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ON SOME MODEL PROBLEMS IN QUANTUM CONTROL∗

NAVIN KHANEJA†

Abstract. Control and manipulation of quantum mechanical systems using electromagnetic

fields is a widely studied subject in areas of physics and chemistry, including spectroscopy, atomic

molecular, and optical physics, and quantum chemistry. This article attempts to provide a glimpse

into the rich class of bilinear control systems that are ubiquitous in these problems. In this article,

we use control of spin systems in magnetic resonance as a model system to highlight characteristic

feature of problems in quantum control. Background information is provided to enable the reader

to appreciate new results and developments, where principled use of ideas from control theory have

provided new insights into finding optimal ways to control and manipulate quantum mechanical

systems. The study of deterministic and stochastic models that arise in problems in measurement

and manipulation of quantum mechanical systems may foster new developments in control.

1. Introduction. The article describes some differential equation models that
arise in the control and manipulation of quantum mechanical phenomena. Control of
spin dynamics in NMR spectroscopy [1, 2, 3] is used as a paradigm to outline general
principles in the control of quantum systems and describe some common characteristic
phenomenon encountered in control of these physical systems.

The defining equation for the state of a quantum mechanical system is the Schrö-
edinger equation

(1) ˙|ψ〉 = −i[H0 +
n∑

j=1

ujHj ]|ψ〉,

where the state of the quantum system is represented by a vector |ψ〉 ∈ H, a suitable
Hilbert space. H0 and Hj are Hermitian operators, representing Hamiltonians of
the system and uj(t) are time varying functions that represent controls in the system
dynamics. For models, discussed in this paper, H is finite dimensional and in a chosen
basis, H0 and Hj are Hermitian matrices. We assume that H is finite, unless stated
explicitly. Modulating uj , effects the Hamiltonian of the system and therefore effects
the evolution of the state of the system. Eq.(1) has the familiar form of a bilinear
control system

(2) ẋ = (A+
n∑

j=1

ujBj)x,

where in the present context, A,Bj are skew Hermitian matrices. The evolution
preserves the norm of the state |ψ〉. The evolution is unitary and the state vector at
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time t is related to initial state vector by an unitary transformation U(t), such that

(3) |ψ(t)〉 = U(t)|ψ(0)〉,

where U(t) satisfies the differential equation

(4) U̇ = −i[H0 +
n∑

j=1

ujHj ]U, U(0) = 1 .

Where 1 is the identity matrix. A textbook example of a system, where such a
bilinear control model arises is the evolution of the magnetic moment of a spin 1

2 in a
magnetic field B. Spin, like charge is a physical property of elementary particles. It is
a measure of their intrinsic angular momentum and the state of a spin 1

2 is represented
by a complex vector of dimension 2. The Hamiltonian generates rotations on the state
space of a quantum system. The Hamiltonian of a spin 1

2 can be written in terms
of the generators of rotations on a two dimensional space and these are the Pauli
matrices −iσx,−iσy,−iσz, where,

σz =
1
2

[
1 0
0 −1

]
; σy =

1
2

[
0 −i
i 0

]
; σx =

1
2

[
0 1
1 0

]
.(5)

Note

(6) [σx, σy] = iσz, [σy, σz] = iσx, [σz, σx] = iσy,

where [A,B] = AB −BA is the matrix commutator and

(7) σ2
x = σ2

y = σ2
z =

1
4
,

The classical energy E of the magnetic moment µ of a spin in a magnetic field is
E = −µ·B. The magnetic moment of a spin is proportional to its angular momentum,
given by µ = γL, where γ is the gyromagnetic ratio (a characteristic property of the
nucleus) and L is the angular momentum operator. Therefore, the Hamiltonian of
spin 1

2 is

H = −γ[BxLx +ByLy +BzLz],

where Lx, Ly, Lz are now operators, representing angular momentum in the x, y, z
direction respectively.

Since angular momentum is generator of rotation, the angular momentum oper-
ators Lx, Ly, Lz are identified with the Pauli matrices σx, σy, σz, the generators of
rotation in a two dimensional Hilbert space. The Schröedinger equation then takes
the form

(8) ˙|ψ〉 = iγ[σzB0 + σyBy(t) + σxBx(t)]|ψ〉,
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Fig. 1. The Fig. A shows the simplest of the quantum objects, a two level system being probed

with an electromagnetic field. Fig. B shows energy level diagram of a three level Lambda system

often studied in the area of Laser spectroscopy. Fig. C shows spontaneous decay of the population

in state |2〉 to energy levels |1〉 and |3〉.

where, we use B0 = Bz. Let ω0 = γB0 and (u(t), v(t)) = (γBx(t), γBy(t)). The above
equation is then rewritten as

(9) ˙|ψ〉 =
i

2

[
ω0 u− iv

u+ iv −ω0

]
|ψ〉

The eigenstates of σz, labeled, |0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
, with eigenvalues 1

2 and

− 1
2 , correspond to the state of the spins oriented along or opposite to the magnetic

field B0. Eq. (9) represents the most basic of all quantum mechanical objects, a two
level system being manipulated by an external field. A schematic of such a system is
shown in Fig. 1A.

The differential equation model (9) describes dynamics of spin 1
2 in the nuclear

magnetic resonance (NMR) experiments when manipulated by transverse magnetic
fields (Bx(t), By(t)) which manifest themselves as control inputs (u(t), v(t)). Primary
goal of these experiments is to accurately measure ω0 by manipulating or probing
the system with control inputs (u(t), v(t)), which provides a wealth of information on
chemistry and structure of molecules carrying spins, as detailed subsequently. NMR
experiments are performed on an ensemble of spins. All the members of the ensemble
may not have identical state vectors. In which case, the description of a quantum
system is a density matrix as described by

(10) ρ =
∑

j

pj |ψj〉〈ψj |,

where pj is the proportion of ensemble elements (
∑

j pj = 1) in the state |ψj〉 (The
notation 〈ψj |ψj〉 and |ψj〉〈ψj |, denote inner and outer product of vector |ψj〉 with
itself respectively). In an ensemble of spin 1

2 , with 1
3 of spins in the state |0〉 and 2

3
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of spins in the state |1〉, the density matrix

ρ =

[
1
3 0
0 2

3

]
.

By the postulates of quantum mechanics, the observable quantities are represented
by self-adjoint operators. The expected value of an observable O , when the quantum
system is in the state |ψ〉 is simply 〈ψ|O|ψ〉, where O is the operator that represents
the observable O . Therefore, for an ensemble of quantum systems, the expected value
of an observable O is

〈O〉 =
∑

j

pj〈ψj |O|ψj〉 = tr(ρO).

The density matrix ρ of the quantum system evolves as

(11) ρ̇ = −i[H0 +
n∑

j=1

ujHj , ρ],

where [A,B], as before is the matrix commutator. This follows from simply differ-
entiating the Eq. (10), where each |ψj〉 satisfies the same Eq. (1). Some properties
of the density matrix ρ are evident from its construction. It is a Hermitian, positive
semidefinite and satisfies tr(ρ) = 1. The evolution of the density operator is

(12) ρ(t) = U(t)ρ(0)U†(t),

where U(t) is the unitary transformation in (4). Also by construction, tr(ρ2) ≤ 1,
with equality holding only if only one of the pj in Eq. (10) is non-zero and equal to 1.
For an ensemble of spin 1

2 , the density matrix ρ is a 2 × 2, Hermitian matrix, which
can be decomposed as

(13) ρ =
1
2
1 +mxσx +myσy +mzσz.

Therefore, for the density matrix in Eq. (13), we obtain that the expected value
of the angular momentum along x, y, z, represented by operators σx, σy and σz is
then simply proportional to mx,my,mz. Then, Eq. (9) implies

(14)
d

dt

 mx

my

mz


︸ ︷︷ ︸

M

=

 0 −ω0 v(t)
ω0 0 −u(t)
−v(t) u(t) 0


 mx

my

mz

 ,

where the vector M = (mx,my,mz)′ is a measure of the net magnetic moment or
magnetization of the spin ensemble and the above equation is the well studied Bloch
equation, which describes the precession of the magnetic moment in a magnetic field



ON SOME MODEL PROBLEMS IN QUANTUM CONTROL 5

and can be concisely written as Ṁ = γM × B, where B = (Bx(t), By(t), B0)′ is the
magnetic field vector as defined before. Observe, Eq. (14) evolves on a sphere and for
future, we normalize the norm of M to 1. Equation (14) is at the heart of subject of
NMR spectroscopy, where a typical task is to engineer (u(t), v(t)) to manipulate or
steer the vector M in order to estimate the parameter ω0. In the following subsection,
we describe some characteristic feature of the control inputs for the manipulation of
Eq. (14).

