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Universidad Aut́onoma del Estado de Morelos

Cuernvaca, CP 62209, Ḿexico
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Abstract
The paper is devoted to the applications of the time-frequency integrals and the two-
dimensional stationary phase method for the problems of waves propagation from
moving sources in acoustic dispersive media. Applying the stationary phase method
we obtain the effective formula for the acoustic fields in the dispersive media generated
by non-uniformly moving modulated source.
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1 Introduction

The paper is devoted to the applications of the time-frequency integrals and the two-dimensional
stationary phase method for the problems of waves propagation from moving sources in
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acoustic dispersive media.
We consider the acoustic fields generated by moving in dispersive media modulated

sources of the form

F(t,ω) = a(t)e−iω0tδ(x−x0(t)), t ∈ R,x = (x1, x2, x3) ∈ R3,

whereω0 is an eigenfrequency of the source,a(t) is a slowly varying amplitude,x0(t) =
(x01(t), x02(t), x03(t)) is a vector-function defining the motion of the source.

Some assumptions with respect to the source allow us to introduce a large dimensionless
parameterλ > 0 which characterizes simultaneously the slowness of the variations of: the
source amplitude, the velocity of the source, and a large distance between sources and
receivers. We obtain a representation of the fields as double oscillating integrals depending
on the parameterλ > 0

Φλ(t,x) =
∫

R×R
F(t,x,ω,τ,λ)eiλS(t,x,ω,τ)dωdτ, (1.1)

whereF is the complex valued function andS is the real-valued function for|ω| large
enough. Generally speaking integral (1.1) is divergent and we consider its regularization
which is called the oscillatory integral. The phaseS in (1.1) is of the form

S(t,x,ω,τ) = κ(ω) |x−x0(τ)| −ω(t−τ)−ω0τ

whereκ(ω) is the wave number in a dispersive medium depending on the frequency.
Applying to the integrals (1.1) the method of the stationary phase we obtain the asymp-

totics of the field for largeλ > 0.
This approach is applied for estimates of acoustic fields generated by non uniformly

moving sources in dispersive fluids and in acoustic waveguides filled by dispersive fluids.
We would like to note that the asymptotic estimates ofone-dimensionalintegrals are a

standard tool of the electrodynamics (see for instance [10], Chap.3,4, [11]) and go back to
A. Sommerfeld [32], and L. Brillouin [8] Ch.1. But in the case of non uniformly moving
sources the representation of the fields in the form of a one-dimensional integral is not
effective. In turn, the representation of the field as a double time-frequency oscillating
integrals with a subsequent asymptotic analysis yields effective formulas for both the fields
and for the Doppler shifts.

The acoustic and electromagnetic radiation from moving sources is a classical prob-
lem of the electrodynamics, and for the isotropicnon dispersive mediathe solution of this
problem is given by theLiènard-Wiechert potential(see for instance [21], Chap. VIII, [16],
Chap. 14 ). But theLiènard-Wiechert potentialis not applicable for dispersive media and
our representation is new and effective tool for the investigation of electromagnetic fields
generated by moving sources with variable velocity.

The paper is organized as follows. In Chapter 2 we give an auxiliary material concern-
ing the oscillatory integrals and multidimensional stationary phase method. In Chapter 3
we consider the acoustic wave propagation from moving source in dispersive fluids and
layered acoustic waveguides filled with dispersive fluids. We obtain the effective asymp-
totic formulas for the acoustic fields, Doppler effects, and retarded time. Note some works
devoted to the acoustic wave propagation from moving source [1], [3], [4], [18], [19], [20],
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[24], [26], [27], [28], [30]. The representation of the acoustic fields as a sum of integrals of
type (1.1) with its asymptotic estimates first was used in [19]. This method was developed
in [26], [27], [28]. In this paper we show that the mentioned approach works in the case
of moving sources in dispersive homogeneous fluids and stratified waveguides filled with
dispersive fluids.

