-Stokes equations with hyperviscosity where attractors, a
turbulence and computational methods were considered [5], [6], [7], etc.

2 Main Results

Now we deduce a priory estimates for the classical solution to the Navier-Stokes equations.

Lemma 2.1. 1) The C∞(Q∞) classical solution to problem(1.3), (1.4)satisfies the following
inequalities on the interval[0,∞):

‖u(∙, t)‖ ≤ ‖u0‖+
∫ t

0
‖ f (∙, τ)‖dτ; (2.1)

‖u(∙, t)‖2+2
∫ t

0

{
ν‖u(∙, τ)‖20,1,2+μ‖u(∙, τ)‖20,2,2

}
dτ

≤ ‖u0‖
2+2

{

‖u0‖+
∫ t

0
‖ f (∙, τ)‖dτ

}

×
∫ t

0
‖ f (∙, τ)‖dτ. (2.2)

2) Let

Φ(t) :=
1
2
‖u0‖

2+

{

‖u0‖+
∫ t

0
‖ f (∙, τ)‖dτ

}

×
∫ t

0
‖ f (∙, τ)‖dτ ;

g(t) := c2

{

‖u0‖+
∫ t

0
‖ f (∙, τ)‖dτ

}

×

{

‖u0‖+ ‖ f (∙, t)‖+
∫ t

0
‖ f (∙, τ)‖dτ

}

+
1
2
‖ f (∙, t)‖2 , (2.3)

c2 := (ν2+2νμ+μ2)+2(ν+μ).
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Then the following inequality holds for all t∈ [0,∞), with some constant c1 no depending
onν andμ,

ν‖u(∙, t)‖21,2+μ‖u(∙, t)‖22,2 ≤
{
ν‖u0‖

2
1,2+μ‖u0‖

2
2,2

}
×exp

{
c1

μν
Φ(t)

}

+

∫ t

0
g(τ)exp

{
c1

μν
[Φ(t)−Φ(τ)]

}

dτ. (2.4)

3) For all T ∈ [0,∞), the norm‖u‖Wr(T) of the classical solution satisfies the inequality

‖u‖2Wr(T) ≤
2
ν

[{
ν‖u0‖

2
1,2+μ‖u0‖

2
2,2

}
×exp

{
c1

μν
Φ(T)

}

+

∫ T

0
g(τ)exp

{
c1

μν
[Φ(T)−Φ(τ)]

}

dτ

]

×Φ(T)+
∫ T

0
g(τ)dτ. (2.5)

Proof. Let u ∈ C∞(Q∞) be a real classical solution to problem (1.3). Taking the scalar
product inL2(Ω) of the left and right hand-sides of equality (1.3) with the solutionu, we
obtain the inequalities

d
dt
‖u(∙, t)‖2 ≤ 2‖u(∙, t)‖‖ f (∙, t)‖ , (2.6)

d
dt
‖u(∙, t)‖2+2ν‖u(∙, t)‖20,1,2+2μ‖u(∙, t)‖20,2,2 ≤ 2‖u(∙, t)‖× ‖ f (∙, t)‖ . (2.7)

Inequalities (2.1), (2.2) are a direct consequence of inequalities (2.6), (2.7). Further, taking
scalar square inL2(Ω) on the left and right hand-side of equality (1.3), and summing up
the result with inequality (2.6) multiplied by (ν+μ) and with the square of inequality (2.1)
multiplied by (ν2+2νμ+μ2), we obtain the inequality

d
dt

{
ν‖u(∙, t)‖21,2+μ‖u(∙, t)‖22,2

}
+ ‖∂tu(∙, t)‖2+ ν2‖u(∙, t)‖22,2

+2 νμ‖u(∙, t)‖23,2+μ
2‖u(∙, t)‖24,2 ≤ ‖[(u ∙ ∇)u](∙, t)‖2+g(t), (2.8)

where the functiong(t) is defined in (2.3). By the embedding Theorem [8], for the dimen-
sion 3, we have maxx∈Ω |u(x, t)|2 ≤ c‖u(∙, t)‖22,2, hence the following inequality holds

‖[(u ∙ ∇)u](∙, t)‖2 ≤ c1‖u(∙, t)‖20,1,2‖u(∙, t)‖22,2

≤
c1

μ

{
ν‖u(∙, t)‖21,2+μ‖u(∙, t)‖22,2

}
‖u(∙, t)‖20,1,2 , (2.9)

with some constantc1. From inequalities (2.8), (2.9) we infer the inequality

d
dt

{
ν‖u(∙, t)‖21,2+μ‖u(∙, t)‖22,2

}

≤
c1

μ

{
ν‖u(∙, t)‖21,2+μ‖u(∙, t)‖22,2

}
‖u(∙, t)‖20,1,2+g(t). (2.10)



