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Abstract

We establish a long time decay for linearized dynamics of nonlinear Hamilton system
which describes interaction of a charged particle with the Klein-Gordon field. The
main contribution is deriving the decay for the frozen linearized system for initial data
which are symplectic orthogonal to the root space of the linefderéntial operator
involved.
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1 Introduction. Charged Particle in Klein-Gordon Field

Method of symplectic projection appears to be fruitful in establishing soliton-type asymp-
totics for a variety of Hamilton systems, [1]-[10]. In the present paper we consider the
system of a charged particle interacting with the Klein-Gordon field which reads [8],
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l}/(X, t) = 7T(X, t)’ 7.Z'(X, t) = Al/’(x’ t) - mzlr[’(x’ t) _p(X_ q(t))9 Xe R39
(1.1)
o) = pty/ I+ P20, p(t) = f W (x.1) Vo(x— q()dx

wherem> 0. This is a Hamilton system with the Hamilton functional

_1 2 2 2
H(.ma.p) = f (IO + IV (2 + MR () )+ f W(p(x-a)dx+ \1+p2. (1.2)
The system (1.1) is translation-invariant and admits soliton solutions

Yau(t) = (v(x-vt—a),my(x-vt-a),vt+a,p,),  py=V/V1-V? (1.3)
for all a,ve R3 with |v| < 1. The stateS,y := Yav(0) form the solitary manifold
S:={Sav:aveR3 |V <1} (1.4)

Let p be a real valued function of the Sobolev clas§R?®), compactly supported, and
spherically symmetric, i.e.

p,Vp,VVp € L2(RS), p()=0forX=R,  p()=pi(X).  (1.5)

We require that all “modes” of the wave field are coupled to the particle, this is formalized
by the Wiener condition

p(K) = (2n)7%/? f ds(x)dx= 0 for all ke RS, (1.6)

2 Symplectic Projection, Linearization, and Decay for the
Linearized Dynamics

We sketch the derivation of the linearized dynamics of the system (1.1) and make a state-
ment on its time decay. For details see [8].

2.1 Hamilton form and symplectic structure

The system (1.1) reads as the Hamilton system

0

-1

Y =JDH(Y), J:= .Y =(,7,q,p) €&, (2.1)

1 0 O
0 0 O
0O 0 0 1
0O 0 -10
where DH is the Féchet derivative of the Hamilton functional (1.2), afids the phase
space of the system consisting of finite energy stédtegy, z,q, p), see [8, Definition 2.1].
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Let us identify the tangent space&pat every point, witt6. Consider the symplectic form
Q defined orS by Q = fdw(x) Adr(X)dx+dgAadp, i.e.
Q(Y1,Y2) =(Y1,JY2), Y1,Y2 €&, (2.2)

where
(Y1,Y2) :=(Y1,¥2) +(m1,m2) + Q102 + P1P2

and{y, o) = fwl(x)wz(x)dx, etc. Itis clear that the forf2 is non-degenerate, i.e.

Q(Y1,Y2) =0 for every Y,e&E = Y1 =0.

Definition 2.1. i) Y1 1 Y2 means thaY; € &, Y2 € &, andY; is symplectic orthogonal to,
i.e. Q(Y1,Y2) =0.

ii) A projection operatoP : & — & is called symplectic orthogonal ¥f; 1 Y» for Y1 €
KerP andYs; € 3P.

2.2 Linearization on the solitary manifold
Let us consider a solution to the system (1.1), and split it as the sum
Y(t) = S(o (b)) + Z(t), (2.3)

where o (t) = (b(t),v(t)) is an arbitrary smooth function dfe R. In detail, denotey =
(v, m,q,p) andZ = (V,I1,Q, P). Then (2.3) means that

w(x.1) Y (X—B(1)) + ¥ (x=Db(t).1), q(t) b(t) + Q(t) 2.4)
(X 1) my(n (X = b(t)) + II(x = b(t). 1), p(t) Py + P(t) '

Let us substitute (2.4) to (1.1), and linearize the equatios We obtain
Z(t) = A)Z(t) + T(t) + N(t), te R. (2.5)

Here the operatof\(t) = A, depends on two parametevss v(t), andw = b(t) and can be
written in the form

b d w-V 1 0 0 b d
Im| | A-m wV Vp- 0 || O
P Voy 0 (Vyy,'Vp) O P
whereBy = v(E —v®V). FurthermoreT (t) = Tyw is given by
wW-V)-Vr,—Vv-V
Tuw = w-) V’iVW viv | (2.7)
_\'/.vav

wherev = v(t), w = w(t), o = o (t) = (b(t), v(t)), Z = Z(t), andN(t) is a second order term
with respect tZ.