2 Auxiliary Material: Stationary Phase Method for the
Oscillatory Integrals

10. We consider the integrals of the form

∫

Rn
f (x)eiS(x)dx, (2.1)

whereRn 3 x→ f (x) ∈Cm is called the amplitude and the scalar functionS is called the
phase. We suppose thatf andS are infinitely differentiable ( in fact it is necessary a finite
number of the derivatives) and satisfy the following conditions. The amplitudef satisfies
following conditions: for every multiindexα there existsCα > 0 such that

∣∣∣∂αf (x)
∣∣∣ ≤Cα 〈x〉k , 〈x〉 = (1+ |x|2)

1
2 , (2.2)

for somek ∈ R independent ofα. The phaseS is such that:
(i) S(x) is real for|x| is large enough,
(ii) for every |α| ≥ 2 there existsCα > 0 such that|∂αS(x)| ≤Cα,

(iii) there existsC > 0 andρ > 0 such that

|∇S(x)| ≥C |x|ρ

for |x| large enough.
Note that ifk≥−n the integral (2.1) does not exist as absolutely convergent and we need

a regularization of integral (2.1). Letχ ∈C∞0 (Rn) andχ(x) = 1 in a small neighborhood of
the origin. We setχR(x) = χ(x/R).

Proposition 2.1. Let estimate(2.2)and conditions (i)-(iii) hold. Then there exists a limit

F = lim
R→∞

∫

Rn
χR(x)f (x)eiS(x)dx (2.3)

independent of the choice of the functionχ.

Proof. We introduce the differential operatorL

Lu(x) =
(
1+ |∇S(x)|2

)−1
(I − i∇S(x) ∙ ∇)u(x),x ∈Rn. (2.4)

One can see that
LeiS(x,y) = eiS(x,y). (2.5)
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Let Lτ be the transpose toL differential operator. Then taking into the account (2.5) and by
integration by parts we obtain

FR =

∫

Rn
χR(x)f (x)eiS(x)dx =

∫

Rn

(
Lτ

) j (χR(x)f (x))eiS(x)dx. (2.6)

Conditions (i)-(iii) yield that

∣∣∣
(
Lτ

) j (χR(x)f (x))
∣∣∣ ≤Cj 〈x〉k−ρ j (2.7)

with the constantCj > 0 independent ofR> 0. Let j > k+n
ρ . Then the integral in the right

side part of (2.6) is absolutely convergent, uniformly with respect toR> 0, and we can go
to the limit for R→∞ in (2.6). Hence the limit in (2.3) exists, independent ofχ, and

F= lim
R→∞

FR =

∫

Rn

((
L
τ) j

f (x)
)
eiS(x)dx. (2.8)

where j > k+n
ρ . �

The integrals defined by formula (2.8) are calledoscillatory.
20. We consider an integral depending on the parameterλ > 0 of the form

Iλ =
∫

Rn
f (x)eiλS(x)dx,

wheref ,S satisfy condition (2.2), (i)-(III), andS is a real-valued function.
We say thatx0 is a non-degenerate stationary point of the phaseS if

∇S(x0) = 0,

and
detS′′(x0) , 0,

whereS′′(x) =
(
∂2S(x)
∂xi∂xj

)n

i, j=1
is the Hess matrix of the phaseS.

Proposition 2.2. (see for instance [12], [7]) Let there exist a finite set{x1, ...,xN} of non-
degenerate stationary points of the phase S. Then

Iλ =
N∑

j=1

F j(λ), (2.9)

where

F j(λ) =

(
2π
λ

) n
2 exp(iλS(x j)+ iπ

4 sgnS′′(x j))
∣∣∣detS′′(x j)

∣∣∣1/2
f (x j)(1+O(

1
λ

)) (2.10)

and sgnS′′(x j) is the difference between the number of positive and negative eigenvalue of
the matrix S′′(x j).
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3 Acoustic Field of Moving Sources in Dispersive Acoustic
Fluids

3.1 Acoustic equation in a dispersive media

Let x = (x1, x2, x3) be the spatial coordinates,t is the time coordinate,c= c(x),x ∈ R3 be the
sound speed in a fluid,ρ(x) is the density of the fluid,u(x,t) is the acoustic pressure. The
pressureu satisfies the acoustic equation

1
c2(x)

∂2u(t,x)
∂t2

−ρ(x)∇∙ρ−1(x)∇u(t,x) = f (t,x), (3.1)

