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EFFICIENT SOLUTION OF LINEAR MATRIX EQUATIONS WITH
APPLICATION TO MULTISTATIC ANTENNA ARRAY
PROCESSING

HANOCH LEV-ARI*

Abstract. We present a computationally-efficient matrix-vector expression for the solution
of a matrix linear least squares problem that arises in multistatic antenna array processing. Our
derivation relies on an explicit new relation between Kronecker, Khatri-Rao and Schur-Hadamard
matrix products, which involves a selection matriz (i.e., a subset of the columns of a permutation
matrix). Moreover, we show that the same selection matrix also relates the vectorization-by-columns
operator to the diagonal extraction operator, which plays a central role in our computationally-

efficient solution.

1. Introduction. Linear matrix equations show up in a variety of engineering,
mathematics and physics problems, including linear system analysis, modeling of non-
stationary covariances, and multistatic antenna array processing. For instance, the
Lyapunov equations A7 X+XA+Q =0 and X—AY XA = Q (where the superscript
H denotes conjugate transpose) are used to analyze the stability of continuous-time

and discrete-time systems, respectively [1]. The generalized Lyapunov equation
AXBT +CcxDT =Q

has been used to characterize structured covariance matrices, and to construct efficient
matrix factorization and inversion algorithms [2, 3, 4]. Such equations can be readily

converted into the standard linear equation format by using the well-known identity

[5]
(1) vec {AXBT} = (B® A) vec {X}

where vec{-} denotes vectorization by columns of a matrix. This results in the linear

equation
(BRA+D®C)vec{X} =vecQ

which can be solved for the unknown vec{X}.

A linear matrix equation of a somewhat different flavor arises in multistatic an-
tenna array processing applications. An unknown medium is probed by transmitting
energy into it from a multi-element antenna array, and recording the scattered signal

received by (another) multi-element antenna array. The resulting measurements are
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arranged into a matrix H = {h;;}, where h;; is the response (at a single fre-
quency) from the j-th transmitting element to the i-th receiving element [6]. When
the medium consists of reasonably spaced point scatterers in a uniform background,
the distorted wave Born approximation [7] provides a simple characterization of the
multistatic data matrix H in terms of the scatterer locations {x;} and scattering

coefficients {7;}, viz.,

L
(2) H=>" grec(Xi) i gir(Xi)
=1

where L denotes the number of point scatterers, and where g (x;) (resp. grec(Xi))
is the so-called steering vector associated with wave propagation between the trans-
mitting (resp. receiving) array and the i-th scatterer. The acoustics community
usually refers to multistatic array processing as (mathematical) “time-reversal” [6].
The multistatic antenna array processing problem amounts to recovering the scat-
terer locations and scattering coefficients from the acquired data matrix H. A
subspace analysis technique can be used to determine the scatterer locations via a
MUSIC-like pseudo-distribution [8]. Once the locations are known, the linear equa-
tion (2) can be solved for the unknown {7;}. This equation can be written in matrix

notation as

(3a) H=Ge XGL, X 2 diag{r;; 1<i<L}

where

(3b)

GtT: gtr(Xl) gtr(X2) gtr(XL):|; Grec: |:grec(X1) grec(XZ) grec(XL) .

Since the unknown matrix X is diagonal, eq. (3a) is over-determined (provided that
the number of elements in H exceeds L), which suggests using a least squares
approach, viz.,

2
(4) Xop £ argmin H H — Gree X GT.
F

subject to the constraint that X is a diagonal matrix [9].

Applying the direct vectorization transformation (1) to H — Gye. X GL. results
in a highly inefficient least squares problem, because vec{X} is very sparse. In this
paper we describe an alternative approach based on:

e a known vectorization identity, viz.,
(5) vec{AXBT} = (B® A) vecd {X}, X is diagonal

which involves the so-called Khatri-Rao matriz product © [5], as well as

the diagonal extraction operator vecd {X}, which forms a column vector
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consisting of the diagonal elements of the square matrix X, viz.,
A T
(6) vecd {X} = [xll Too2 ... xLL}

instead of the much longer column vector vec{X};
e several new results about the relation between Kronecker, Khatri-Rao and
Schur-Hadamard matrix products, which lead to a very efficient computa-
tional procedure for solving the matrix least squares problem (4).
We formulate the problem and present our main results in Sec. 2. New results about
the “Kronecker to Khatri-Rao to Schur-Hadamard” conversion are derived in Sec. 3,

and some concluding remarks are provided in Sec. 4.

2. Problem Formulation and Main Results. We consider the matrix

linear least squares (LLS) problem
2
. _ T
» up o= 157

where A, B, ) are given (complex valued) matrices of sizes Ny x L, Np x L, and
N4 x Np, respectively, and where the unknown L x L matrix X is diagonal. We
also assume that L < Ny Np, so that the linear matrix equation AXBT = Q is
over-determined.