1.1. Control of Bloch Equations. Note , Eq. (14), can be concisely written
as

(15) Ṁ = (ω0Ωz + u(t)Ωx + v(t)Ωy)M,

where

(16) Ωx =

 0 0 0
0 0 1
0 −1 0

 , Ωy =

 0 0 1
0 0 0
−1 0 0

 , Ωz =

 0 −1 0
1 0 0
0 0 0

 .
A typical control problem is to steer the system from its equilibrium state M(0) =

(0, 0, 1) to a terminal state on the equator. A salient feature of such problems is that
the external excitations (u(t), v(t)) are typically, significantly smaller in strength as
compared to the natural dynamics represented by ω0, which is four to five orders of
magnitude larger in the NMR experiments. Therefore, for the external control to be
effective in manipulating the system, it is essential that the control be oscillatory. To
fix ideas, let

(17) (u(t), v(t)) = A(t)( cos(ω1t+ θ(t)), sin(ω1t+ θ(t)) ),

and consider the control problem of steering M in the Eq. (15) from an initial point
(0, 0, 1)′ to the final target state (1, 0, 0)′. Observe, by transforming to a coordinate
system such that X = exp(−ω1Ωzt)M , we obtain that

(18) Ẋ = (ωΩz + u1(t)Ωx + v1(t)Ωy)X,

where ω = ω0−ω, and (u1(t), v1(t)) = (A(t) cos θ(t), A(t) sin θ(t)). Now, since X(0) =
M(0), by simply choosing ω = ω0, θ(t) = θ and A(t) = A, both constant, we drive
X(0) to (sin θ,− cos θ, 0) in T = π

2A units of time. When ω = ω0, equation (18) has
no natural dynamics. Therefore, it doesn’t matter how weak A(t) is, given sufficient
time, X(0) can be steered to the transverse plane. X(T ) can be put anywhere on
the transverse plane by appropriate choice of θ. Left panel in Fig. 2 shows this
transfer, both in the rotating frame as in Eq. (18), (the blue curve) and the laboratory
frame Eq. (15) (red curve). However, a choice of constant control (u(t), v(t)) =
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(A cos θ,A sin θ), would be completely ineffective, if applied to the original system in
Eq. (15), as the net motion is then a precession around the axis (A cos θ,A sin θ, ω0),
as shown in Fig. 2 and therefore significantly falls short of the desired transfer when
A � ω0. Therefore, it is desirable to use a control input as in Eq. (17), which is
oscillatory at the frequency of natural oscillation of the system. It is not difficult
to show that the choice of such a control input is the minimum energy control for
driving the system in Eq. (15) to the transverse plane. Applying such a control input
corresponds to exciting the system at its resonance and with a very weak field, the
system can be driven far from equilibrium. A(t), θ(t) and ω0 are naturally termed
amplitude, phase and carrier frequency of the applied radio-frequency field as in radio
communication. Design of appropriate control inputs (u(t), v(t)) is infact the design
of an appropriate amplitude and phase modulations.

Fig. 2. The figure shows the rotation of the vector X in Eq. (18), around a tilted axis, when

∆ω is comparable to strength of control A.

After the magnetic moment is driven to the transverse plane by choice of an
appropriate control input, the oscillating control is switched off and the magnetic
moment M precesses around the static magnetic field B0 with a frequency ω0. This
is just the evolution in Eq. (17), after the controls are switched off. This precessing
magnetic moment by Faraday’s law induces an oscillating current in the nearby placed
receiver coil and is termed as free induction decay (FID) ( Top right of Fig. 3 shows
the FID ). This FID, when Fourier transformed, shows a peak at ω0. At the magnetic
field strength of B0 = 14 Tesla, ω0 for hydrogen nuclei is 600 Mhz, for carbon, 150
Mhz and for nitrogen, 60 Mhz. The frequency ω0 of an atomic nuclei is also depen-
dent on its chemical/electronic environment in a molecule. The secondary magnetic
fields produced on an atomic nuclei by its electronic environment results in a shift
of the frequency ω0 to ω0(1 − σ), where σ is specific to the chemical environment of
the nuclear spins and is usually of the order 10−6, so when ω0 is around 500 Mhz,
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Fig. 3. The top figure shows the basic features of an NMR experiment. The top left of part of

the figure depicts use of a field B0 to polarize the sample. The bottom figure shows use of pulsed

magnetic fields to steer the net magnetization and generate FID. The top left panel shows the profile

of a free induction decay.

the shift ω0σ is in Khz. The Fourier transform of the FID signal then shows many
peaks, corresponding to different nuclei with their chemical environment specific char-
acteristic shifts. Fig. 4 shows a typical proton NMR spectra from two different size
molecules. NMR is therefore an important analytical tool in chemistry as the peaks
in the NMR spectrum serve as a characteristic finger print of the molecule. Starting
as a tool for characterization of organic molecules, the use of NMR has spread to
areas as diverse as pharmaceutics, medical diagnostics (medical resonance imaging)
and structural biology [4, 5]. The principles of NMR have served as a paradigm for
other physical methods that rely on interaction between radiation and matter. It is
therefore not surprising that experiments in NMR also serve as good model problems
in control of quantum systems.

Eq. (17) gives the wrong impression that the magnetic moment on the transverse
plane will continue to precess for ever. Overtime, the magnetic moments of spins
making the magnetization vector M experience local fluctuations in the ambient field
B0, causing them to precess differently and hence lose coherence (decoherence). This
gives the FID, a decaying envelop (see Fig. 4). This phenomenon, termed decoherence
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Fig. 4. The figure shows a typical proton NMR spectra of a small and medium sized molecule,

shown in left and right panel respectively.

is described in detail subsequently and explicit models are derived to analyze the effect.
This leads to the study of open quantum systems where a quantum system interacts
with external environment but one is only interested in the dynamics of the quantum
system of interest. Additional terms need to be incorporated in Eq. (11) to account
for this effect. Before we describe dynamics of open quantum systems, few general
comments about oscillatory control described before are in order.

The oscillatory control described in Eq. (17) consists of irradiating the spin
ensemble with an oscillating field along the x and y direction. In practice, the same
effect can be obtained with simply having a single oscillating field along say x direction.
This corresponds to

(u(t), v(t)) = (2A(t) cos(ωt+ θ), 0).

Observe, such a control can be written as superposition of two control inputs (u1, v1) =
A(t)(cos(ω0t + θ), sin(ω0t + θ)) and (u2, v2) = A(t)(cos(ω0t + θ), − sin(ω0t + θ)).
Transforming again into a rotating frame results in the equation

Ẋ = (A(t)(cos θ + cos(2ω0t+ θ))Ωx +A(t)(sin θ − sin(2ω0t+ θ))Ωy)X.

Since ω0 � A(t), the oscillating terms average out, giving identical equation as in Eq.
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(18). This averaging of the fast oscillating terms is often termed the rotating wave
approximation.

1.2. Oscillatory Control. The characteristic nature of control inputs described
in the previous section is the oscillatory character. In general, consider a n dimensional
quantum system where the control u is used to modulate the Hamiltonian H1 in

(19) ρ̇ = −i[H0 + uH1, ρ].

Now, since H0 is a Hermitian operator, let |φj〉 denote the orthogonal eigenvectors,
with eigenvalues ωj . Then |φj〉 diagonalize H0, i.e, we rewrite H0 =

∑
j ωj |φj〉〈φj |

and then note |φj〉〈φj | all commute and exp(−iωj |φj〉〈φj |t) = exp(−iωjt)|φj〉〈φj |,
implying that

exp(−iH0t) =
∑

j

exp(−iωjt)|φj〉〈φj |.

Now, transforming Eq. (19) into a rotating frame

ρr = exp(iH0t)ρ exp(−iH0t),

gives

(20) ρ̇r = −i[u(t) exp(iH0t)H1 exp(−iH0t), ρr].

Now, let hjk = 〈φj |H1|φk〉. This, then gives that

u(t) exp(iH0t)H1 exp(−iH0t) = u(t)
∑
jk

hjk exp(−iωjkt)|j〉〈k|,

where ωjk = ωk − ωj and we assume ωjk are all distinct, such that |u| ≤ |ωjk − ωlm|.
If u is modulated at one of the ωjk, i.e., u(t) = A(t) cos(ωjkt + θ(t)), where the
variation in A(t) and θ(t) is assumed to be much slower than ωjk, then the resulting
Hamiltonian in Eq. (19) averages to

(21) ρ̇r = −iA
2

[hjk exp(iθ(t))|φj〉〈φk|+ exp(−iθ(t))hkj |φk〉〈φj |, ρr],

where hjk = h∗kj . By modulating the Hamiltonian at the frequency of the difference
of the energies of the eigenstates |φk〉 and |φj〉, we obtain effective Hamiltonians

Hjk = hjk|φj〉〈φk|+ hkj |φk〉〈φj |,(22)

Gjk = −ihjk|φj〉〈φk|+ ihkj |φk〉〈φj |(23)

which induces a transition from state j to state k and vice versa. If all ωjk are distinct,
then we can assume that one can synthesize Hamiltonians Hjk, independently by
simply choosing the frequency of the control u(t). Therefore, one can write an effective
control system for (19), which takes the form
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(24) ρ̇r = −i[
∑
jk

ujkHjk + vjkGjk, ρr],

where ujk, vjk are controls that can be turned on and off. Some of hjk and therefore
Hjk might be zero and hence H1 cannot induce a transition between the eigenstates
|φj〉 and |φk〉 directly. These constraints are often termed as the selection rules in
physics. Fig. 1 shows the energy level diagram of so called Lambda system studied
in Laser Spectroscopy. There is no direct transition between states |1〉 and |3〉, but
there is an indirect transition through the state |2〉.

Of fundamental interest is to know if the system in Eq. (4) can be driven be-
tween states of interest. This is the standard problem of controllability of bilinear
systems. Therefore, the standard techniques [6, 7, 8] for studying controllability of
systems evolving on compact Lie groups can be directly applied [12]. The main result
being that if the Lie algebra {−iH0,−iHj}LA, spanned by {−iH0,−iHj}, is the Lie
algebra su(n), where n is the state space of the system in Eq. (4), then the system is
controllable. Then, checking for controllability reduces to checking the Lie algebraic
rank condition. For example, although there is no direct transition between states
|1〉 and |3〉 in Fig. 1B, the system is controllable. The unitary propagator for the
effective control system in Eq. (24), evolves as

(25) U̇ = −i

 0 Ωc(t) 0
Ω∗

c(t) 0 Ωp(t)
0 Ω∗

p(t) 0

U,
where Ωc(t) and Ωp(t) are complex valued controls that induce transitions between |1〉
and |2〉 and |3〉 and |2〉 respectively. The subject of explicit synthesis of the control
laws for control of Eq. (4) has received significant attention recently in context of
control of spin systems [9, 10, 11]. We will discuss some of these results subsequently.