(t,x) ∈ R4

where f is a source of the acoustic vibrations.
In the case of the dispersive fluidc = c(ω,x) we have to change the equation (3.1) by

the pseudodifferential equation

c−2(Dt,x)
∂2u(t,x)
∂t2

−ρ(x)∇∙ρ−1(x)∇u(t,x) = f (t,x),(t,x) ∈ R4, (3.2)

where

c−2(Dt,x)ϕ(t,x) =
1
2π

∫

R
c−2(ω,x)ϕ̂(ω,x)e−iωtdω,

and

ϕ̂(ω,x) =
∫

R
ϕ(t,x)eiωtdt

is the Fourier transform understood in the sense of distributions. The principle of causality
demands that the functionc−2(ω,x) is a boundary value with respect to theω of an analytic
bounded in the upper complex half-plane function (see for instance [29], [31]).

3.2 Representation of fields of moving sources of the form the time-frequency
integrals

We consider now the case the homogeneous dispersive media, that is the sound velocity is
c(ω) and the densityρ > 0 are independent ofx. Then equation (3.2) after Fourier transform
with respect to the timet accepts the form of the Helmholtz equation

(
Δ+k2(ω)

)
û(ω,x) = − f (̂ω,x), (3.3)

k(ω) =
ω

c(ω)
,ω ∈ R,x ∈R3,

whereΔ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3

is the Laplace operator.

The typical example of the dispersive fluid is the bubbly water (see for instance [25],
Chapter 8) for which

k(ω) =

√
ω2+ω2

b

c0
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wherec0 is a constant phase speed in nonperturbed water,ωb is a bubble frequency, depend-
ing on the concentrations of the bubbles in the unite of the volume, radius of the bubbles,
etc. (see [25], p. 317-320). We also note the papers [29], [31] containing numerous exam-
ples of dispersive acoustic media.

In what follows we consider the lossless fluid, that is we suppose thatk(ω) > 0 for all
ω ∈ R. To find the unique solution of the equation (3.3) we apply the limiting absorption
principle. Let

g(ω,x) = −
eik(ω)|x|

4π |x|

be the Green function of the Helmholtz operator (3.3) satisfying the limiting absorption
principle. Then the solution of the equation (3.2) forc(ω,x) = c(ω),ρ(x) = ρ is given as

u(t,x) =
1

8π2

∫

R2
e−iω(t−τ)dωdτ

∫

R3

eik(ω)|x−y|

|x−y|
f (τ,y)dy. (3.4)

For a moving source given as

f (t,x) =A(t)δ(x−x0(t)), (3.5)

formula (3.4) accepts the form

u(t,x) =
1

8π2

∫

R×R

A(τ)eiS(t,x,ω,τ)

|x−x0(τ)|
dωdτ, (3.6)

where
S(t,x,ω,τ) = k(ω) |x−x0(τ)| −ω(t−τ). (3.7)

We denote by

vg(ω) =
1

k′(ω)

the group velocity in the dispersive fluid. In what follows we suppose thatvg(ω) > 0 for all
ω ∈ R.

Let there existR> 0 large enough such that

inf
|τ|+|ω|>R

∣∣∣∣∣∣
|v0(τ)|
vg(ω)

−1

∣∣∣∣∣∣ > 0,

sup
|τ|+|ω|>R

∣∣∣∣∣
|v0(τ)|
c(ω)

−1
∣∣∣∣∣ > 0.

wherev0(τ) = ẋ0(τ) is the velocity of the source. Then there existsC > 0 such that
∣∣∣∇(ω,τ)S(t,x,ω,τ)

∣∣∣ ≥C(|ω|+ |τ|) (3.8)

for |τ|+ |ω| > R. Condition (3.8) provides the existence of the double integral in (3.6) as
oscillatory.

