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Universidad Aut́onoma del Estado de Morelos,

Cuernavaca, Mor. 62209, Ḿexico.
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Abstract

We studied numerically the frequency spectrum of photons in a multilayered micro-
sphere coated by a quasiperiodic (Pascal) dielectric stack. It is found that the trans-
mittancy spectrum of such a stack consists of quasiband gaps and narrow resonances
caused by re-reflection of optical waves. When the number (Pascal order) of layers
increases, the band gaps and resonances split, and the structure of the frequency spec-
trum acquires a fractal form. Some parts of the spectrum show the self-similarity in
the different frequency scales.
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1 Introduction

The developments in the technologies of manufacture of nanostructures and microspheres,
it gives the possibility of studying systems of multilayers with all kinds of arrangements,
which can derive in a great quantity in photonic and optoelectronic applications. [1], [2],
[3], [4], [5].

The design of photonic crystals with periodic structures gives the possibility to obtain
complete and absolute photonic band gap for optical radiation. Moreover, the location of
light in disordered systems offers the possibility of a wide range of applications in opto-
electronic applications [6], [7], [8].

In the quasiperiodic systems are observed properties that the periodic and random sys-
tems do not have, In [9] there are studied the electronic conditions of GaAs and A1As
Fibonacci heterostructures grown along the (001) direction. One finds wide bands with dif-
ferent spatial location in ranges of energy. In some works, systems are studied by structures
that follow a Singer’s quasiperiodic succession, in [10], [11] there finds direct evidence of
the location of conditions and of selfsimilarity in a system artificial compounds of piezo-
electric.

It is known that in the systems of microspheres with layersλ/4 the light is caught
by more time therefore, such a system can be regarded as a 3D photonic crystal. In such a
microsphere, only the spectrum of narrow resonances (eigenfrequencies) can be observed as
peaks in the frequency spectrum of radiation. Therefore, it is of great interest to investigate
how these features are modified in a spherical stack with a structure quasiperiodic.

In this paper, we investigate the optical properties of a layered microsphere with a di-
electric stack, in which optical layers are constructed following the Pascal sequence. We
investigate the coefficient of transmissionT as function of the order of Pascal and as func-
tion of the spherical numberm.

This paper is organized as follows. In Section 2, we define the succession of Pascal and
expose the basic ideas to calculate with the method of the transfer matrix, the coefficient
of transmissionT of our system dielectric microsphere coated by a multilayered stack.
In Section 3, we outline the scheme of applying the STM technique for calculating the
frequency transmittancy spectrum of a Pascal stack. In Section 4, we summarize our results.

2 Basic Equations

it is well-known that the Pascal (triangle) numbers are formed as follows. In the zero line is
1. The next line is 1,1, and the second line is formed by adding 0+1= 1, as the first term
of the line, add 1+2= 3 as the second term of the line, the third term of the line is adding
2+1= 3 and the fourth term is sum 1+0= 1. The higher items are constructed in the same
way. The Pascal numbers can also be formed by the binomial coefficients, as follows: In the
zero line is 1. In line one placed the coefficients of (a+b)1 = a+b which are 1,1. In second
line are placed the numerical coefficients of (a+b)2 = a2+2ab+b2, which are 1,2,1, and
so on.

In order to study the optical properties of a spherical Pascal stack, let us first formu-
late the transfer matrix method. We exploit a spherical multilayered geometry and use the
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Figure 1. Geometry of a multilayered microsphere. A stack of quasiperiodic multilayers is
deposited on the surface of a microsphere.

formalism developed in references [12] and [13]. In the case of multilayer microspheres,
Maxwell’s equations are:

O×
−→
H = iωε0ε(ω)

−→
E, O×

−→
E = −iω

−→
B, (2.1)

where
−→
E and

−→
B are electric and magnetic fields, andε(ω) is a dielectric permittivity of

a layer. We use the complex exponential multiplier in the form exp(iωt). These equations
(2.1) in spherical coordinates, are reduced to the Helmholtz equation for a scalar function
called the Debye potentialΠ(ρ,θ,ϕ) [14], [15]. The equation for the radial part Debye-
potentialΠ = Π(r) can be solved in terms of the spherical Hankel functions. It is possible
for each layer to obtain a matrix representation, denoted by a subscript. With the right
conditions between layers (see [12]) is possible to obtain a relationship for the transmission
matrix between the inner and outer layers in the spherical stack. Using the Sommerfeld’s
radiation conditions is easy to obtain the coefficientR andT, Eq.(15) in Ref. [12]. We use
this equation to calculate the reflectance, transmittance for structure of the spherical stack.
In this paper we exploit such a technique for a quasiperiodic (Pascal) spherical stack.