2. Open Quantum Systems.

2.1. Master Equations. Eq. (11) describes the evolution of a closed quantum
system. We now derive an equation for the dynamics of the open quantum systems.
The derivation is not the most general, but captures the essence of how such a model is
usually arrived at [3, 13, 14]. The effect of the environment on the system is modeled
by an Hamiltonian H1, which randomly fluctuates with time.

(26) ρ̇ = −i[H0 + f(t)H1, ρ].

The correlation time of these fluctuations is assumed to be significantly shorter than
the fastest time scale in the system dynamics. Therefore, we model these fluctuations
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as a white noise process such that E[ f(t+ τ)f(t)] = kδ(τ), where δ(τ) is the Dirac-
delta function. Then, we have

(27) ρ(τ) = U(τ)ρ(0)U†(τ),

where we retain only terms of the second order in the expansion of U , which gives

(28)

U(τ) = I − i

∫ τ

0

(H0 + f(σ)H1)dσ −
∫ τ

0

(H0 + f(σ1)H1)
∫ σ1

0

(H0 + f(σ2)H1)dσ2dσ1.

Now, using the assumption that∫ τ

0

∫ σ1

0

E(f(σ1)f(σ2))dσ1dσ2 =
∫ τ

0

∫ σ1

0

δ(σ1 − σ2)dσ2dσ1 = τ,(29)

we obtain that if we let ρ̃ = E(ρ(t)),

(30) ρ̃(τ) = ρ̃(0)− i[H0, ρ̃]τ + [iH1, [iH1, ρ̃]]τ +O(τ2),

where, we have only retained terms of the order τ . This, then gives us that

(31)
dρ̃

dτ
= −i[H0, ρ̃] + L(ρ̃),

where L(ρ̃) = k[iH1, [iH1, ρ̃]]. For notational simplicity, we write ρ̃ as ρ.

The evolution of the density operator for the open quantum system is no longer
isospectral. The effect of the term L(ρ) is then to reduce the value of tr(ρ2). For
instance,

d tr(ρ2(t))
dt

= tr([H1, ρ]2),(32)

where tr([H1, ρ]2) ≤ 0, implying that tr(ρ2) decreases with time. The effect of the
coupling to an external heat bath is to transform a pure state into a mixed state.

A more general form of L(ρ) is

(33) L(ρ) =
∑

j

kj [Hj , [Hj , ρ]],

arising because of random modulations of Hamiltonians Hj with fluctuations that
are uncorrelated. There are many interesting problems involving control of open
quantum systems in the presence of dissipation. The operator L(ρ) is a negative
definite operator, such that dTr(ρ2)

dt = Tr(ρL(ρ)) ≤ 0. If we measure the entropy of
the ensemble of quantum systems by

S = 1− tr(ρ2),
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also termed Renyi entropy, then observe that pure states have entropy 0 and the effect
of the decoherence is to increase the entropy of the system.

In NMR experiments, fluctuations f(t) in the equation (26) arise because the
magnetic field B, seen by the spins fluctuates with time due to coupling of the spin
ensemble with an external bath. We will study source of these fluctuations subse-
quently. The equation for the density matrix of the 2× 2 spin system then takes the
form

(34)
dρ

dt
= −i[ω0σz + f(t)σz + uσx + vσy, ρ].

The resulting master equation then takes the form

(35)
dρ

dt
= −i[ω0σz + uσx + vσy, ρ]− k[σz, [σz, ρ]]

When the above equation is written as a Bloch equation, the evolution of the Bloch
equation takes the form

(36)
d

dt

 mx

my

mz

 =

 −k −ω0 v(t)
ω0 −k −u(t)
−v(t) u(t) 0


 mx

my

mz

 .
The constant k is called the transverse relaxation rate and is responsible for the decay
of the FID signal with time. Eq. (35) is however not a complete description, because
eventually M returns back to the original state (0, 0, 1)′. A more general model for
the Lindblad equations is [14]

(37) L(ρ) =
∑

k

[ AkρA
†
k −

1
2
{A†

kAk, ρ}].

where {A,B} = AB + BA is the anticommutator. If Ak are Hermitian operators,
then L(ρ) reduces to the familiar form

∑
k[Ak[Ak, ρ]]. However, Ak in general can

have both Hermitian and non-Hermitian parts. If we take

A1 = κ1

[
0 0
1 0

]
; A2 = κ2

[
0 1
0 0

]
; A3 = κ3

[
1 0
0 −1

]
,

such that κ1 > κ2, then the system in (38) will follow the equation

(38)
d

dt

 mx

my

mz

 =

 −k −ω0 v(t)
ω0 −k −u(t)
−v(t) u(t) −(T1)−1


 mx

my

mz

 +

 0
0
m0

 .
Here k and T1 in the above equation depends on κ1, κ2 and κ3 as in Eq. (38). Then,
mz eventually returns to 0 ≤ m0 ≤ 1, at a characteristic time T1, also called the
longitudinal relaxation rate.
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Although, the effect of the Lindblad operator L(ρ) in Eq. (33) is to increase the
entropy of the system, the most general form of the Lindblad equations as in Eq.
(37) can lead to decrease in the entropy of the quantum system when mixed suitably
with external control. An important application of this feature is in the field of laser
cooling [15], where an interplay between unitary control and Lindblad terms as in Eq.
(37) is used to decrease the entropy of the quantum system. We study a concrete
example to understand the basic ideas in this subject [16].

2.2. Laser Cooling. Consider again the three-level Λ system as depicted in Fig.
1B. The evolution of the density matrix of the three-level Λ system is given by

(39) ρ̇ = −i[H(t), ρ] + γ1(E1ρE
†
1 −

1
2
{E†

1E1, ρ}) + γ2(E2ρE
†
2 −

1
2
{E†

2E2, ρ}),

where E1 = |1〉〈2| and E2 = |3〉〈2|.

If the density matrix is diagonal, say

ρ =

 λ1 0 0
0 λ2 0
0 0 λ3

 ,
with λ1, λ2 and λ3 describe the population distribution in three energy states. Then,
in the absence of any external controls, the density matrix stays diagonal and the
diagonal entries evolve as

(40)
d

dt

 λ1

λ2

λ3

 =

 0 γ1 0
0 −(γ1 + γ2) 0
0 γ2 0


︸ ︷︷ ︸

A

 λ1

λ2

λ3



We assume that the system is completely controllable and any unitary rotation U(t)
on the three level system in (25) can be synthesized in arbitrary small time. In
particular, consider the unitary transformation

P =

 0 0 0
0 0 1
0 1 0

 ,
which swaps the population states 2 and 3. The effect of this unitary transformation
on the diagonal of the density matrix is

P

 λ1

λ2

λ3

 =

 λ1

λ3

λ2

 .
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Then, consider the following sequence of operations,

exp(Atn)P exp(Atn−1) . . . P exp(At1),

where ti are chosen long enough so that as λ2 in Eq. (40) decays below the value λ3.
These operations keep the density matrix diagonal and

(41) exp(Atn)P exp(Atn−1) . . . P exp(At1)

 λ1

λ2

λ3

 ∼
 1

0
0

 ,
It is clear that the population in state 1 keeps building up, while the population
from the state 2 and 3 is eventually drained off. The cooling strategy consists of a
sequence of dissipative evolutions and unitary control (with electromagnetic fields) to
synthesize the Hamiltonians H23 in the Fig. 1B. Therefore by an interplay of external
control and evolution of natural dynamics, all the population is eventually driven to
state 1, although one starts with a state where the population is distributed in all the
states.

3. Control of Ensembles. We now return to the Bloch equations in (18). As
discussed earlier, in NMR experiments, there is dispersion in the parameter ω, as
the chemical shifts σ of the nuclear spins are dispersed over a certain range. In
practice, there is another source of the dispersion. The applied radio-frequency field
is not uniform on the whole sample but is dispersed over a range, captured by the
parameter ε ∈ [1− δ, 1 + δ]. The Eq. (18) is then modified to

(42) Ẋ = (ωΩz + εu1(t)Ωx + εv1(t)Ωy)X.

Dispersion in the parameters in the system dynamics poses some interesting ques-
tions in controllability and control design. Eq. (42) represents a continuum of sys-
tems parametrized by ω and ε. Fig. 2 shows that application of the control input
(u1(t), v1(t)) as in Eq. (18), results in poor transfer to the transverse plane for spins
with ω comparable or greater than Amax, where

√
u2

1(t) + v2
1(t) ≤ Amax (The net

rotation is around a tilted axis Br as shown in the picture). The control challenge
is to steer the ensemble of inhomogeneous systems, to a desired target state, in-
spite of variation in their internal dynamics, by application of the same control law
(u1(t), v1(t)). We say that the system in Eq. (42) is ensemble controllable if the
system can be steered from an initial state of the ensemble described by vector valued
function X0(ω, ε) arbitrarily close to the target state XF (ω, ε) ( where the distance
||XF (ω, ε)−X0(ω, ε)|| is measured by say an L2 distance

∫ ∫
|XF (ω, ε)−X0(ω, ε)|2dωdε

between functions).
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This problem represents a typical problem in the control of quantum systems,
with dispersion or uncertainty in the parameters governing the dynamics by using the
same control field. The problem of designing excitations, that can steer an ensemble
and be robust and immune to dispersion in the dynamics of the spin system is a well
studied subject in NMR spectroscopy and extensive literature exists on the subject of
so called composite pulses that can correct for dispersion in system dynamics [17]. In
many cases of practical interest, one wants to find control inputs that prepare the final
state as some desired function of the parameter. For example, slice selective excitation
and inversion pulses in magnetic resonance imaging [18, 20, 21]. Only Recently, these
problems have been understood and posed as questions in controllability of infinite
dimensional systems [22, 23, 24]. A principled study of the controllability of these
ensemble of systems reveals aspects of system dynamics, which makes it possible to
engineer excitations that can steer a quantum ensemble and be robust to the dispersion
in the system dynamics. These problems therefore motivate development of new
methods and techniques for studying controllability and constructive controllability
of a class of infinite dimensional nonlinear systems.