Note that the formulas (2.7), (3.21) imply thEft) € 7s((t)S, the tangent space to the
manifoldS at the pointr-(t), t e R. This fact suggests the unstable character of the nonlinear
dynamics along the solitary manifold.
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2.3 Symplectic decomposition of dynamics and decay for transversal
component

Let us split the dynamics in two components: along the manifldnd in transversal
directions. The equation (2.5) is obtained without any assumptiom(dnin (2.3). We
choose

S(o(t)) :=TIY(t). (2.8)

Let us fix somes > 3/2. & it the weighted version of the phase space introduced in [8,
Definition 2.1],]| - I|g is the norm inSg.

Proposition 2.2. [8, Proposition 6.4]Let (2.8) hold and let initial data be giciently close
to S in the norm||-||g. Then

C
ZM-p < ——=5, t=0. 2.9
12015 < 2 (2.9)
Let us comment on two main fiiculties in proving (2.9). First, the linear part of the
equation (2.5) is non-autonomous, hence we cannot apply directly known methods of scat-
tering theory. So we reduce the problem to the analysis dirtizenlinear equation,

X(t) = AX(t), teR, (2.10)

whereA; is the operatoi, ,, defined by (2.6) withvy = v(t1) for a fixedt;. Then we
estimate the error by the method of majorants.

Second, even for the frozen equation (2.10), the decay of type (2.9) for all solutions
does not hold without the orthogonality condition of type (2.8). Namely, the equation (2.10)
admits thesecular solutionsvhich arise by dterentiation of the soliton (1.3) in the param-
etersa andv; in the moving coordinatg = x—vit. Hence, we have to take into account the
orthogonality condition (2.8) in order to avoid the secular solutions. For this purpose we
will apply this symplectic orthogonal projection which kills the “runaway solutions”.

Definition 2.3. i) For ve R3 with |v| < 1 denote by, the symplectic orthogonal projection
of & onto the tangent spaggs»S, andP, = | —Il,.

ii) Denote byZ, = P,& the space symplectic orthogonalTg S with o = (b, V) (for an
arbitraryb € R).

Now we have the symplectic orthogonal decomposition
E=Ts»S+Zv, o=(bv), (2.11)
and the symplectic orthogonality (2.8) can be written in the following equivalent forms,
My Z(t) =0, PypZ(t) = Z(t). (2.12)

Note that the tangent spa@g S is invariant under the operaté;,, hence the spacg,
is also invariantA,,Z € Zy on a dense domain & e Z,.
Our main result is the following proposition which will be one of the main ingredients
for proving (2.9). Let us consider the Cauchy problem for the equation (2.10)AwtiA,
for a fixedv e V and fix a8 > 3/2.
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Proposition 2.4. Let (1.5) and (1.6) holdy| <V < 1, and X% € &. Then
i) The equation (2.10), with A= A= A, admits the unique solutiort®y := X(t) € C(R, &)
with the initial condition X0) = Xo.
ii) For Xo € ZyN &g, the solution Xt) has the following decay,
C(®)

12 %ollp < Tree ol teR (2.13)

3 Proof of Proposition 2.4

Let us discuss our strategy of the proof. We apply the Fourier-Laplace transform
X(2) = f e'X(t)dt, Rel>0 (3.1)
0

to (2.10) and obtain
AX() = AX(D) +Xo,  Rea>0. (3.2)

Then the solutiorX(t) is given by
X() =-(A-2)"1Xy, Rea>0 (3.3)

if the resolvenR(1) = (A— 1)~ exists for Rel > 0.
The analyticity ofX(1) and Paley-Wiener arguments (see [11]) should provide the ex-
istence of &_g - valued distributiorX(t), t € R, with a support in [0co). Formally,

xm:% fR e X(iw+0)dw,  teR. (3.4)

However, to check the continuity f(t) for t > 0, we need additionally a bound f&(iw +0)

at large|w|. Finally, for thg time decay oX(t), we need an additional information on the
simoothness and decay Bfiw + 0). More precisely, we should prove that the function
X(iw+0)

i) is smooth outsidey = 0 andw = +u, whereu = u(v) > 0,

i) decays in a certain senselag — .

iii) admits the Puiseux expansionat= +pu.