Our 1D quasiperiodic (QP) structures is the spherical stack, where the Pascal sequence
is formed by blocksL which in turn are formed by two blocks of different materials. In
each block that isL = L(B,C), the width of the layerB does not change, while the width of
the layerC changes according to the following sequence of Pascal: 1−2−2−4−2−4−4,
and so on. The numbers 1, 2, 2, 4, etc, are the quantity of the odd numbers in row 0, 1, 2,
3, etc. We say that whenL is L1 layer is formed by materialsB andC of the same width.
L2 is formed by layers where the width of the layerC is twice the width of the layerB. For
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Figure 2. Frequency spectrum of the transmittance coefficient |T | for the cases (a)m= 1,
and (b)m= 6. The microsphere is coated by a Pascal stack withN = 18 (9 two-layers
blocks, Pascal orderR8).
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Figure 3. Frequency spectrum of the transmittence coefficient |T | for (a),(b) m= 1, and
(c),(d) m= 6. Pascal order is in (a),(c)R5, and (b),(d)R6, that corresponds toN = 12 (6
two-layers blocks one more layer ofS iO2) andN = 14 (7 two-layers blocks ) in the stack
accordingly.

example, anL4 implies that the thickness of the layerC of L is 4 times thicker than the layer
B. Thus, we can form a sequence of Pascal as follows:L1L2L2L4L2L4 ∙ ∙ ∙ , see Fig. 1. We
define the order of the sequence of Pascal as follows: It is said that the order of Pascal isR0

if the sequence isL1, the order isR1 if the sequence isL1L2, the order isR2 if the sequence
is L1L2L2. For example,R9 has 9 two-layers blocks, which areL1L2L2L4L2L4L4L8L2.

The study of the transmission coefficients in the spherical stack is too difficult problem
to solve it analytically. Therefore, in what follows we present the numerical investigation
of the frequency spectrum of the transmittance coefficient T.

3 Numerical Results

The following parameters have been used in our calculations: the geometry of the system
is A{L1(B,C)L2(B,C)L2(B,C)L4(B,C)L4(B,C)...}D, where the lettersA,B,C,D indicate the
materials of layers in the spherical stack, respectively. The bottom microsphere has a re-
fraction indexnA = 1.5+ 2 ∙ 10−4i (A, glass, radius 1000nm). The refractive index of the
materialsB is nB = 3.58+9 ∙10−4i (S i, width 122nm), the refractive index of the materi-
alsC is nC = 1.46+10−3i (S iO2, and the thickness of the layer changes according to the
Pascal rule mentioned above) andnD = 1 (D, surrounding space). ForL-block layersB
is constructed asλ/4 layers. To consider the realistic layers case, we have added a small
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140 160 180 200
0

0.2

0.4

0.6

0.8

1

|T|

a)

140 160 180 200
0

0.2

0.4

0.6

0.8

1
b)

140 160 180 200
0

0.2

0.4

0.6

0.8

1

f, (THz)

|T|

c)

140 160 180 200
0

0.2

0.4

0.6

0.8

1

f, (THz)

d)

Figure 4. The same as in Fig.3, except Pascal order is in (a), (c)R7 and (b), (d)R8, that
corresponds toN = 16 (8 two-layers blocks ) andN = 18 (9 two-layers blocks ) in the stack
accordingly.

imaginary part to eachni , that corresponds to a material dissipation. We notice that even
in a material lossless case in such a system (open system), there are losses due to leakage
of the field into the surrounding space [16].

In a number of works, it was found that in a plane optical stack, constructed follow-
ing the Pascal sequence, the transmission coefficientT has a rich structure as a function of
the frequency of light and, in fact, is multifractal [17], [18], [19]. Re-reflections of light
from the layers interfaces in a Fibonacci lattice leading to narrow resonances, separated
by numerous pseudo band gaps, which reflects the multifractal nature of such a structure.
Therefore, we first study how such features are modified in the spherical Fibonacci stack due
to radial dependence of the transfer matrix. It is also of interest to calculate the frequency
spectrum of the transmittance coefficientT for different values of spherical quantum num-
berm.