To fix ideas, we first set the dispersion ω in Eq. (42) to zero, and only consider
dispersion arising due to an inhomogeneous rf-field on the sample, measured by the
parameter ε. Rewriting Eq. (42), we obtain

(43) Ẋ = (εu1(t)Ωx + εv1(t)Ωy)X.

We now summarize the basic ideas [22], that make it possible to engineer in-
put excitations that can steer the whole ensemble uniformly and be immune to the
dispersion in the value of ε. Observe for small dt, the evolution U1(

√
dt) =

(44) exp(−εΩy

√
dt) exp(−εΩx

√
dt) exp(εΩy

√
dt) exp(εΩx

√
dt)

to leading order in ε is I+ε2[Ωx,Ωy], i.e., we can synthesize the generator [εΩx, εΩy] =
ε2Ωz, by back and forth maneuver in the directly accessible directions Ωx and Ωy.
Similarly, the leading order term in the evolution

U2 = U1(−
√
dt) exp(−εΩydt)U1(

√
dt) exp(εΩydt).

is [εΩy, [εΩx, εΩy]] = ε3Ωx. By successive Lie brackets, terms of the type ε2k+1Ωx can
be synthesized to leading order. Now using {εΩx, ε

3Ωx, . . . , ε
2n+1Ωx} as generators,

we can produce an evolution

exp{
n∑

k=0

ckε
2k+1Ωx},
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where n, and the coefficients ck can be so chosen so that
n∑

k=0

ckε
2k+1 ≈ θ

for all ε ∈ [1 − δ, 1 + δ]. Therefore, an evolution exp(θΩx) can be synthesized for all
values of ε to any desired accuracy. Therefore, one achieves robustness with dispersion
to ε by generating effective generators with arbitrary high powers of the dispersion
parameter ε.

Contrast the situation in Eq. (43), with the following control system, the well
studied non-holonomic integrator,

d

dt

 x

y

z

 = εu

 1
0
−y

 + εv

 0
1
x

 .(45)

If ε is fixed, then the system in Eq. (45) is controllable as the vector fields

f =

 1
0
−y

 ; g =

 0
1
x

 ,
generate the vector field [f, g] = [0, 0, 1]′. The three vector fields f, g, [f, g], then
span the three dimensional space. However, the Lie algebra generated by f, g is
nilpotent and therefore [·, [f, g]] = 0. The dispersion parameter ε, cannot be raised to
higher powers by iterated brackets and therefore such an ensemble of inhomogeneous
nilpotent systems is not ensemble controllable. On the contrary, the Lie algebra
g = so(3) generated by Ωx and Ωy in (43) is semi-simple (implying [g, g] = g )and
therefore the iterated Lie brackets never terminate, allowing for design of robust input
excitations. Similarly, Linear systems

dX

dt
= AX + εBu,(46)

cannot be steered uniformly by application of the same control input u(t), as the
output, for X(0) = 0 is

X(t) = ε

∫ t

0

exp(A(t− τ))B(τ)u(τ)dτ,

which is just a linear function of the input. No matter how u(τ) is modulated, the
output depends linearly on the input.

Interesting control design problems arise in the manipulation of inhomogeneous
quantum ensembles. To provide a flavor for such problems, we describe one synthesis
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method [25] for designing input excitations, that robustly steer the inhomogeneous
ensemble in Eq. (43). This synthesis method has recently been used in the design of
rf pulse sequences in NMR spectroscopy that are robust to rf-inhomogeneity. Con-
sider the following rotations obtained by alternate rotations around x and y axis for
appropriate duration. Let

U1 = exp(kπΩxε) exp(
βk

2
Ωyε) exp(−kπΩxε),(47)

U2 = exp(−kπΩxε) exp(
βk

2
Ωyε) exp(kπΩxε).(48)

Now, by choosing βk, small enough, we have

Vk = U2U1 ∼ exp(εβkΩy cos(kπε)).

Then, a sequence of transformations

(49) Πk(Vk)nk ∼ exp(ε
∑

k

αk cos(kπε)Ωy),

where αk = nβk. Now, the coefficients αk can be so chosen that∑
k

αk cos(kπε) =
θ

ε
,

for 1− δ ≤ ε ≤ 1, with 0 < δ < 1.

Therefore,

(50) Πk(Vk)nk ∼ exp(θ)

The actual control input to Eq. (15) consists of oscillatory input (u, v) = (A cos(
ω0t + φ), 0), where the phase φ is switched between 0, π

2 and π to achieve rotations
around x, y and −x axis respectively. Fig. 5 shows this control input and its pictorial
depiction as a pulse sequence.

3.1. Controllability of Bloch Equations in the Presence of Frequency

Dispersion. Now, consider the Bloch equations as in Eq.(18), with dispersion in the
Larmor frequencies. We now like to show that this system is ensemble controllable
with respect to the dispersion in the parameter ω.

There is an important conceptual issue that emerges in controllability analysis of
such problems. In studying controllability of control systems of the kind

ẋ = (A+ uB)x,
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Fig. 5. The above figure shows the sequence of pulses with alternate phases as described in Eq.

(47), which forms the building block of a composite pulse train as in Eq. (49). Each pulse is an

oscillatory control input the phase of which is changed from pulse to pulse.

Fig. 6. The figure shows how the vector X in equation Eq. (15) can be dragged from (x, y, z) =

(0, 0, 1) to (0, 0,−1), independent of value of ω by slowly varying ω̃(t) in Eq. (54).

evolving on compact Lie groups, it is possible to synthesize commutators of the kind
[A,B] to leading order, by an evolution

exp(−Adt) exp(−Bdt) exp(Adt) exp(Bdt),(51)

where the backward evolution exp(−Adt) is generated by letting the forward map
exp(At) evolve for sufficient period of time. The free evolution on a compact group
almost returns back after sufficient time. However, the situation is different for a
continuum of such systems as in Eq. (18). In the presence of continuum of frequencies
ω ∈ [−B,B], given small time dt, there is no forward evolution time T , such that
exp(ωT ) = exp(−ω dt), for all ω ∈ [−B,B]. However, by using control, we can
synthesize an effective backward evolution. Two limits are of particular interest here.
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We first assume that our control inputs in Eq. (18) are unbounded apriori
(Amax � ω ). Note, because of the assumption of strong fields, we can reverse
the evolution of the drift term in Eq. (18),

(52) exp(πΩx) exp(ωΩzdt) exp(−πΩx) = exp(−ωΩzdt),

where ω ∈ [−B,B], and the π rotations like exp(πΩx) can be produced in negligi-
ble time. Now, we consider the case when the controls u and v are bounded, i.e.,√
u2(t) + v2(t) ≤ Amax for all t, so that we cannot produce rotations of the type

exp(−Ωxπ) in an arbitrarily small time as in Eq. (52).

Nonetheless, the system is ensemble controllable as will be shown below. The key
to showing this is to produce the backward evolution of the drift term, exp(−ωΩzdt).
This helps us to generate higher-order Lie brackets with the drift term containing
higher powers of dispersion parameters ω, which can be combined to produce an
evolution that is robust to ω. Our construction initially employs the well known con-
struction in physics literature called the adiabatic following, which helps to synthesize
an evolution exp(−ωΩzdt). This construction can be used to show ensemble control-
lability with respect to both Larmor dispersion and rf inhomogeneity in the Bloch
equations (43). Adiabatic following is a technique, widely employed in variety of ex-
periments involving control of quantum systems as it is robust to inhomogeneity in
the system dynamics. It is of independent interest from the perspective of non-linear
control.

3.1.1. Adiabatic Following. Consider the Bloch equations with only Larmor
dispersion as in Eq. (42), which we rewrite to reflect ensemble of systems with ω

dependence.

Ẋ(t, ω) =
[
ωΩz + uΩy + vΩx

]
X(t, ω),(53)

where ω ∈ [−B,B]. Let (u1(t), v1(t)) = A(t)(cosφ(t), sinφ(t)), A =
√
u2

1(t) + v2
1(t).

We then slowly vary φ̇(t) from an initial value φ̇(0) � −B to φ̇� B. We show that if
the change in φ̇(t) is slow enough, all systems as in (53) can be steered from (0, 0, 1)T

to (0, 0,−1)T . We first make a change of coordinates

Y (t, ω) = exp[−φ(t)Ωz]X(t, ω).

The resulting system then takes the form

Ẏ (t, ω) =
(
[ω − ω̃(t)]Ωz +AΩy

)
Y (t, ω),

where ω̃(t) = φ̇(t). Thus, the effective generator of motion is

(ω − ω̃(t))Ωz +AΩy.
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In the standard physics terminology, the Bloch vector Y (t, ω) rotates around the
effective field Br = A j + [ω − ω̃(t)]k (see Fig. 6) and has the net magnitude of
rotation

| Br |=
√

(A)2 + [ω − ω̃(t)]2 = A
√

1 + tan2 θ.

The angle θ through which Br is tilted with respect to A is defined by

tan θ =
ω − ω̃(t)

A
.(54)

By differentiating (54), we get the rate of change for the angle θ(t)

θ̇ =
− ˙̃ω(t)
A

cos2 θ.

The maximum value of the RHS of the above expression is obtained when θ = 0
and we have

| θ̇ |max=
| ˙̃ω(t) |
A

.