Using the identity (1) we can transform (7) into the vector LLS form
2
min H vee {Q) — (B ® A) vec {X}H
2

which has the well-known solution
-1
vee {X} = [ (Be A" (B® A)} (B ® A vec {Q}.
As we have observed earlier, when the unknown matrix X is diagonal, solving for
vec { X'} is highly inefficient, since most of the elements of X vanish.
Instead we can use the more compact vectorization identity (5) to rewrite the

matrix LLS problem (7) in the reduced-order vector form
2
(8) min Hvec{Q}— (B® A) vecd{X}H
2

where © denotes the Khatri-Rao matriz product [5]: the k-th column of B® A is
the Kronecker product of the k-th column of B by the k-th column of A, for
k=1,2,...L. Notice that vecd {X} consists of only the nontrivial (i.e., diagonal)

elements of the matrix X. The explicit solution of (8) is
~1
(9) veed { X} = (B@A)H(B@A)] (B ® A)H vec {Q}).

It turns out that this expression can also be implemented using Schur-Hadamard
products (i.e., element-wise array multiplication), resulting in a significant reduction

in computational cost, as implied by the following result.
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THEOREM 2.1. Given two matrices, A (of size Ny x L) and B (of size
Np x L), we have

(10) (A® B)(A© B) = (A"A) o (B"B)

where o denotes a Schur-Hadamard matrixz product. In addition, if Q is any matriz
of size Ny X Np, then

(11) veed {ATQB} = (B ® A)T vec{Q}.
o
COROLLARY. When L < min{Na,Ng} it follows from (10) that
(12a) rank {A®@B} =1L <= (A"A)o(B*B)>0
and thus also
(12b) rank {A} = L =rank {B} = rank{A® B} =1L.
o

The proof of this theorem relies on certain properties of the Khatri-Rao product and
the diagonal extraction operator vecd{-}, which we establish in the following section.
We observe that the left-hand-side expression in (10) requires NaANgL+ NsNpL(L+
1)/2 multiplications, while forming the equivalent right-hand-side expression requires
only (Ng + N + 1)L(L 4+ 1 )/2 multiplications. Thus the latter offers significant
computational savings, especially when NyNp > N4+ Np + 1.

Now, using (10) and (11) we can rewrite (9) in the more compact form
~1
(13) veed{X} = | (BB)o (A" A)| vecd {A”Q conj(B)}.

The expression (13), which requires O(L3) + O([Na + Ng]L?) (multiply and add)
operations is much more efficient than (9), which requires O(L3)+O([NaNg] L?) op-
erations. The computational advantage of using (13) is particularly evident when the

LLS problem (7) is “strongly over-determined,” i.e., when
(14) L < min(Ny, Np)

which implies that N4 Np > Na+ Np > L.

In order to be able to use (13) we must ascertain that the matrix (BHB) o
(A2 A) is invertible. This will hold, for instance, when both A and B have full
column rank. Such is indeed the case in multistatic antenna array processing: both
Gt and Gpee have full column rank (except in very rare pathological cases [10]). In
the full rank case A7A >0 and B¥ B > 0, so that their Schur-Hadamard product



EFFICIENT SOLUTION OF LINEAR MATRIX EQUATIONS 127
is positive definite as well [11]. In general, for any two Hermitian positive semidefinite
matrices R = [r;;] and @ = [g;;] we have [11]

(mln sz) )\mzn (R) S )\mzn (R o Q) S )\mam (R o Q) S (max QM) )\ma;ﬂ (R)

In particular, when both matrices are positive definite, then Apin(R) > 0, as well as
gii > 0 for all i, so that A\pin(Ro@) >0 and, therefore, Ro @ > 0, as stated.

3. Diagonal Extraction and the Khatri-Rao Product. Given two matrices,
A (of size Ny x L) and B (of size Np x L), let {a;; 1 <i <L} denote the
columns of A, and {b;; 1 <i <L} denote the columns of B, namely,

A=[a1 a9 ...aL], Bz[bl bg bL]

The columns of the Kronecker product A® B are {a;®b;} forall ,j combinations

in lexicographic order, namely,

A@B=|m@b a®b ... a®b aob aob .. aob.
Thus, the Khatri-Rao product
(15) A®B 2 {a1®b1 ag ® by ...aL®bL}

consists of a subset of the columns of A ® B. This observation can be expressed in
the form (A ® B) S, = A® B, where the selection matriz Sy, is

A
(16a) SL = [e1 ens2 eanss ... er2]

and e isan L% x 1 column vector with a unity element in the k-th position and

zeros elsewhere, viz.,

(16b) CL

>
(@)
ja]
—
(@)
ja]

1", 1<k<I®
Applying the (L? x L) matrix Sr from the right selects only a; ®b; combinations
with 4 =j so that indeed (A® B) S, =A0B.