We summarize our results in Figs.2 - 6. In the Fig.2 we present the transmission spec-
trum for a spherical multilayer sequence. We have used the frequency range [10− 1000]
THz ([30000− 300] nm) and 18-layers stack (9 two-layers blocks, the Pascal orderR8),
spherical quantum numberm= 1 and 7. One can see that form= 1 the frequency spectrum
T (Fig.2(a)) has a nearly perfect mirror symmetry for some center frequencies in the bands
allowed: the mirror symmetry atf = 343 THz and atf = 686 THz. The same symmetry can
be seen for some frequency in the bandgap: atf = 172 THz, f = 514 THz and atf = 858
THz. However, asm increases, the symmetric distribution of the transmittance coefficient is
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Figure 5. The same as in Fig.3, except Fibonacci order is in (a), (c)R9 and (b), (d)R10,
that corresponds toN = 10 (20 two-layers blocks) andN = 11 (22 two-layers blocks ) in the
stack accordingly.

broken, see the above frequencies in Fig.2 (b), where perfect symmetry is no longer either
a broken. A zone of small transmittance with|T | << 1 emerges (corresponding whispering
gallery mode -WGM) in the area of low frequencies∼ 200 THz. In such a regime, the
bandgaps structure is deformed or even destroyed.

The structure of the transmittancy spectrum becomes quite irregular with increase of
the Pascal orderRj . To see more details, we pay further attention to a narrower frequency
range(130−200) THz or (2307−1500) nm. Results are shown in Figs.3 - 5.

Fig.3 shows that a small Pascal orderR6 Fig.3 (a) the structure of the transmittance
coefficient |T | is soft or depends rather smoothly on the light frequencyf .

With further increase of the Pascal orderRj , the structure of|T | becomes more in-
dented.A new maxima (and minima) reshape the initially smooth form of the transmittancy
spectrum to a well expressed fractal structure, see Fig.3 (b), Fig.4 (a), Fig.4 (b), Fig.5 (a)
and Fig.5 (b). All these figures correspond to a spherical numberm= 1, and Pascal order
R6, R7, R8, R9 andR10, respectively. Similar behavior is seen in the spectra of the same
figures, but with spherical numberm= 6. You can see from these spectra the appearance
of new highs and lows, but the spectrum already does not acquire a symmetrical form with
respect to the frequency resonances.

In the case of the Fibonacci sequence [12] it was shown that when the number of two-
layers blocks in the stack (Fibonacci orderFN) increases, even smooth parts of the spectrum
acquire a fractal shape. In this paper, we show that for Pascal number case such selfsimi-
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Figure 6. In the cases (a) show the transmittence coefficient |T | for R5 and m= 1, that
corresponds toN = 12 (6 two-layers blocks ). In cases (b), (c) and (d) show|T | for R12 and
m= 1, that corresponds toN = 22 (12 two-layers blocks.
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larity still exists but it is not so clear expressed. In order to check this, in Fig.6 we compare
the scaled transmittancy spectrumR5 and spectrumR12.

Note that the scale is the same in Fig.6 (a) and Fig.6 (b), but in the Fig.6 (a) the Pascal
order isR5 and in the Fig.6 (b) isR12.

Further we present the extension in the Fig.6 (a) to show the details of the transmittance
spectrum in different frequency scale changes. Notice that in the Fig.6 (c) and (d) the
spectrum is similar to that in the Fig.6 (a) but for different frequencies. This result allows
us to affirm that the self-similarity in the spectra in Fig.6 (a) and (b) still can be observed.

4 Conclusion

We have studied the photonfrequency spectrum in a multilayered microsphere coated by
a quasiperiodic dielectric stack, constructed following quasiperiodic (Pascal) sequence. It
is found that the frequency spectrum of the transmittance coefficient of such a stack con-
sists of quasiband gaps and narrow resonances in the bandgap. When the number of layers
in the stack (Pascal order) increases, the structure of the transmittance spectrum becomes
more complicated and the peaks in the forbidden band become narrower due to re-reflection
of light from total quasiperiodic structure. When spherical quantum numberm increases,
the symmetric distribution of the transmittance coefficient is broken. The self-similarity
in transmission spectra still exists, however for large Pascal number orders it has less ex-
pressed shape than in the Fibonacci number case.
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