In addition, the smallest rate of rotation of X around Br is A. This happens when
ω̃(t) = ω, i.e. θ in (54) is 0. If we vary ω̃(t) slowly enough so that | θ̇max |� A, i.e.,

| ˙̃ω(t) |� A2,

from θ(0) = π
2 to the final state −π

2 such that the variation is slow, then X(t, ω) for all
ω follows the effective field (remains locked around Br) from (0, 0, 1)T to (0, 0,−1)T

simultaneously. This can be seen by the following averaging argument. Observe that
in Fig. 6, the rate of change of the angle γ at time t is a function of θ̇ and β, i.e.,

dγ

dt
= h(θ̇, β),

where the angles γ and β are defined in Fig. 6. Because β changes at a much faster
rate compared to θ, i.e., β̇ � θ̇, the time scale separation gives

γ(t+ τ)− γ(t) =
∫ τ

0

h(θ̇(t), β(t+ σ))dσ ≈ 0,

where τ is the period for β to rotate by 2π over which θ̇(t) is supposed to be constant.
Therefore, we can maintain γ(t) very small throughout, i.e., 0 ≤ γ(t) ≤ ε for all
t, and ε can be controlled by the rate θ̇(t). Now note that θ(T ) ≈ π and hence
X(T, ω) ≈ −X0 for ω ∈ [−B,B], where X0 = (0, 0, 1)T . As a result, there exists a
net evolution U(ω) for all ω ∈ [−B,B] such that

U(ω)X0 ≈ −X0.(55)
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Therefore, by doing an Euler angle decomposition, we can decompose

U(ω) = exp(f(ω)Ωz) exp(πΩx) exp(g(ω)Ωz)

where f(ω) and g(ω) are some functions of ω. Then, observe,

U2(ω) ∼ exp(f(ω)Ωz) exp(−g(ω)Ωz) exp(−f(ω)Ωz) exp(g(ω)Ωz) = 1 .

(56) U(ω) exp(ωΩzt)U(ω) = exp(−ωΩzt).

The propagator U(ω) can be used to reverse the direction of drift in (56). Now,
constructions as described before can be used to produce any rotation in Eq. (42) as
a function of ω. This approximation in Eq. (55) is in L2 sense as described earlier
and can be made arbitrarily good by regulating how slowly θ̇ is changed. In fact, it
is possible to write down the explicit time-dependent control law that will transfer
X0 to −X0. This is the well studied complex hyperbolic secant pulse [18] and is very
interesting from the perspective of nonlinear control.

We have sketched the basic ideas required to show that Bloch Eq. (18) can be
steered to a target state that has desired dependence of the drift parameter ω. In
many applications in NMR and magnetic resonance imaging (MRI), one requires input
control design that only excites spins with specific value of ω to the equator with a
final state that depends in a specified way of ω and leaves other spins invariant.

3.2. Shinnar Roux Algorithm and Nonlinear Control Design. We now
present a well used [20, 21] design strategy for generating input excitations that steers
the system in Eq. (18) from an initial X(0) = (0, 0, 1)′ to a target state on the
transverse plane say ((X(ω), Y (ω), 0)′, for ω ∈ [−B1, B1], where X(ω) and Y (ω)
can be specified. This design strategy is intriguing as it steers an whole ensemble
of nonlinear systems in to a desired final target point. This expository subsection
is aimed at motivating further method development in nonlinear control design to
address problems of the kind presented in this section.

The solution to the Bloch equation (14) is a rotation X(T ) = RX(0), where
R ∈ SO(3). We work with SU(2) representation of these rotations, where a rotation
by angle φ around the unit vector (nx, ny, nz) has a representation of the form U =[
α −β∗

β α∗

]
, where α and β are the Cayley-Klein parameters satisfying α = cos φ

2 −

inz sin φ
2 , β = −i(nx + iny) sin φ

2 , and αα∗ + ββ∗ = 1. The Bloch equation then takes
the form

U̇ = − i
2

[
ω u− iv

u+ iv −ω

]
U.
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The rotation U is simply represented by its first column (also termed spinor

representation) ψ =

[
α

β

]
. We first consider piecewise-constant controls u(t) and

v(t). The net rotation under these controls can be represented as successive rotations

U = UnUn−1 . . . U1U0, where Uj =

[
aj −b∗j
bj a∗j

]
and aj , bj are the Cayley-Klein

parameters for the jth interval. Defining the multiplication of the matrices Uj up to
k by

[
αk −β∗k
βk α∗k

]
=

[
ak −b∗k
bk a∗k

]
. . .

[
a0 −b∗0
b0 a∗0

]
,

the effect of the controls can then be calculated by propagating the spinor

[
αk

βk

]
=

[
ak −b∗k
bk a∗k

] [
αk−1

βk−1

]
(57)

with the initial condition

[
α0

β0

]
=

[
1
0

]
. The duration ∆t, over which the

controls u and v are constant can be chosen small enough such that, the net rotation
can be decomposed into two sequential rotations since

e(ωΩz+uΩy−vΩx)∆t ≈ e(uΩy−vΩx)∆t eωΩz∆t.

Under this assumption, we can write the rotation Uk as a rotation around z-axis
by an angle ω∆t followed by a rotation about the applied control fields by an angle
φk in the SU(2) representation

Uk =

[
Ck −S∗k
Sk Ck

] [
z1/2 0
0 z−1/2

]
,(58)

where

Ck = cos
φk

2
, Sk = −ieiθk sin

φk

2
,(59)

φk = Ak∆t, θk = tan−1 vk

uk
,

Ak =
√
u2

k + v2
k, z = e−iω∆t.

Plugging (58) into (57), we get the recursion relation of the spinor
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[
αk

βk

]
= z

1
2

[
Ck −S∗kz−1

Sk Ckz
−1

] [
αk−1

βk−1

]
.

Defining Pk = z−k/2αk and Qk = z−k/2βk, the recursion may then be reduced to

[
Pk

Qk

]
=

[
Ck −S∗kz−1

Sk Ckz
−1

] [
Pk−1

Qk−1

]
(60)

with the initial condition [
P0

Q0

]
=

[
1
0

]
.(61)

From the recursion (60) and the initial condition (61), the spinor at the nth time
step can be represented as the (n− 1)-order polynomials in z, Pn(z) =

∑n−1
k=0 pkz

−k

and Qn(z) =
∑n−1

k=0 qkz
−k where |Pn(z)|2 + |Qn(z)|2 = 1. The parameter z encodes

the dispersion parameter ω. The desired final states of an ensemble of systems in
(14), described by Cayley-Klein parameters, are two functions of z, and hence of ω.
We can now design two polynomials Pn(z) and Qn(z) such that we can approximate
any desired smooth functions Fα(z) and Fβ(z) satisfying |Fα(z)|2 + |Fβ(z)|2 = 1,
which characterizes the desired spinor we want as function of z. Now, we can work
backwards and compute the u′ks and v′ks that will produce Pn(z) and Qn(z). Note,
by multiplying both sides of (60) by the inverse of the rotation matrix we get[

Pk−1

Qk−1

]
=

[
CkPk + S∗kQk

(−SkPk + CkQk)z

]
.(62)

We have a backward recursion where we use the knowledge of coefficients of Pk(z)
and Qk(z) to compute Pk−1(z) and Qk−1(z). This is the well known Shinnar Roux
[20, 21] algorithm. Because Pk−1(z) and Qk−1(z) are lower order polynomials, the
leading term in Pk−1 and the low-order term in Qk−1(z) must drop out

CkPk,k−1 + S∗kQk,k−1 = 0,(63)

−SkPk,0 + CkQk,0 = 0,(64)

where Pk,m denotes the coefficient of z−m term in Pk(z). These two equations are

equivalent. Choosing (64) and combining it with (60), we get Qk,0
Pk,0

= −ieiθk sin
φk
2

cos
φk
2

. This

gives the flip angle φk = 2 tan−1
∣∣∣Qk,0

Pk,0

∣∣∣, and the phase θk = ]
(

iQk,0
Pk,0

)
. The controls

are then uk = φk

∆t sin θk,and vk = φk

∆t cos θk. These expressions for controls coupled
with the inverse recursion in (62) construct the piecewise constant controls uk, vk that
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generate polynomial approximations Pn(z) andQn(z) of the target function Fα(z) and
Fβ(z).

In particular, if we choose Fβ(z) = −i sin φ
2 and Fα(z) = cos φ

2 , we obtain a
broadband rotation (uniform over all ω) around x axis by angle φ and similarly by
choosing Fβ(z) = sin φ

2 and Fα(z) = cos φ
2 , we obtain an approximation to a broad-

band rotation around y axis by angle φ.

There are numerous open problems in quantum control involving design of input
excitations that are robust to inhomogeneities in the system dynamics. For sake of
brevity, we only mention one here. Finding explicit (u1(t), v1(t)) in (Eq. 42) that
steers the system from an initial X(0) = (0, 0, 1)′ to the target state ((1, 0, 0)′ for all
values of ω and ε is an important challenge in NMR and MRI. There are important
control design challenges when ω(t) and ε(t) are both time varying. Recently, nu-
merical methods like gradient ascent algorithms have been used for design of pulse
sequences that are robust to dispersions in parameters of the spin system [26, 27, 28].
However more constructive techniques like the Shinnar Roux algorithm are of fun-
damental interest in design of control inputs to steer the nonlinear control system in
(Eq. 42)in a robust way.

4. Coupled Spin Dynamics. Until now, we have described bilinear control
systems that arise in the control of spin 1

2 or an ensemble of spin 1
2 . A rich class

of model control problems arise, when one considers dynamics of two coupled spin
1
2 . The dynamics of two coupled spin 1

2 , forms the basis for the field of quantum
information processing and computing and is fundamental in multidimensional NMR
spectroscopy experiments as detailed subsequently. Let |0〉 and |1〉 represent a choice
of the orthogonal basis for the Hilbert space of state of the spin 1

2 , for example, the
eigenstates of the operator σz, with eigenvalues 1

2 and − 1
2 respectively. The joint

Hilbert space of the coupled spin system is the tensor product of the individual one of
these. A possible choice of the basis for the joint Hilbert space is the tensor product
of basis for individual of these spaces (also termed the product operator basis) and
we represent these basis as |00〉, |01〉, |10〉, and |11〉. Where

|00〉 =

[
1
0

]
⊗

[
1
0

]
=


1
0
0
0

 .
An arbitrary vector in this space takes the form

(65) a|00〉+ b|01〉+ c|10〉+ d|11〉.