Next, we observe that for any two sets of columns of the same length N, say
{aj; 1<j<L}and {b;j; 1<j<L}, wehave

ay; b;
az; bj
CLj@bjECLj@bj:
an; b;
Now, the elements of the N x 1 column vector
a1y blj
a2j bgj

Cl,jObj:

CLNj ij
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are clearly a subset of the elements of a; ® b; and, in fact,
ajObj ZSZI\;((Ij@bj)

so that ST, (A © B) = Ao B for any two matrices A, B of the same size.

In summary, we have the following fundamental result, which relates Kronecker,
Khatri-Rao and Schur-Hadamard products.

THEOREM 3.1. Given two matrices, A (of size Ny x L) and B (of size
Np x L), we have

(17a) (A®B) S, =A6B

where the selection matrix Sy is as defined in (16). In addition, if both matrices

have the same size (i.e., Ny = N = N) then we also have
(17b) Sk (AoB)=AoB
and thus also

(17c) Sk (A®B) S, =AoB.

As for the diagonal extraction operator vecd {-}, we observe that
vecd {A} = ST vec {A}

for any square (N x N) matrix A ={a;;; 1 <i<N,1<j <N} Thisisso

because vec{-} vectorizes a matrix by columns, so that

Vec{A}:[all a1 ... ani aiz2 ... anN2 ... CLNN]
and we notice that the diagonal elements {ai1,a29,...,ann } are evenly spaced
within vec {A}, occupying the 1-st, (N + 2)-nd, (2N + 3)-rd, ..., N%th posi-

tions. Pre-multiplying vec{A} by S% selects the 1-st, (N + 2)-nd, (2N + 3)-
rd, etc. elements of this vector, which results in the (much shorter) column vector
[au asy ... aNN}T = vecd {A}. Conversely, for a diagonal matrix D, the
N2 x 1 column vector vec{D} is sparse, and can be generated by inserting zeros
into vecd{D}, viz.,

vec{D} = Sy vecd {D}.

Notice that combining the two last results produces veed{D} = S%L Sy vecd {D},
which holds true for every (N x N) diagonal matrix D, so that we must have
STSn =1In.

In summary, we have established the following result, which relates the vectoriza-

tion-by-columns operator vec{-} to the diagonal extraction operator vecd{-}.
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THEOREM 3.2. Given a square (N x N) matriz A, we have
(18a) vecd {A} = S% vec {A}.
If A is diagonal, then also
(18b) vec{A} = Sy vecd{A}, A is diagonal.

Moreover, the columns of the (N? x N) selection matriz Sx are mutually ortho-

normal, viz.,

(18C) SJT\}SN ZIN.

Proof of Theorem 2.1. From (A® B) S, = A® B it follows that
(Ao B (A®B) = ST (A® B)¥(A® B) S = ST [(AHA) ® (B"B)| S¢.
Applying (17¢) results in ST [(AHA) ® (BHB)} S = (AHA) o (B B), so that
(A©B)(AG B) = (A" 4) o (B B)

which establishes (10). Next, observe that for any given matrices A, B, and @ of
sizes Ny x L, Np x L, and N4 x Np, respectively, we have
vecd {ATQBY} = ST vec {ATQB}
= ST (BT ® AT)vec{Q} = [(B ® A)SL]Tvec Q)
where we used the identities (18a) and (1). In view of (17a) we conclude that
vecd {ATQBY = (B ® A)T vec{Q}

which establishes (11). Finally, (17¢) is obtained by combining (17a) and (17b), which

concludes our proof of the theorem. 0

4. Concluding Remarks. We have established an explicit characterization of

the mappings
A®B = AGB = AoB

in terms of the selection matrix S;, (Theorem 3.1). We have also observed that
the same matrix relates the two operators vec{-} and vecd{-} (Theorem 3.2).
We used these relations to derive our main result (Theorem 2.1) and, subsequently,
to construct a computationally-efficient solution of the matrix least-squares problem
(8), requiring O(L3) + O([Na + Ng]L?) (multiply and add) operations. In contrast,
the most efficient known alternative (i.e., eq. (9)) requires O(L3) + O(|[NaNg] L?)
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operations, which is significantly higher when L < min(N4, Ng). Furthermore,
preliminary inquiries indicate that our (Schur-Hadamard type) solution (13) is less
sensitive to roundoff errors than the known (Khatri-Rao type) solution (9).

The fundamental relations presented in Theorems 3.1 and 3.2 can be exploited
to derive a variety of useful results. For instance, (11) implies that, for a diagonal

matrix D,

vecd {AT DB} = (B ® A)" vec{D} = (B ® A)" Sp vecd {D}
= {S%(B © A)}T vecd {D} = (B o A)T vecd {D}

where we used (18b) and (17b). Thus, we get the new identity
(19) vecd {ATDB} = (B o A)T vecd {D}

which should be contrasted with the known result (5).
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