In what follows we suppose the moving source is modulated, that is

A(t) = a(t)e−iω0t,a(t) = ã(t/λ) (3.9)
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with the eigenfrequency (the carrier frequency)ω0 > 0 and slowly varying amplitudea(t)
whereã(t) is a smooth function bounded with all derivatives,λ > 0 is a large dimensionless
parameter characterizing the slowness of the variations of the amplitudea. The law of the
motion of the source is

x0(t) = λX0(t/λ), (3.10)

whereλ > 0 is the same large parameter,X0 is a smooth vector-function with all bounded
derivatives. Formula (3.10) implies that the velocity of the source is

v0(t) = Ẋ0(t/λ), (3.11)

and the acceleration is

a0(t) =
1
λ

Ẍ0(t/λ). (3.12)

That is the source moves with anarbitrary bounded velocity but with asmall acceleration.
We make in the integral (3.6) the scale change of the variables:

x=λX,t = λT, τ = λι,

X∈R3,T, ι ∈ R,λ > 0.

Then we obtain

ũλ(T,X) = u(λT,λX) =
1

8π2

∫

R×R

ã(ι)eiλS̃(T,X,ω,ι)

|X −X0(τ)|
dωdι (3.13)

where
S̃(T,X,ω, ι) = k(ω) |X −X0(τ)| −ω(T − ι)−ω0ι. (3.14)

3.3 Asymptotic analysis of the acoustic field

We apply the stationary phase method for the asymptotic analysis of ˜uλ(T,X) for λ→ +∞
and fixed (T,X),T > 0. The stationary points of the phase (3.14) are solutions of the system
of the equations with respect to (ω,ι)

S̃′ω(T,X,ω, ι) =
|X −X0(ι)|

vg(ω)
− (T − ι) = 0, (3.15)

S̃′ι (T,X,ω, ι) = −k(ω)V0(X,ι)+ (ω−ω0) = 0,

where

V0(X,ι) =
X −X0(ι)
|X −X0(ι)|

∙V0(ι),

is the value of the projection ofV0(ι) = Ẋ0(ι) on the vectorX −X0(ι).
The Hess matrix of the phasẽS is defined as

S̃′′(T,X,ω, ι) =




k′′(ω) |X −X0(ι)| 1− V0(X,ι)
vg(ω)

1− V0(X,ι)
vg(ω) −k(ω)∂V0(X,τ)

∂τ



.
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Letωs= ωs(T,X), ιs= ιs(T,X) be a nondegenerate stationary point of the phaseS̃. Then the
contribution of (ωs, ιs) in the asymptotics of ˜uλ(T,X) for fix (T,X) is given by the formula

ũλ(T,X) (3.16)

=
1

4πλ

expi
[
S̃(T,X,ωs, ιs)+ π

4 sgnS̃′′(T,X,ωs, ιs)
]

∣∣∣detS̃′′(T,X,ωs, ιs)
∣∣∣1/2 |X −X0(ιs)|

(1+O(
1
λ

)).

Coming back to the ”old” variablest,x, andτ we obtain

u(t,x) ∼
1
4π

expi
[
S(t,x,ωs, τs)+ π

4 sgnS′′(t,x,ωs, τs)
]

|detS′′(t,x,ωs, τs)|1/2 |x−x0(τs)|
, (3.17)

where
S(t,x,ω,τ) = k(ω) |x−x0(τ)| −ω(t−τ)−ω0τ,

and (ωs, τs) = (ωs(t,x),τs(t,x)) are a solution of the system

|x−x0(τ)|
vg(ω)

− (t−τ) = 0, (3.18)

−k(ω)v0(τ,x)+ (ω−ω0) = 0,

where

v0(τ,x) = v0(τ) ∙
x−x0(τ)
|x−x0(τ)|

is the value of the projection of the velocity vectorv0(τ) on the vectorx−x0(τ),

S′′(t,x,ω,τ) =




k′′(ω) |x−x0(τ)| 1− v0(t,x)
vg(ω)

1− v0(τ,x)
vg(ω) −k(ω)∂v0(τ,x)

∂τ



. (3.19)

The equivalence in formula (3.17) means that the right-hand side in (3.17) is the main term
of the asymptotics of the acoustic field for

inf
τ
|x−x0(τ)|

ω̃

c0
>> 1,

t
t̃
>> 1,

wheret̃ > 0 be a time scale, ˜ω > 0 be a frequency scale.
Note that if the following conditions

sup
(ω,τ)