Not all the vectors in the joint Hilbert space can be written as the tensor product
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|φ1〉 ⊗ |φ2〉. Vectors that can be decomposed in this way are called separable states
and those that cannot are termed entangled states. For example, the states

|ψA±〉 =
|00〉 ± |11〉√

2
(66)

|ψB±〉 =
|01〉 ± |10〉√

2
(67)

are examples of entangled states and are given special name of the Bell states.

The Hamiltonian for a system of two coupled spins then takes the general form

(68) H0 =
∑

aµσµ ⊗ 1 +
∑

bν1 ⊗ σν +
∑

Jµνσµ ⊗ σν ,

where µ, ν ∈ {x, y, z}. The Hamiltonians σµ ⊗ 1 and 1 ⊗ σν are termed local
Hamiltonians and the Hamiltonian

(69) Hc =
∑

cµνσµ ⊗ σν ,

the coupling or interaction Hamiltonian. The local Hamiltonians only operate on one
of the spins. For example, σµ ⊗ 1 only transforms the first spin (label as I)

(70) σµ ⊗ 1 |φ1〉 ⊗ |φ2〉 = (σµ|φ1〉)⊗ |φ2〉.

Similarly 1 ⊗ σµ, only transforms the second spin (label as S).

The following notation is therefore common place in the NMR literature.

(71) Iµ = σµ ⊗ 1 ; Sν = 1 ⊗ σν .

The operators Iµ and Sν commute and therefore exp(−i
∑

µ aµIµ +
∑

ν bνSν) =
(72)
exp(−i

∑
µ

aµIµ) exp(−i
∑

ν

bνSν) = (exp(−i
∑

µ

aµσµ)⊗ 1 )(1 ⊗ exp(−i
∑

ν

bνσν),

and therefore

exp(−i
∑

µ

aµIµ +
∑

ν

bνSν)|φ1〉 ⊗ |φ2〉

= (exp(−i
∑

µ

aµσµ)|φ1〉)⊗ (exp(−i
∑

ν

bνσν)|φ2〉),

implying that the evolution of local Hamiltonians preserves separable states. The
unitary transformations of the kind

exp(−i
∑

µ

aµσµ)⊗ exp(−i
∑

ν

bνσν),

obtained by evolution of local Hamiltonians are called local unitary transformations.
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Entangled states can be generated starting from separable states by letting the
coupling Hamiltonian evolve. The coupling Hamiltonian can be written as

(73) Hc =
∑

JµνIµSν .

Written explicitly, some of these matrices take the form

(74) Iz = σz ⊗ 1 =
1
2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .
and

(75) IzSz = σz ⊗ σz =
1
4


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 .
The 15 operators,

−i{Iα, Sβ , IαSβ},

for α, β ∈ {x, y, z}, form the basis for the Lie algebra g = su(4), the 4 × 4, skew
Hermitian matrices. For the coupled two spins, the generators −iH0,−iHi ∈ su(4)
and the evolution operator U(t) in Eq. (14) is an element of SU(4), the 4×4, unitary
matrices of determinant 1. The density matrix for a two spin system is then 4 × 4
Hermitian matrix with trace 1 and can be written as

(76) ρ =
1
4

+
∑

µ

aµIµ +
∑

ν

bνSν +
∑
µν

JµνIµSν .

It is customary to omit 1 in the formula for (76), as it doesnot transform under a
unitary transformation. The various terms in the decomposition of the density matrix
have a special meaning. A density matrix ρI = 1

4 +αIIz, corresponds to the state of
the spin ensemble, where there are excess of spins I oriented along the z axis, the B0

field direction, while there is no preferred orientation for spin S. Similarly, a density
matrix ρS = 1

4 + αSSz, corresponds to the state of the spin ensemble, when there
are excess of spins S oriented along the B0 field direction, while there is no preferred
orientation for spins I.

Numerous experiments in NMR spectroscopy involve synthesizing unitary trans-
formations that require interaction between the spins (evolution of the coupling Hamil-
tonian). These experiments involve transferring, for example the initial state of the
spin ensemble represented by a density operator of the kind ρI to a final density oper-
ator of the kind ρS and involves evolution of interaction Hamiltonians. Such transfer
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experiments are used to improve sensitivity of the measurement and will be discussed
subsequently. Similarly, many protocols in quantum communication and information
processing [35] involve synthesizing entangled states as in Eq. (66) starting from the
separable states. This again requires evolution of interaction Hamiltonians between
the spins.

A typical feature of many of these problems is that evolution of interaction Hamil-
tonians takes significantly longer than the time required to generate local unitary
transformations. Local unitary transformations on spins are obtained by application
of rf-pulses, whose strength may be orders of magnitude larger than the couplings
between the spins. This poses the problem of time optimal control of coupled spin
dynamics. Given the unitary evolution

(77) U̇ = −i[Hc +
n∑

j=1

ujHj ]U, U(0) = I,

where Hc represents a coupling Hamiltonian as in Eq. (69), what is the minimum
time required to synthesize any unitary transformation in the coupled spin system,
when the control generators Hj are local Hamiltonians and are much stronger than
the coupling between the spins. Design of time optimal rf-pulse sequences is an
important research subject in NMR spectroscopy and quantum information processing
as minimizing the time to execute quantum operations can reduce relaxation losses
which are always present in an open quantum system as described in the section 2.1.
This is the problem of time optimal control of bilinear control systems as in Eq. (2)
evolving on compact Lie Groups. The present problem has a special mathematical
structure that helps to characterize all the time optimal trajectories [9, 33]. The
special mathematical structure manifested in the coupled two spin system motivates
a broader study of control systems with the same properties.

The Lie algebra g = su(4) has a decomposition g = p⊕ k, where

(78) k = −i{Iµ, Sν}, p = −i{IµSν}.

Here k is a subalgebra of g made from local Hamiltonians. It is easy to verify that

(79) [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ p.

This decomposition of a real semi-simple Lie algebra g = p⊕ k satisfying (79) is called
the Cartan decomposition of the Lie algebra g [34].

The coupling Hamiltonian −iHc ∈ p in Eq. (77), while the control Hamiltonians
−iHj ∈ k. We will assume that the Lie algebra generated by the control terms −iHj

span the whole k, i.e, {−iHj}LA = k. Under this assumption, a computation shows
that the system in Eq. (77) is controllable for any −iHc ∈ p. Let K = exp(k).
We assume that control amplitudes are unbounded apriori and any element of the
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subgroup K of transformations can be synthesized in arbitrary small time. This
is typical and will be elaborated in the context of NMR applications and quantum
information processing, where any local unitary transformation can be produced in
negligible time compared to the evolution of the couplings.

The Cartan decomposition of the Lie algebra g, in Eq. (79) leads to a decompo-
sition of the Lie group G [34]. Let a, denote the largest abelian subalgebra contained
inside p. Then, any arbitrary element of the group G = SU(4) can be written as

(80) G = K1 exp(a1)K2,

where K1,K2 ∈ K and a1 ∈ a. Futhermore, the Cartan decomposition entails that
for −iHc ∈ p, and K1 ∈ K, we have K1(−iHc)K

†
1︸ ︷︷ ︸

AdK1 (−iHc)

∈ p.

Example 1. For g = su(4), as in Eq. (78), one choice of a is

(81) a = −i{IαSα}; α ∈ {x, y, z}.

Note a is three dimensional. Then, any arbitrary element of any element U ∈ SU(4)
can then be written explicitly as
(82)
G = exp(−i

∑
µ

cµIµ +
∑

ν

dνSν)︸ ︷︷ ︸
K1

exp(−i
∑
α

JαIαSα) exp(−i
∑

µ

aµIµ +
∑

ν

bνSν)︸ ︷︷ ︸
K2

,

for appropriate choice of coeffecients aµ, bν , cµ, dν and Jα etc.

Example 2. For g = su(n) and k = so(n), and p = −iA, where A is traceless
symmetric matrices, the decomposition g = p ⊕ k is a Cartan decomposition. Let a

be the space of all traceless diagonal matrices, where

a = {−i



λ1 0 0 0 0
0 λ2 0 0 0

0 0
. . . 0 0

0 0 0 λn−1 0
0 0 0 0 λn


},

Then any element of U ∈ SU(n) can be written as U = K1 exp(D)K2, where K1,K2 ∈
SO(n) and D ∈ a is a diagonal matrix as above.

Theorem 1. [9] For the control system in Eq. (77), all the elements of G,
that can be reached starting from U(0) = I in time T > 0, denoted as R(I, T ) is
characterized by its closure as

R̄(I, T ) = K1 exp(T
∑

j

αjZj)K2,
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where K1,K2 ∈ K, αj ≥ 0 and
∑

j αj = 1 and Zj ∈ AdK(−iHc) ∩ a. The points Zj

are called the Weyl points, the set of points, where the orbit AdK(−iHc) intersects
the Cartan subalgebra a. Let c(−iHc) denote the convex hull of the Weyl points
AdK(−iHc) ∩ a, then the reachable set can also be written as

(83) R̄(I, T ) = K1 exp(T c(−iHc))K2.