On Convergence of Galerkin’s Approximations for the Navier-Stokes Equations 107

Applying Gromwell’s inequality to inequality (2.10) we have

{
ν‖u(∙, t)‖21,2+μ‖u(∙, t)‖22,2

}
≤

{
ν‖u(∙,0)‖21,2+μ‖u(∙,0)‖22,2

}
×exp

{
c1

μν

∫ t

0
‖u(∙, τ)‖20,1,2dτ

}

+

∫ t

0
g(τ)exp

{
c1

μν

∫ t

τ
‖u(∙, s)‖20,1,2ds

}

dτ (2.11)

for all t ∈ [0,∞). Note that inequality (2.2) implies the estimate
∫ t

0
‖u(∙, τ)‖20,1,2dτ ≤

1
2ν
‖u0‖

2+
1
ν

{

‖u0‖+
∫ t

0
‖ f (∙, τ)‖dτ

}

×
∫ t

0
‖ f (∙, τ)‖dτ = Φ(t). (2.12)

Thus, substituting estimate (2.12) in inequality (2.11), we obtain inequality (2.4).
Now we replace the term‖[(u ∙ ∇)u](∙, t)‖2 in the right-hand side of inequality (2.8) by

its estimate (2.9) and further we replace the term
{
ν‖u(∙, t)‖21,2+μ‖u(∙, t)‖22,2

}
by its estimate

(2.11). Then integrating the obtained inequality byt, we obtain estimate (2.5). �

The existence of the SRNS is proved by Galerkin’s method. We obtain the convergence
of Galerkin’s approximations in the space Wr(T) to the SRNS for all T< +∞.

The orthonormal real vector eigenfunctionsfk sin(k ∙ x), gk cos(k ∙ x) : k = (k1,k2,k3),
ki ∈ Z, fk ∙k= 0, gk ∙k= 0 of the operatorΔ: W2,2(Ω)∩H(Ω)→ J2(Ω) are numerated from
1 to ∞ by the indexl and are denoted byal . Evidently, the functions{al}∞l=1 form the
basis in the Hilbert spaceJ2(Ω). Galerkin’s approximationsun for the SRNS have the form
un(x, t) :=

∑n
l=1cl,n(t)al(x) where the functionscl,n are defined below. The functionscl,n are

determined by Galerkin’s conditions

(∂tu
n− f ,al)+μ(Δun,Δal)+

3∑

i=1

{
ν(∂xi u

n,∂xi a
l)− (un

i un,∂xi a
l)
}
= 0, l = 1, . . . ,n, (2.13)

and the initial datacl,n(0)= cl , l = 1, . . . ,n, whereu0 =
∑∞

l=1clal .

Conditions (2.13) were obtained formally from system (1.3) by replacing the solution
u by Galerkin’s approximationun, multiplying equations (1.3) by the functional and inte-
grating overΩ. Galerkin’s conditions (2.13) is a system of ordinary differential equations
with respect to the functionscjn:

dcjn

dt
− ν

n∑

k=1

ajkckn+

n∑

p,k=1

ajpkcpnckn = f j , j = 1, . . . ,n, (2.14)

whereajk, ajpk are some constants andf j = ( f ,aj).
Define inL2(Ω) a projectionPn: Pn f :=

∑n
k=1( f ,ak)ak. Evidently Galerkin’s approxi-

mationsun satisfy the problem

∂un

∂t
− νΔun+μΔ2un = −Pn(un ∙ ∇)un+Pn f ; (x, t) ∈ Q∞. (2.15)

We have (Pn(un ∙ ∇)un,un) = ((un ∙ ∇)un,un) and ‖Pn(un ∙ ∇)un‖ ≤ ‖(un ∙ ∇)un‖, thus we can
apply to equation (2.15) considerations of the Lemma 2.1 and deduce Lemma 2.2.
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Lemma 2.2. Let u0 ∈ H(Ω)∩W2,2(Ω) and f ∈ L2(QT) for all T <∞. Then:
1) Galerkin’s approximations un satisfy all inequalities of Lemma2.1.
2) Galerkin’s approximations un, n= 1,2, . . . , for all T <∞ satisfy the inequality

∥∥∥un
∥∥∥2

Wr(T) ≤ c

(

T, ν, μ, ‖u0‖ ,
∫ T

0
‖ f (∙, s)‖2ds

)

(2.16)

with some constant depending on T, ν,μ,‖u0‖ ,
∫ T

0 ‖ f (∙, s)‖2ds.