(
ω̃

t̃

∣∣∣k′′(ω)
∣∣∣ |x−x0(τ)|+

∣∣∣∣∣∣
v0(τ,x)
vg(ω)

∣∣∣∣∣∣

)

< 1, (3.20)

sup
(ω,τ)

(
t̃
ω̃

k(ω)
∣∣∣∣∣
∂v0(τ,x)
∂τ

∣∣∣∣∣+

∣∣∣∣∣∣
v0(τ,x)
vg(ω)

∣∣∣∣∣∣

)

< 1

hold, then system (3.18) has the unique solution (ωs, τs) which can be find by the method
of successive approximations

(ωs, τs) = lim
n→∞

(ωn, τn),

(ω0, τ0) = (ω0, t),




τn+1 = t− |x−x0(τn)|
vg(ωn) ,

ωn+1 = ω0−k(ωn)v0(τn,x).
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Conditions (3.20) provide that the stationary point (ωs, τs) is unique, non degenerate, and

sgnS′′(t,x,ωs, τs) = 0.

Example 3.1. We apply our approach to the case of non dispersive fluids, that isc(ω) = c>
0. Then the first equation in (3.18) independent ofω, and under the subsonic motion

sup
t

|v(t)|
c

< 1

(3.18) has the unique solutionτs. We obtain from the second equation in (3.18)

ωs =
ω0

1− v0(τs,x)
c

.

It is easy to check that

detS′′(t,x,ωs, τs) =

(

1−
v0(τs,x)

c

)2

andsgnS′′(t,x,ωs, τs) = 0. Hence formula (3.17) implies that

u(t,x) ∼
1
4π

expiS(t,x,ωs, τs)(
1− v0(τs,x)

c

)
|x−x0(τs)|

. (3.21)

Note that the right-hand side in (3.21) coincides with the acousticLiènard-Wiechertpoten-
tial (see for instance [1]). Hence in the case of a homogeneous no-dispersive fluid asymp-
totic formula (3.21) is exact.

3.4 Doppler effects

Note that for fix pointx formulas (3.17) can be written of the form

u(t,x) ∼Φ(t)eiF (t) (3.22)

whereΦ is a bounded function,F is a real-valued function such that limt→∞ F(t)=∞.Hence
according to the signal processing theory (see for instance [9])F(t) is a phase of the wave
processΦ(t)eiF (t), and the instantaneous frequencyωin(t) of the wave processΦ(t)eiF (t) is
defined as

ωin(t) = −F′j(t).

In our case

F(t) = S(t,x,ωs(t,x),τs(t,x)) (3.23)

= k(ωs(t,x)) |x−x0(τs(t,x))| −ωs(t,x)(t−τs(t,x))−ω0τs(t,x),

where(ωs(t,x),τs(t,x)) is the stationary point of the phaseS.
By the differentiation ofF as a composed function we obtain

−F′(t) = −
∂S(t,x,ωs(t,x),τs(t,x))

∂t
−
∂S(t,x,ωs(t,x),τs(t,x))

∂ω

∂ωs(t,x)
∂t

−
∂S(t,x,ωs(t,x),τs(t,x))

∂τ

∂τs(t,x)
∂t

.
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Taking into account that(ωs(t,x),τs(t,x)) is a stationary point ofS, we obtain that

ωin(t) = ωs(t,x).

It implies that the instantaneous frequencyωin(t) of the wave processesu(t,x) for fix x
coincides withωs(t,x). Hence the instantaneous Doppler effect is

Δin(t,x) = ωs(t,x)−ω0 = k(ωs(t,x))v(x,τs(t,x)). (3.24)

Formula (3.24) implies ifv(x,τs(t,x)) > 0 (the source moving to the receiver)ωs(t) > ω0,
and ifv(x,τs(t,x)) < 0 (the source moving from the receiver)ωs(t,x) < ω0.

We note also thatτs(t,x) is the time of the radiation of the signal arrived to the receiver
x at the momentt. Since the group velocityvg(ω) > 0 we obtain thatτs(t,x) < t, that is the
causality principle is fulfilled.