Iv) is analytic atw = 0 if Xp € Zy = Py& andXg € Eg.

Then the decay (2.9) would follow from the Fourier-Laplace representation (3.4).

_ We Will check with detail~the properties of type i):iv) only for the last two components
Q1) and P(1) of the vectorX(2) = (¥(1),11(1), Q(1), P(1)). The properties provide the
decay (2.9) for the vector compone®@é) andP(t) of the solutionX(t).

However, we will not prove the properties of type i)-iv) for the field compon#tits 1)
andTI(x,1). We prove the decay (2.9) for the field components directly from the time-
dependent field equations of the system (2.10), using the decay of the comt)eantd
a version of strong Huygens principle for the Klein-Gordon equation, [8].
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3.1 Constructing the resolvent

To justify the representation (3.3), we construct trle resolyent asa bognded opeé&ator in
Rea > 0. We will write (¥(y),I1(y), Q, P) instead of ¥(y, 2),T1(y, 1), Q(1), P(1)) to simplify
the notations. Then (3.2) reads

¥ Yo ¥ IM+v V¥
I1 I I AY —mP¥ +V-VII+ Q- Vp
A-21 =— , whereA =
(A=1) Q Qo Q B,P
P Po P —(V¥,p) +(Vin, Q- Vp)

It is the system of equations
TI(y) + V- V¥(y) - 2¥(y) = —¥o(y)

AP(y) — mPP(y) + V- VII(y) + Q- Vp(y) — ATI(y) = —ITo(Y)
yeR3 (3.5)
B/P-1Q=-Qo

—~(V(y).p(¥)) +(Vyu(y), Q- Vpo(y)) — AP = —Po
Step i)Let us consider the first two equations. In Fourier space they become

T1(K) — ivk¥P(K) — 29(K)

~Po(k)
keR3. (3.6)

(=k2 = M)W (K) — (ivk + )TI(K) —TIo(K) +iQkp(K)

This implies
= %((ikv+ D)W + o — ikQp), (3.7)
1= %(—(k2 +mP)Po + (ikv+ )ITg — i(ikv+ )KQP), (3.8)
where
D = D(1) = k? + m? + (ikv + 2)2. (3.9)

From now on we use the system of coordinates-gpace in whichv = (|v|,0,0), hence
vk = |v|k;. Substitute (3.7) to the 4-th equation of (3.5) and obtain

f %((ikv+ﬂ)‘i’o+Ho—ikQﬁ)ﬁdk+ f ki kQodk— AP = P,

Since 509
Ik = —— PN

k) = k2 + 2 — (kv)2’

see [8], we come to

(k) = (k) (), (3.10)

(K —H(2)Q+ AP = Py+ ®(),
where "
O(1) = D(Vo,ITg)(2) =i f 5((i|<v+ D)Wo +Io)pdk. (3.11)
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HereK andH(1) are 3x 3-matrices with the matrix elements
kikjlp(k)[Pdk f kikjlp(K)I7dk
Kii = , Hii(1) = - . 3.12
. fk2+mz—(|v|k1)2 i@ K2+ 1M + (i[Viky + )2 (3.12)

The matrixK is diagonal and positive definite sinpéky is spherically symmetric and not
identically zero by (1.6). The matriM is well defined for Ra > 0 since the denominator
does not vanish. The matrkt is diagonal similarly taK. Indeed, ifi # j, then at least one

of these indexes is not equal to one, and the integrand in (3.12) is odd with respect to the
corresponding variable. Finally the 3-rd and the 4-th equations of (3.5) become

Q\_( Q B AE  -By,
M(/l)( 5 )_( Po+0<1> ),WhereM(/l)_( KCHW) aE ) (3.13)

Lemma 3.1. [8] The matrix M) is invertible forReA > 0.