It follows from the orthogonality (aj ,al) = δ j,l that ‖un(∙, t)‖2 =
∑n

j=1c2
jn(t). Hence in-

equality (2.1) for the functionsun implies that Galerkin’s approximationsun(∙, t) exist on
[0,∞).

Now we prove the convergence of Galerkin’s approximations in the spaceWr (T) for all
T <∞ and deduce the existence of the SRNS.

Theorem 2.3. (3D case)
Let the initial data and the right-hand side f of the Navier-Stokes problem(1.3), (1.4)
satisfy conditions(1.7), then the SRNS to problem(1.3), (1.4) exists and is unique inQ∞.
Galerkin’s approximations un converge to the SRNS in the norm‖u‖Wr (T) for all T <∞. The
SRNS satisfies inequalities(2.1)-(2.5).

Proof. Fix T > 0. By inequality (2.16), the norms‖un‖2Wr(T) of Galerkin’s approximations
are bounded uniformly in indexn. Therefore we can choose from Galerkin’s approximations
un a subsequence{unq} such that functionsunq, u

nq
t , u

nq
xm

, u
nq
xi xj

are weakly converging in

L2(QT). Let us study the strong convergence of the sequences{u
nq
xm
}, {unq} in L2(QT) by

using the Friedrich inequality and the argumentation of the book [1], pp 173-178. The
Friedrich inequality asserts [1] that for anyε > 0 there existNε functionsω j , j = 1, . . . ,Nε,

such that an inequality

∫

Ω

u2dx≤
j=Nε∑

j=1

(∫

Ω

uω jdx

)2

+ε

∫

Ω

(grad u)2dx. (2.17)

holds for every function fromW1,2(Ω). Evidently for functionsu ∈ W1,2(Ω) we can chose
the set{ω j}

j=Nε

j=1 as 1, fk sin(k ∙ x), gk cos(k ∙ x), k= (k1, k2, k3), ki ∈ Z; |k| ≤ 1/
√
ε. It follows

directly from [1] that there exists a subsequence{un1
q} that converges inL2(QT).

Applying the Friedrich inequality to the functionu := ∂xk(u
n1

i −un1
j ) and integrating it

with respect to the variablet from 0 toT, we have

∫ T

0

∫

Ω

∣∣∣∣∣∂xk(u
n1

i
l −u

n1
j

l )
∣∣∣∣∣

2

dxdt≤
Nε∑

j=1

∫ T

0

[∫

Ω

{

∂xk

(

u
n1

i
l −u

n1
j

l

)}

ω jdx

]2

dt

+ε

∫ T

0

∫

Ω

3∑

m=1

∣∣∣∣∣∣∂
2
xkxm

(

u
n1

i
l −u

n1
j

l

)∣∣∣∣∣∣

2

dxdt. (2.18)

Note that Galerkin’s approximationsun1
i satisfy inequality (2.16). Therefore, the last inte-

gral in the right-hand side of inequality (2.18) does not exceed a fixed constant multiplied
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by ε. The first integral in the right-hand side of inequality (2.18) can be considered arbi-
trarily small for the large valuesn1

i , n
1
j because the sequence{un1

i } converges inL2(QT), and
hence the sequence

∫

Ω

ωm(x)∂xku
n1

i
l (x, t)dx= −

∫

Ω

{
∂xkωm(x)

}
u

n1
i

l (x, t)dx

converges for almost allt ∈ [0,T]. Therefore we obtain
∫ T

0

[∫

Ω

{

∂xk(u
n1

i
l −u

n1
j

l )

}

ωmdx

]2

dt→ 0

asn1
j , n1

i →∞. Thus, the right-hand side of (2.18) can be considered arbitrarily small for

sufficiently large indicesn1
i , n1

j . This proves that the sequence{u
n1

i
xk
} converges strongly

in L2(QT). Passing to subsequences we get the sequences{uñi
xk
}, k = 1,2,3, converging in

L2(QT). To simplify the notation in what follows for these converging sequences we use the
notation{uni

xk
}, k= 1,2,3.

a) Now let us prove that the sequence{(uni ∙ ∇)uni } strongly converges in L2(QT). With
this goal in mind we deduce from the multiplicative inequalities [1], [9] the following in-
equality ∫

Ω

w2(∂xi u)2dx≤ c‖w‖21,2
∥∥∥∂xi u

∥∥∥‖u‖2,2 . (2.19)

Then we putw= uni
l −u

nj

l , v= uni
k in the above inequality (2.19) and obtain

∫ T

0
dt

∫

Ω

∣∣∣(uni
l −u

nj

l )∂xl u
ni
k

∣∣∣2dx≤ c

{

max
[0,T]