The Doppler effect for the time (the retarded time) is defined as

Δ̃in(t,x) = t−τs(t,x) =
|x−x0(τs(t,x))|

vg(ωs(t,x))
. (3.25)

3.5 Acoustic wave propagation from the moving sources in stratified disper-
sive waveguides

We consider the wave propagation from moving sources in the dispersive acoustic waveg-
uides simulating the wave propagation in the ocean. Let

x = (x′,z) ∈ R3,x′ = (x1, x2) ∈ R2

wherex′ is the vector of the horizontal coordinate,z is the vertical coordinate.
We suppose that the sound speedc= c(z,ω) depends on the depth and the frequencyω

c(z,ω) =

{
c0(z,ω),0< z< H

c1(ω),z≥ H,
,

and the density of the fluid depends ofz

ρ(z) =

{
ρ0(z),0< z< H,

ρ1,z≥ H.
.

We consider the modified acoustic equation for dispersive media in the half-spaceR3
+ ={

x ∈R3 : z> 0
}

(

c−2(z,Dt)
∂2

∂t2
−Δx′ −ρ(z)

∂

∂z
ρ−1(z)

∂

∂z

)

u(x, t) = f (x, t), (3.26)

x=(x′,z) ∈ R3, t ∈ R

under conditions
u(x′,0, t) = 0, (3.27)

[
u(x′,z, t)

]
z=H = 0,

[
1
ρ(z)

∂u(x′,z, t)
∂z

]

z=H
= 0, (3.28)
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where [
ψ(x′,z, t)

]
z=H = ψ(x′,H+0, t)−ψ(x′,H−0, t)

is the jump ofψ(x′,z, t) on the surfacez= H. Condition (3.27) means that the acoustic pres-
sure equals zero on the surfacez= 0 and the acoustic pressure and the normal component of
the velocity of particles of the fluid are continuous on the interfacez= H. In what follows
we suppose that

c(z,ω) < c1(ω) (3.29)

for all (z,ω).
Let

f (x,t) = A(t)δ(x−x0(t)),

whereA(t) = a(t)e−iω0t,a(t) = ã(t/λ) as above,

x0(t) = (y0(t),z0(t)),

The law of the motion of the source is of the form

y0(t) = λY0(t/λ),z0(t) = Z0(t/λ) (3.30)

whereλ > 0 is the same large parameter,Y0,Z0 are smooth functions with bounded deriva-
tives. Formulas (3.30) mean that the source moves with an arbitrary horizontal velocity and
a small vertical velocity.

Letgω be the Green function satisfying the limiting absorption principle of the Helmholtz
equation corresponding (3.26)

(

Δy+ρ(z)
∂

∂z
ρ−1(z)

∂

∂z
+k2(z,ω)

)

gω(y,z,z0) = −δ(y,z−z0), (3.31)

y ∈ R2,z> 0,z0 ∈ (0,H)

with k(z,ω) = ω
c(z,ω) , where

gω(y,0,z0) = 0,y ∈R2, (3.32)

[
gω(y,z,z0)

]
z=H = 0,

[
1
ρ(z)

∂gω(y,z,z0)
∂z

]

z=H
= 0,y ∈R2. (3.33)

We correspond to (3.31)-(3.33) the self-adjoint Sturm–Liouville spectral problem

−ρ(z)
∂

∂z
ρ−1(z)

∂ψω(z)
∂z

− (k2(z,ω)−k2
1(ω))ψω(z) (3.34)

= μ2(ω)ψω(z),z∈ (0,+∞),

ψω(0)= 0,
[
ψω(z)

]
z=H = 0,

[
1
ρ(z)

∂ψω(z)
∂z

]

z=H
= 0,

wherek1(ω) = ω
c1
, in the Hilbert spaceL2

ρ−1(R+) with the norm

‖u‖L2
ρ−1(R+) =

(∫ ∞

0
ρ−1(z) |u(z)|2dz

)1/2

.
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A finite discrete spectrum of the problem (3.34) is located on the interval (−m(ω),0) where

m(ω) = sup
z∈(0,H)

(k2(z,ω)−k2
1(ω))

and the continuous spectrum is [0,+∞).