Remark 1. In essence, the KAK decomposition of the groupG allows us to write
any U ∈ G as U = K1 exp(Y )K2 with Y ∈ a and the minimum time T to synthesize
U is to find the smallest time T , such that Y/T lies in the convex hull of the Weyl
points Zj . Given that T is the minimum time such that Y/T =

∑
j αj AdKj (−iHc)︸ ︷︷ ︸

Zj

,

with αj > 0,
∑

j αj = 1 and AdKj
(−iHc)︸ ︷︷ ︸
Zj

∈ a, we can synthesize exp(Y ) as

(84) exp(Y ) =
n+1∏
j=1

Kj exp(−iHctj)K
†
j ,

where Kj ∈ K, and therefore take negligible time to synthesize. The optimal trajec-
tory consists of a sequence of fast control rotations, interspersed with the periods of
free evolution.

Example 3. In example 2, the Weyl points Zj are

−i



λσ(1) 0 0 0 0
0 λσ(2) 0 0 0

0 0
. . . 0 0

0 0 0 λσ(n−1) 0
0 0 0 0 λσ(n)


,

the various permutations of the eigenvalues of Hc. The closure of the reachable set in
time T is all matrices of the form

K1 exp(−i



µ1 0 0 0 0
0 µ2 0 0 0

0 0
. . . 0 0

0 0 0 µn−1 0
0 0 0 0 µn


)K2,

where µ = (µ1, µ2, . . . , µn)′ satisfies µ ≺ Tλ, where λ = (λ1, λ2, . . . , λn)′, (the symbol
≺ stands for majorization), i.e., µ lies in convex hull of the vector Tλ and its various
permutations.
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Example 4. For the coupled spins, as in example 1, if we choose a = −i{IαSα},
then the Weyl points Zj have the form cxIxSx + cyIySy + czIxSx, where

{(cx, cy, cz) ∈ {ε1cσ(1), ε2cσ(2), ε3cσ(3)|εi = ±1,
∏

i

εi = 1},

where (cσ(1), cσ(2), cσ(3)) are various permutations of (c1, c2, c3), where c1 ≥ c2 ≥ |c3|.
Then the reachable set for the system in time T in example 1 is now described by
Theorem (1) and can be explicitly written as

(85) R̄(I, T ) = K1 exp(b1IxSx + b2IySy + b3IzSz)K2

such that b1 ≥ b2 ≥ |b3|, and b1 ≤ Tc1 and b1 + b2±|b3| ≤ T (c1 + c2±|c3|). As before
K1,K2 ∈ K = SU(2)⊗ SU(2).

Theorem 1, gives a complete characterization of the reachable set for coupled
qubit system. The results derive from the Cartan decomposition of the group G =
SU(4) in terms of the associated subgroup K = SU(2) ⊗ SU(2), where elements
of K can be synthesized in arbitrarily small time. Until now we have only talked
about coupled two qubits. Experiments in Quantum information processing and NMR
spectroscopy involve control of dynamics of multiple coupled spins. For a system of
n spin 1

2 , the Hilbert space is 2n dimensional. Unitary transformation on such a
space belongs to the group G = SU(2n). The control Hamiltonians for such a system
generate the subgroup K = SU(2) ⊗ SU(2) . . . SU(2), the group of local unitary
transformations that effects individual spins. Lie group decompositions such as the
KAK decomposition can be used to decompose any unitary transformation U ∈ G as

U = Kn+1 exp(−iHctn) . . . exp(−iHct1)K1,

where Ki ∈ K are local rotations and are interspersed with evolution of the coupling
Hamiltonian −iHc for appropriate time. These decompositions then provide explicit
synthesis methods for generating unitary transformations in G.

There are numerous beautiful control problems of efficient synthesis of unitary
transformations belonging to SU(2n), using the coupling Hamiltonian between the
spins and the control subgroup K [10]. Finding time optimal control for synthe-
sizing unitary transformations in the big space G can be reduced to problems in
Sub-riemannian goemetry and have been recently studied [29]. Characterization of
time optimal trajectories for multiple spin systems however remains largely open.

5. Control of Coupled Spin Dynamics in the Presence of Relaxation.

Many experiments in coherent spectroscopy and quantum information processing re-
quire transfer between different states of coupled spin system. Presence of decoherence
arising due to coupling to the environment, limits how close the state of a spin system
can be driven to a target state. In the previous section, we described problems in
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Fig. 7. The figure A shows the eigenstates of the Hamiltonian H0 +Hc for the two spin system

as in Eq. (86). The energies are in the frequency units. Figure B corresponds to an ensemble where

there are excess of spin I oriented along the B0 field direction. The populations in various states

are shown below the energy bars.

time optimal control of coupled spin dynamics with the goal of minimizing decoher-
ence effects by reducing the time to perform quantum operations. In this section, we
describe some problems of optimal design of trajectories of coupled spin evolution so
that they suffer minimum decoherence loss. We show that by exploiting explicit mod-
els for decoherence, represented by Lindblad operators as described in Eq. (33), it is
possible to design trajectories of the coupled spin system so that they suffer minimum
decoherence loss [30, 31, 32].

We consider a coupled spin system consisting of spin I and S. The Hamiltonian
for the spin system takes the form

(86) H(t) = 2πνIIz + 2πνSSz︸ ︷︷ ︸
H0

+πJ2IzSz︸ ︷︷ ︸
Hc

+2πA cos(ωt+ θ(t))︸ ︷︷ ︸
u1(t)

(Ix + Sx)︸ ︷︷ ︸
H1

The first two terms of H0 represent energy of the spins I and S in a static mag-
netic field along z direction. The term 2IzSz, corresponds to interaction Hamiltonian,
which gives a positive contribution when spins are oriented alike and negative con-
tribution when the spins are oriented opposite to each other. The control consists of
an oscillating magnetic field along the x direction, whose amplitude, frequency and
phase, given by A(t), ω and φ can be varied. In these experiments, J � A� νI , νS .
Typical values of J and A are in Hz and Khz respectively, while νI and νS at B0 field
strength of Tesla is 100 of MHz.
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The eigenstate of the Hamiltonian are the product operator basis |00〉, |01〉, |10〉
and |11〉, where |0〉 and |1〉 are eigenstates of the σz, with eigenvalues 1

2 and− 1
2 . There-

fore, the energies of these eigenstates are − (νI+νS−J/2)
2 , (νI−νS−J/2)

2 , (−νI+νS−J/2)
2

and (νI+νS+J/2)
2 . These energies are depicted in the energy level diagram in Fig. 7A.

Observe, that the difference in the energies of the |1〉 and 0〉 states of spin I depends
on whether the S spin is in |0〉 or |1〉 state and corresponds to transitions I and II

in Fig. 7A. The corresponding energies are νI − J
2 and νI + J

2 . Therefore, if one
performs an NMR experiment as described earlier in Fig. 3 on an spin ensemble of
coupled spin I and S where I spins have the Larmor frequency ωI , then one observes
two resonances, one at νI − J

2 and νI + J
2 .

Fig. 7B, shows the state of a spin ensemble with population in different states
written below the energy bar. The proportion of the ensemble when spin I in the
state |0〉, vs when the spin I is in the state |1〉, is 5/4. While the ensemble has equal
number of spin S in |0〉 and |0〉 states. Writing down a density matrix for this system
then gives,

(87) ρ =
5
18
|00〉〈00|+ 5

18
|01〉〈01|+ 4

18
|10〉〈10|+ 4

18
|11〉〈11|.

We obtain

ρ =
1
4
1 +

1
18
Iz,

which signifies that we have an ensemble of spins with an excess of spins I oriented
along the z direction. An important experiment in NMR spectroscopy is to synthesize
unitary transformations that will transform an ensemble of the kind

1
4
1 + αIIz + αSSz,

where αI > αS into an ensemble that looks like 1
41 +αSIz+αISz. If the gyromagnetic

ratio γI > γS , then in thermal equilibrium, spins I are more polarized than spin S

and therefore αI > αS . By transforming the ensemble so that more of the spins
S get more polarized compared to their equilibrium state, it is possible to improve
the sensitivity of NMR experiments that determine the Larmor frequency of spins
S. This experiment is called, transfer of polarization experiment. To make matters
more transparent, we assume αS = 0 and drop the factor 1

41 , as this part of the
density matrix doesnot transform under rotations. We consider operations that will
transform the spin ensemble from the initial state

(88) Iz → Sz.

One method for performing this manipulation is to first perform a rotation on spin
I conditioned on the state of spin S, so that the |10〉 ↔ |00〉, while |01〉 and |11〉 is



ON SOME MODEL PROBLEMS IN QUANTUM CONTROL 33

unperturbed. In the language of quantum information processing, this is so called
a controlled not (CNOT) operation, and the corresponding unitary transformation,
denoted Ucnot inverts the state of spin I, conditioned on state of spin S being |0〉.
This is depicted by arc I in Fig. 7 B. Now, we can perform a controlled not operation
on spin S, such that the S spin is inverted if spin I is 0. As a result of first controlled
not operation, the ensemble in (87) transforms to

(89) ρ =
5
18
|10〉〈10|+ 5

18
|01〉〈01|+ 4

18
|00〉〈00|+ 4

18
|11〉〈11| = 1

4
1 +

1
18

2IzSz.

As a result of second controlled not operation, the ensemble in (89) transforms to

(90) ρ =
5
18
|10〉〈10|+ 5

18
|00〉〈00|+ 4

18
|01〉〈01|+ 4

18
|11〉〈11| = 1

4
1 +

1
18
Sz.

Another operation of fundamental importance in quantum information processing is to
transform a separable state |00〉 to an entangled state of the form |00〉+|11〉

2 . Entangled
states are useful resources in many quantum information processing protocols. One
mechanism of performing such an operation is to start with an initial state |00〉 and
transform it as

|00〉 → |0〉 |0〉+ |1〉√
2

.