∥∥∥uni
l (∙, t)

∥∥∥
1,2+max

[0,T]

∥∥∥u
nj

l (∙, t)
∥∥∥

1,2

}2

×
∫ T

0

∥∥∥(uni
l −u

nj

l )(∙, t)
∥∥∥

1,2
×

∥∥∥uni
k (∙, t)

∥∥∥
2,2

dt. (2.20)

Due to inequality (2.16) the numbers

sup
[0,T]

∥∥∥uni
l (∙, t)

∥∥∥
1,2 ; sup

[0,T]

∥∥∥u
nj

l (∙, t)
∥∥∥

1,2

are bounded in the interval [0,T] by some constantC(T) uniformly with respect to the
indicesni , nj , l. Hence, applying the Cauchy inequality to the right-hand side of (2.20), we
have

∫ T

0
dt

∫

Ω

∣∣∣(uni
l −u

nj

l )∂xl u
ni
k

∣∣∣2dx≤C(T)

{∫ T

0

∥∥∥uni
k (∙, t)

∥∥∥2
2,2dt

}1/2

×

{∫ T

0

∥∥∥(uni
l −u

nj

l )(∙, t)
∥∥∥2

1,2dt

}1/2

. (2.21)

By virtue of inequality (2.16), the numbers
{∫ T

0

∥∥∥uni
k (∙, t)

∥∥∥2
2,2dt

}1/2
are uniformly bounded

by the constantsC(T) in the interval [0,T], and it was proved above that
{∫ T

0

∥∥∥(uni
l −u

nj

l )(∙, t)
∥∥∥2

1,2dt

}

→ 0
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asni , nj →∞. Therefore, the right-hand side in inequality (2.21) can be considered arbi-
trarily small asni , nj →∞.

In a similar way we obtain the following inequalities:
∫ T

0
dt

∫

Ω

∣∣∣uni
k ∂xk(u

ni
l −u

nj

l )
∣∣∣2dx

≤ cmax
[0,T]

∥∥∥uni
k (∙, t)

∥∥∥2
1,2×

{∫ T

0

∥∥∥(uni
l −u

nj

l )(∙, t)
∥∥∥

1,2

∥∥∥(uni
l −u

nj

l )(∙, t)
∥∥∥

2,2dt

}

≤C(T)

{∫ T

0

∥∥∥(uni
l −u

nj

l )(∙, t)
∥∥∥2

2,2
dt

}1/2{∫ T

0

∥∥∥(uni
l −u

nj

l )(∙, t)
∥∥∥2

1,2
dt

}1/2

≤C1(T)

{∫ T

0

∥∥∥(uni
l −u

nj

l )(∙, t)
∥∥∥2

1,2
dt

}1/2

. (2.22)

Inequality (2.22) implies the convergence:
{∫ T

0
dt

∫

Ω

∣∣∣uni
k ∂xk(u

ni
l −u

nj

l )
∣∣∣2dx

}

→ 0 as ni , nj →∞.

Combining inequalities (2.21) and (2.22), we infer that the sequence{(uni ∙ ∇)uni } strongly
converges inL2(QT) to a function

ψ := lim
nj→∞

(unj ∙ ∇)unj . (2.23)

b) Here we prove the convergences of the sequence{uni } in the space Wr(T). From
equation (2.15) we derive a Cauchy problem for the function (un−um),

∂t(u
n−um)− νΔ(un−um)+μΔ2(un−um)

= −(Pn−Pm)(un ∙ ∇)un+ (Pn−Pm) f +Pm{(u
m ∙ ∇)um− (un ∙ ∇)un}, (2.24)

(un−um)
∣∣∣
t=0 = (Pn−Pm)u0.

By standard calculations from (2.24) we have the inequality
∥∥∥un−um

∥∥∥2
Wr(T) ≤ c

∥∥∥(Pn−Pm)u0
∥∥∥2

2,2

+ c
∫ T

0

{∥∥∥
{
(Pn−Pm)(un ∙ ∇)un} (∙, t)

∥∥∥2
+ ‖{(Pn−Pm) f } (∙, t)‖2

+
∥∥∥
{
(um ∙ ∇)um− (un ∙ ∇)un} (∙, t)

∥∥∥2
}

dt. (2.25)

Evidently
∥∥∥(Pn−Pm)u0

∥∥∥2
2,2→ 0 and

∫ T

0 ‖{(Pn−Pm) f } (∙, t)‖2dt→ 0 asn,m→∞. Above we

proved that
∫ T

0 ‖{(u
nj ∙ ∇)unj − (uni ∙ ∇)uni } (∙, t)‖2dt→ 0 asi, j→∞. Further note that

∫ T

0

∥∥∥
{
(Pn−Pm)(un ∙ ∇)un} (∙, t)