Then we obtain

Q\_m- Qo
( 5 )_ M 1(1)( . ) Rel> 0. (3.14)

Finally, formula (3.14) and formulas (3.7), (3.8) give the expression of the resd¥ent
(A—2)1, Red > 0, in Fourier space.

3.2 Time decay of the vector components

Let us prove the decay (2.9) for the componefy andP(t).
Lemma 3.2. Let X € ZyN&Eg. Then (), P(t) are continuous and
C®)
)+ |P(t)| € ——== t>0. 3.15
QUI+IPOIS s (3.15)
Proof. We split the Fourier integral (3.4) for the vector components into three terms using
the partition of unity1(w) + &2(w) + {3(w) = 1, w € R. By (3.14) we obtain:

Q| _ 1 (g o Q
(5] = 5 [ @@ awam o 5 S, Ja

[1(t) + 12(t) + 13(1), (3.16)
where the functiongi(w) € C*(R) are supported by
Ssupp; € {weR:egy/2<|w|<u+2}

suppl, C {weR:|jwl >u+1} (3.17)

supps € {welkR:|wl<ep)

Then i) The functions(t) andl,(t) decay at least like (% |t))~%/2, see [8].

i) The main contribution of the present paper is providing the direct proof that the
function I3(t) decays liket™ if (Wo,I1o, Qo, Po) € Zv. The proof can be developed to the
cases of the scalar wave field and of the Maxwell field, [9, 10, 7]. The result follows from
the statement below:
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Proposition 3.3. The vector components

Qi) \ 1 [ Q
( P(iw) )‘ M 1("”)( P0+<1c>)(ia)) )

as functions ofv belong to C°(-&g; o) for syficiently smalleg if (¥o, 1o, Qo, Po) € Zv.

Proof. i) We compute directly the matrit := M~1(iw) and obtain forw # O:

m=( N v )
where .
e °
Ma=-| 0 UG °
0 0 ﬁwf(w)
3
#31‘1@)) 0 0
Miz=- 0 m 0 ,
0 0 pr e
% 0 0
Mz =~ 0 % 0 ,
0 0 @)
W’ +vf(w)
#31‘1(0)) 0 0
Maz =i e B
0 0 #f(w)

Recall thatfi(w) = F11(w), f(w) = F22(w) = F33(w), where

. _ ~121,2 1 _ 1 _ . 2).
F“(‘")‘fdMPI kj(m?+k2—(vk1+w)2 mZ+k2—(vk1)2)“" (@)

with |j(w) € C*(-&o; £0), Since

, 2 i=mP+ k2= (vke)?, 6:= w(w+2vky). (3.18)

| k|,6|2kj2(2a)vk1 + 12 +4(vk)?)
i) = f n*(n? - )

Further,

o i(kyv+ w)Po(K) + To(K), =
(D("“)"fdk M- (ki r @)
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Lemma 3.4. The symplectic orthogonality conditions (2.8) (or (2.12)) for the initial data
read
Po+®(0) =0, (3.19)

£(0)+B;'Q =0, (3.20)
where( is defined below by (3.22).

Proof. The orthogonality conditions (2.8) (or (2.12)) for the initial dXtareadQ(Xo, 7j) =
Q(Xo,7j+3) =0, ] =1,2,3, where

Tj = (_aJ‘//v(Y)’ _5j7Tv(Y)’ ej ’ 0)9 Tj+3 = ((9\/]. 'ﬁv(Y), an ﬂV(y)’ 0’ an pV)’ (321)

Yy andmy, are given by (3.10), for details see [8].
First let us check that the conditio®Xp, 7j) = 0 readP + ®(0) = 0. One has

q)(O):ifdkM)TJrHOkﬁ, B = k2 + n? — (kv)2.
Forj=1,2,3 we have

0=Q(Xo, 7)) = =(¥o,0jmy) +(Ilo,0jypv) — Po- € = —fdk‘i’o—ikji(kv)_—é)