Such a transformation simply involves doing a local unitary transformation of the type
exp(−iπ

4 1 ⊗σx) and can be obtained by evolution of local Hamiltonians as described
in the previous section. Such operations are significantly faster than the evolution of
the coupling Hamiltonians. Now, by performing the unitary transformation, Ucnot on
this state, where the state of the first spin I is inverted, conditioned on the state of
the spin S, such that |00〉 → |00〉 and |01〉 → |11〉, we obtain

|0〉 |0〉+ |1〉√
2

→ |00〉+ |11〉
2

.

In the presence of decoherence or dissipation in the system, the desired transfer cannot
be performed with complete fidelity. Interesting optimal control problems arise with
the goal of maximizing the fidelity of the desired transformations in the presence of
decoherence as described subsequently. The control system describing the transfer
is obtained by first writing the Schröedinger equation of the coupled spin system in
terms of the product basis |00〉, |01〉, |10〉 and |11〉. This gives us that
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d

dt


ψ1

ψ2

ψ3

ψ4

(91)

=
−i
2


−ωI − ωS + J u u 0

u −J + ωS − ωI 0 u

u 0 ωI − ωS + J u

0 u u ωI + ωS + J



ψ1

ψ2

ψ3

ψ4

 .

We add decoherence into our system model by introducing fluctuations into the
system Hamiltonian H(t) in Eq. (91). The resulting density matrix equation then
takes the form

(92) ρ̇ = −i[H(t) + f1(t)Iz + f2(t)Sz + f3(t)IzSz, ρ]

Where f1(t), f2(t) and f3(t) are assumed to be uncorrelated fluctuations such that
E[fi(t + τ)fj(t)] = δijδ(τ)ki. This captures the fact that various terms contributing
to the Hamiltonian fluctuate. This leads to the master equation

(93) ρ̇ = −i[H(t), ρ] + k1[iIz[iIz, ρ] + k2[iSz[iSz, ρ] + k3[iIzSz[iIzSz, ρ]︸ ︷︷ ︸
L(ρ)

.

Now, by choosing u(t) = 2 cosωIt, where ωI is the resonance frequency of spin I, and
transforming into a rotating frame described by taking the density matrix

ρ(t) → exp(iH0t)ρ(t) exp(−iH0t),

we obtain that

(94) ρ̇ = −i[2JIzSz +A cosφ(t)︸ ︷︷ ︸
u(t)

Ix +A sinφ(t)︸ ︷︷ ︸
v(t)

Iy, ρ] + L(ρ).

We can rewrite the corresponding density equation as

(95)
d

dt



z1

y1

x1

x2

y2

z2


=



0 u −v 0 0 0
−u −k −J 0 0 0
v J −k 0 0 0
0 0 0 −k −J v

0 0 0 J −k −u
0 0 0 −v u 0





z1

y1

x1

x2

y2

z2


where (x1, y1, z1) is a Bloch vector associated with the two level system |00〉 and |01〉.
Similarly, (x2, y2, z2) is the Bloch vector associated with the two level system |10〉 and
|11〉.
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Fig. 8. The figure shows pictorially the states X1, X2, Z1, Z2, as in Eq. (96), where the angle

θ1 and θ2 can be controlled arbitrarily fast.

The goal is then to synthesize u(t) and v(t) that transfer

1
0
0
0
0
1


→



−1
0
0
0
0
1


.

This would correspond to the selective inversion of the transition I in the Fig. 7A.

If we re-express the above equations with coordinates Z1 = z1+z2
2 and Z2 = z1−z2

2 .
Similarly, we define X1, X2, Y1, Y2. Then, we obtain the following control system,

(96)
d

dt


Z1

X1

X2

Z2

 =


0 −u(t) 0 0
u(t) −k −J 0
0 J −k v(t)
0 0 −v(t) 0



Z1

X1

X2

Z2

 .
Now, the goal is to steer the above system from (1, 0, 0, 0)′ to (0, 0, 0, η)′, maximizing
the value of η. Here the parameters J and k represents the coupling and relaxation in
the system. Eq. (96) represents a typical problem in the control of quantum systems in
the presence of decoherence where one requires natural dynamics, represented by the
parameter J to steer the system between points of interest and the natural dynamics
is dissipative, as represented by the parameter k. When the strength J is comparable
to the parameter k, one necessarily dissipates. resulting in η < 1. Since the controls
can be made much larger than the natural parameters in the system, we define r1 =√
Z2

1 +X2
1 , r2 =

√
Z2

1 +X2
1 , tan θ1 = Z1

X1
and tan θ2 = Z2

X2
. Writing an equation for

r1 and r2, gives us

(97)
d

dt

[
r1

r2

]
=

[
−ku2

1 −Ju1u2

Ju1u2 −ku2
2

]
,
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where u1(t) = cos θ1(t) and u2(t) = cos θ2(t). The goal is that for 0 ≤ u1(t), u2(t) ≤ 1,
find the maximum possible transfer to the final state r2, starting from the initial
state (r1, r2) = (1, 0). Now, this problem can be solved by direct application of the
maximum principle.

Let (λ1, λ2), represent the costate variable for the system in Eq. (97). Along the
optimal trajectory, the Hamiltonian

H(u1, u2) =
[
λ1 λ2

] [
−ku2

1 −Ju1u2

Ju1u2 −ku2
2

] [
r1

r2

]
,

should be maximized. The Hamiltonian can then be written as

H(u1, u2) =
[
u1 u2

] [
−kλ1r1 J λ2r1−λ1r2

2

J λ2r1−λ1r2
2 −kλ2r2

]
︸ ︷︷ ︸

B

[
u1

u2

]
.

Then the optimal (u∗1, u
∗
2) should satisfy that H(u∗1, u

∗
2) = 0. This then implies that

det B = 0 and B

[
u∗1

u∗2

]
= 0. Then substituting detB = 0 and letting a = λ2

λ1
, b = r2

r1

and ξ = k
J , we obtain that √

b

a
=

√
1 + ξ2 − ξ.

Now, using the condition that B

[
u∗1

u∗2

]
= 0, implies that u∗1

u∗2
= a−b

2ξ , resulting in

(98)
u∗2r2
u∗1r1

=
√

1 + ξ2 − ξ.

The optimal feedback control law entails for the equation (96), that X2
X1

=
√

1 + ξ2−ξ.
This policy leads to an optimal value of η =

√
1 + ξ2−ξ in (96) and this is the largest

possible value of r2 in (98). Infact, it is now straightforward to write down an optimal
return function V (r1, r2), representing the maximum possible achievable value of r2
starting from arbitrary value of r1 and r2 and it turns out to be

V (r1, r2) =
√
η2r21 + r22.

In Eq. (92), we assumed that fluctuations fi(t) are uncorrelated. Interesting
model systems arise when we consider correlations between various noise mechanisms
[31]. Suppose we assume that E(f1(t)f3(t+ τ)) = kcδ(τ), then the following transfer
problem arises which is of fundamental interest in NMR spectroscopy ([31]). Given
the control system
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Fig. 9. The figure shows efficiency of various state of the art pulse sequences as a function of
ka
J

for the transfer in Eq. (99) for kc = .75. The CROP pulse sequences developed using optimal

control of system in Eq. (99) provide the optimal transfer.

(99)
d

dt



Z1

Y1

X1

X2

Y2

Z2


=



0 u(t) −v(t) 0 0 0
−u(t) −ka −J 0 kc 0
v(t) J −ka kc 0 0
0 0 kc −ka −J v(t)
0 kc 0 J −ka −u(t)
0 0 0 −v(t) u(t) 0





Z1

Y1

X1

X2

Y2

Z2


,

find optimal (u(t), v(t)) such that starting from (Z1, Y1, X1, X2, Y2, Z2) = (1, 0, 0, 0, 0,
0), what is the largest value of (0, 0, 0, 0, 0, η).

The above optimal control problem can be solved in closed form. Consider the
vectors l2 = (X2, Y2) and l1 = (X1, Y1). The optimal solution is then given by the
following two invariants of motion. The ratio

(100)
l2
l1

=
√

1 + ξ2 − ξ = η; ξ =

√
k2

a − k2
c

k2
a + J2

is maintained constant and the angle between vectors l2 and l1 is maintained constant.
The maximum transfer of efficiency is then η.

It is worthwhile to point out that researchers in magnetic resonance have devel-
oped novel pulse sequences that have improved the transfer described in Eq. (99),
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however the fundamental limits of the transfer described here was not known. Fig.
9 shows plot of transfer efficiency of various state of the art pulse sequences as a
function of the ratio ka

J for kc = .75. The CROP pulse sequence obtained by solving
the above transfer problem using methods of optimal control performs better than all
state of the art methods and provide significant improvement is sensitivity. Further-
more methods of optimal control help to provide limits on how close can a quantum
dynamical system be driven to a target state.

In this section we provided some concrete examples of state transfer problems
involving control of coupled spin dynamics in the presence of decoherence or relax-
ation. We showed how optimal control of these dissipative bilinear systems can lead
to design of better experiments. A systematic study of the controllability and optimal
control problems related to Lindblad equations of open quantum systems is expected
to have immediate impact in areas of coherent spectroscopy and quantum information
processing.

6. Conclusion. In this paper, we presented some model problems that arise in
the control of spin dynamics in experiments in magnetic resonance. Due to the space
limitation, an important class of quantum control problems related to the realtime
monitoring of state of the quantum system and the backaction of these measurements
on the state of the system have not been discussed [36]. The control issues discussed
in this article are ubiquitous in problems involving control of quantum mechanical
systems as encountered in various areas of physics and chemistry. Although experi-
ments in spectroscopy involving probing and control of quantum mechanical systems
using electromagnetic fields are now more than 50 years old, sophisticated design and
shaping of the electromagnetic control fields only began to emerge in 80′s. Around
then physicists and chemists started to think along traditional control related issues
of controllability and optimal control. The intellectual program initiated by Roger
Brockett in 1970, on the study of nonlinear control systems and the use of differen-
tial geometric methods to address these problems is foundational for the subject of
quantum control.
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