Let
{
ϕ j(z,ω)

}N(ω)

j=1
be the orthonormal inL2

ρ−1(R+) system of the eigenfunctions of the

problem (3.34) corresponding to the eigenvalues
{
β2

j (ω)
}∞

j=1
, andψ(z,α,ω) be the orthonor-

mal system of generalized eigenfunctions of the problem (3.34), depending on the parame-
terα ∈ (0,+∞).

Applying the spectral decomposition ofδ(z−z0) on eigenfunction and generalized eigen-
functions of the problem (3.34) (see for instance [2]) we obtain

gω(y,z,z0) =
i

4ρ(z0)

N(ω)∑

j=1

H(1)
0 (γ j(ω) |y|)ϕ j(z,ω)ϕ j(z0,ω)

+
i

4ρ(z0)

∫ ∞

0
H(1)

0 (
√

k2
1(ω)−α2 |y|)ψ(z,α,ω)ψ(z0,α,ω)dα,

whereH(1)
0 (w) is Hankel function of the first kind and zero order,

γ j(ω) =
√

k2
1(ω)+β2

j (ω)

It is well-known (see for instance [5], [28]) that the part of the Green functiongω corre-
sponding to the continuous spectrum of the Sturm-Liouville spectral problem (3.34) does
not contribute in the main term of the asymptotics ofgω. Changing the Hankel function
H(1)

0 (r) by its main term of asymptotics forr → +∞ we obtain

gω(y,z,z0) ∼
N(ω)∑

j=1

eiπ/4ϕ j(ω,z)ϕ j(ω,z0)

ρ(z0)(8πγ j (ω)|y|)1/2
exp(iγ j (ω) |y| ) (3.35)

k1(ω) |y| → ∞.

Applying the formula (3.35), the representation of the acoustic pressure as a double
oscillatory integral, and stationary phase method we obtain the following formula (see for
instance [28])

u(y,z, t) =
N(ω0)∑

j=1

uj(y,z,t),

where

uj(y,z,t) (3.36)

∼

√
π
2eiπ/4

ρ(z0)

a(τ j)ϕ j(ω j ,z)ϕ j(ω j ,z0(τ j))e
iλSj (y,t,ω j ,τ j )+i π4 sgnS̃′′j (y,t,ω j ,τ j )

(γ j

(
ω j

)
|y−y0(τ j)|

∣∣∣∣detS′′j (y,t,ω j , τ j)
∣∣∣∣)1/2

,
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Sj(y,t,ω,τ) = γ j(ω) |y−y0(τ)| −ω(t−τ)−ω0τ

andω j = ω j(y, t), τ j = τ j(y, t) are the stationary points of the phase, that is the solutions of
the system

|y−y0(τ)|
vjg(ω)

− (t−τ) = 0, (3.37)

−γ j(ω)v(y,τ)+ (ω−ω0) = 0,

v(y,τ) is the value of the projection of the vectorẏ(τ) on the vectory−y0(τ),

vjg(ω) =
1

γ′j(ω)

is the group velocity of themodewith number j. Note that theω j(y, t) is the instantaneous
frequency ofj−mode andτ j(y, t) is the time of the excitation of thej−mode arriving at the
point x = (y,z) at the momentt > 0. We suppose thatvjg(ω) > 0 for all ω. This condition
provides the fulfillment of the causality principle that isτ j(y, t) < t.

Note that the Doppler shiftΔω j
in(y, t) and the retarded timeΔt j

in(y, t) of the mode with
numberj are given by the formulas

Δω
j
in = ω j(y, t)−ω0 = γ j(ω j(y, t))v(y,τ j(y, t)),

Δt j
in(y, t) = t−τ j(y, t) =

∣∣∣y−y0(τ j(y, t))
∣∣∣

vjg(ω j(y, t))
.

4 Conclusion

The paper is developed the time-frequency integrals and the two-dimensional stationary
phase method for the problems of waves propagation from moving sources in acoustic dis-
persive media. Applying the stationary phase method we obtained the effective formula for
the acoustic waves in the dispersive acoustic waveguides simulated the ocean generated by
non-uniformly moving modulated source. The explicit formulas for the Doppler effect and
the retarded time also was discussed.
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