] Po(kv)pk; Topk;
+fdkHO_ikjEp_P0'ej Zfdk%—ifdk Og J—(F)O)j = —(®(0) + Po);

and the statement is checked. Further,

k2 + mZA+ (kv)? —_:6 ~ fdkﬁO' 2(k[1)/)kj b

0= 0(o.75.0) = [ didb ik 24 Qo0 =

_ Pok; (K2 + m? + (kv)?)p To2(kV)kip
 [ados e Gh, (g Do2i o,
Note thatQo - dy, pv = Qo- B;lej = B;1Qo- €. Then these symplectic orthogonality condi-
tionsQ(Xo,7j+3) =0, j =1,2,3 coincide with

{(0)+B;'Qo =0,

wherel(w) is defined by (3.22).

O
By (3.19) Py + ®(iw) = ®(iw) — (0) = iwl (w), wherel (w) € C®(—&p; 9) because
~ w(ikaVWo(K) + TTo(K)) + i (m? + K2 + (kv)2) Wo(K) + 2vikq ITo(K) =
fw)= f dk (M2 + K2 — (Vi + )2) (MR + K2 — (Vky)2) k. (3:22)

i) Let us start with the componeRi(iw).

P(iw) = M21Qo + M22(Po + @(iw)) =
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U o 0 A0 0
1+v°11(w) () 1+v°11(w) 1
_ w
S e D) |(O) S I s OB
w
0 N ) ° @

wherel(w) := l2(w) = I3(w). Sincel;1(0) > 0 andl(0) > 0 by (3.18), one can observe that
P(iw) € C*(-&0; €0)-
iii) Now let us proceed t&Q(iw):
Q(iw) = M11Qo + My2(Po + ®(iw)).
By (3.20) one has
Po+®(iw) = iw(w) = iw(¢(w) - (0) - B, Qo) = iw(w(w) ~ B;* Qo).
where

Iw) = f (@ + 3vk) (k) + (% -+ 2vka (@ + 2vka))lTo(K)

(2= o) ko € C®(—eo;&0)-

Finally, sinceMyy = iwM32B;?, one has

Qliw) = M11Qo —iwM12B; Qo +iwMiwI(w) =

3

— 0 0
o 1+v°1(w)
iw-Mi2d(w) = m 0 J(w)
0 0 m
and, similarly,Q(iw) € C*(—&p; £0). The proposition is proved. O
This completes the proof of Lemma 3.2 and Proposition 2.4. o

Remarks3.5. i) Note that
O(Wo,To)(A) = Feos i (WH(t)(¥o, TTo), Vp),

whereF_,, is Laplace transform in, W(t) is the first component of the dynamical group
W(t) of the free Klein-Gordon equation.

i) Let f(t) = (W(t)(¥o,IIp), Vp). Then
O(iw) = Fioof(t) = | et (t)dt, ©0)= [ f(t)dt=—-Pq
/ /
by (3.19). Set

gt)=- | f(9)ds thengd'(t) = f(t), g(0)=- | f(s)ds= Po.
/ /
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We have y
Po+®(iw) = Po + f(w) = Po + wf(w) - 9(0) = wi(w),

thus,dlw) = i&(w). Further,P(iw) = M21Qo + Ma2(Po + ®(iw)) = M21Qo + Moowd(w), the
last combination being smooth in

iif) For §(w), whereg(t) is introduced in the previous remark, we have
50) = [ o0t =-iB; Qs
0
by (3.20). Set
) =~ [ g(9ds thenk'() = g, ()= - [ oot iB; Qo
t 0

Note thath(w) = iJ(w) € C* (&0, o). Further,
Q(iw) = M11Qo + wMi28(w) = M11Qo + wMiz(wh(w) — h(0)) = w? Myoh(w)

and the last term is again smoothcin

These observations are optional in our case of Klein-Gordon equation, ®iereand
P(iw) happen to be infinitely smooth, but this approach becomes crucial in the cases of the
wave and Maxwell equations, where the smoothness is of a finite order, [10, 7]. It is worth
to note that similar technique can be applied also for the four-wave solitons case (see e.g.
[12]-[14])
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