∥∥∥2
dt (2.26)

≤ 4
∫ T

0

∥∥∥
{
(unj ∙ ∇)unj −ψ

}
(∙, t)

∥∥∥2
dt+4

∫ T

0
‖{(Pn−Pm)ψ} (∙, t)‖2dt,
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whereψ := limnj→∞(unj ∙∇)unj . Therefore the right-hand side of inequality (2.25) forn= nj ,

m= ni tends to zero asi, j →∞. Hence Galerkin’s approximations{unj } converge in the
norm‖∙‖Wr(T) to the function

u := lim
j→∞

unj ∈Wr(T). (2.27)

If in inequalities (2.21) and (2.22) we substitute the expressions (uni
l − u

nj

l )∂xl u
ni
k and

uni
k ∂xk(u

ni
l −u

nj

l ) by (uni
l −ul)∂xl u

ni
k anduk∂xk(u

ni
l −ul), respectively, then similarly to part a)

of the proof we obtain in the spaceL2(QT) the convergence

lim
nj→∞

(unj ∙ ∇)unj = (u ∙ ∇)u= ψ.

Note that linear combinations of the functionsaj , j = 1, . . . with time dependent coef-
ficientsdj(t) are dense inL◦2(QT). Thus, integrating the scalar product of the right-hand
and left-hand sides of equality (2.15) with a functiong ∈ L◦2(QT) and passing to limit at
n= nj →∞ we deduce that function (2.27) satisfies an integral equality

∫ T

0

({
∂u
∂t
− νΔu+μΔ2u+P(u ∙ ∇)u−P f

}

(∙, t), g(∙, t)

)

dt= 0 (2.28)

for everyg ∈ L◦2(QT). Evidently, the function u has all properties of the SRNS solution. By
[1, p. 144], the SRNS solution is unique.

c) Now we define the SRNS in the cylinder Q∞. Fix T1 > 0. We proved that for initial
data (1.7) there exists a unique SRNSu on [0,kT1+ε], ε > 0 andu∈Wr(kT1+ε). It follows
from the definition of theWr(T) norm that the mapping

[0,kT1] 3 t 7→ u(∙, t) ∈W2,2(Ω) (2.29)

is continuous int. Henceu(∙,kT1) ∈H(Ω)∩W2,2(Ω) and by parts a) and b) of the proof there
exists a unique SRNS̃u on the interval [kT1, (k+1)T1+ε] with the initial datau(∙,kT1). On
the other hand, on the interval [0, (k+1)T1+ ε] there exists a unique SRNŜu with initial
data (1.7). Evidently,̃u(∙, t) = û(∙, t) on [kT1, (k+1)T1+ ε]. Thus by induction we continue
the SRNSu in the cylinderQT1 to the SRNS in the cylinderQ∞ = Ω× [0,+∞). Estimates
for the norms‖u‖Wr(t) , t ≥ 0, of this global solutionu give inequality (2.5).

d) Let us prove that the sequence{(un ∙∇)un} converges inL2(QT), and hence obtain the
convergence of Galerkin’s approximationsun in the spaceWr(T) to the SRNS. Note that
the sequence{unj } converges in the norm‖∙‖Wr(T) to the unique SRNSu and

∫ T

0

∥∥∥
{
(unj ∙ ∇)unj − (u ∙ ∇)u

}
(∙, t)

∥∥∥2
dt→ 0 as j→∞.

Now suppose the opposite, i.e. that the sequence{(un,∇)un} does not converge inL2(QT) to
the function (u ∙ ∇)u. Then there existsε0 > 0 and such a subsequence{̃nq} that

∫ T

0

∥∥∥∥
{
(uñq ∙ ∇)uñq − (u ∙ ∇)u

}
(∙, t)

∥∥∥∥
2
dt≥ ε0 for all {̃nq}.

Applying considerations of parts a) and b) we can find a subsequence{̂ni} ⊂ {̃nq} such that
∫ T

0

∥∥∥∥
{
(un̂i ∙ ∇)un̂i − (u ∙ ∇)u

}
(∙, t)

∥∥∥∥
2
dt→ 0 as j→∞.
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The obtained contradiction proves that the sequence{(un ∙ ∇)un} converges inL2(QT) to the
function (u,∇)u. As all the sequence{(un ∙∇)un} converges inL2(QT) to the function (u∙∇)u,
then it follows from (2.25) that‖un−u‖Wr(T)→ 0 asn→∞. �
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