Keyword Index

analytic and Lipschitz functions; efficiency; mean integrated squared error; mean squared error; 273
anticipating stochastic differential equation; anticipating stochastic integral; Azéma's martingale; homogeneous chaos; multiple stochastic integral; normal martingales; stochastic integration by parts; structure equation; variational derivative; 81
anticipating stochastic integral; Azéma's martingale; homogeneous chaos; multiple stochastic integral; normal martingales; stochastic integration by parts; structure equation; variational derivative; anticipating stochastic differential equation; 81
asymptotic distribution; blur; maximum likelihood; orthogonalization; 185
asymptotic local minimax risk; density estimation; Kaplan-Meier estimator; kernel; random censorship; 519
Azéma's martingale; homogeneous chaos; multiple stochastic integral; normal martingales; stochastic integration by parts; structure equation; variational derivative; anticipating stochastic differential equation; anticipating stochastic integral; 81
B-spline surface; bias compensation; epicentre; objective Bayesian smoothing; penalized sum of squares; 167
Bahadur efficiency; Chernoff's function; large-deviation efficiency; large-deviation principle; minimax risk; statistical experiments; 203
bandwidth choice; local linear regression; mean squared error; nonlinear regression; optimal design; sequential design; 3
Bayes estimates; model selection; binary regression; Consistency; 411
bias compensation; epicentre; objective Bayesian smoothing; penalized sum of squares; B-spline surface; 167
binary regression; Consistency; Bayes estimates; model selection; 411
blocking methods; bootstrap; kernel methods; resampling; time series; variance estimation; 305
blur; maximum likelihood; orthogonalization; asymptotic distribution; 185
bootstrap; kernel methods; resampling; time series; variance estimation; blocking methods; 305
Brownian motion; law of the iterated logarithm; Lévy's area process; 115
Chernoff's function; large-deviation efficiency; large-deviation principle; minimax risk; statistical experiments; Bahadur efficiency; 203
conditional expectation; kernel estimator; Nadaraya-Watson estimator; nonparametric regression; strong convergence; strong law of large numbers; universal convergence; 143
conditional independence; graphical Markov model; quasi-linear dependence; separation criteria; triangular matrix decomposition; 477
conditional inference; Laplace's approximation; likelihood ancillary; relative error; saddlepoint approximation; tailarea approximation; 35
Consistency; Bayes estimates; model selection; binary regression; 411
continuous local martingales; Markov moments; windings of planar random process; 461
convex sets; dilation; measure metric; ordering of distributions; random determinants; random convex sets; 377
density estimation; Kaplan-Meier estimator; kernel; random censorship; asymptotic local minimax risk; 519
diffusion processes; discrete time observations; empirical distributions; limit theorems; mathematical finance; stochastic volatility; 283
dilation; measure metric; ordering of distributions; random determinants; random convex sets; convex sets; 377
discrete time observations; empirical distributions; limit theorems; mathematical finance; stochastic volatility; diffusion processes; 283
efficiency; mean integrated squared error; mean squared error; analytic and Lipschitz functions; 273
empirical distributions; limit theorems; mathematical finance; stochastic volatility; diffusion processes; discrete time observations; 283
empirical processes; finite-dimensional metric space; maximum likelihood estimation; minimum contrast estimators; nonparametric estimation; rates of convergence; sieves; 329
epicentre; objective Bayesian smoothing; penalized sum of squares; B-spline surface; bias compensation; 167
finite-dimensional metric space; maximum likelihood estimation; minimum contrast estimators; nonparametric estimation; rates of convergence; sieves; empirical processes; 329
graphical Markov model; quasi-linear dependence; separation criteria; triangular matrix decomposition; conditional independence; 477
Groebner basis; succession probability; Laplace; Markov chain; 401
homogeneous chaos; multiple stochastic integral; normal martingales; stochastic integration by parts; structure equation; variational derivative; anticipating stochastic differential equation; anticipating stochastic integral; Azéma's martingale; 81
jump-point estimation; nonparametric regression; optimal constant; tapered orthogonal series estimator; 15

Kaplan-Meier estimator; kernel; random censorship; asymptotic local minimax risk; density estimation; 519
kernel; random censorship; asymptotic local minimax risk; density estimation; Kaplan-Meier estimator; 519
kernel estimator; Nadaraya-Watson estimator; nonparametric regression; strong convergence; strong law of large numbers; universal convergence; conditional expectation; 143
kernel methods; resampling; time series; variance estimation; blocking methods; bootstrap; 305
Laplace's approximation; likelihood ancillary; relative error; saddlepoint approximation; tail-area approximation; conditional inference; 35
Laplace; Markov chain; Groebner basis; succession probability; 401
large-deviation efficiency; large-deviation principle; minimax risk; statistical experiments; Bahadur efficiency; Chernoff's function; 203
large-deviation principle; minimax risk; statistical experiments; Bahadur efficiency; Chernoff's function; largedeviation efficiency; 203
law of the iterated logarithm; Lévy's area process; Brownian motion; 115
Lévy's area process; Brownian motion; law of the iterated logarithm; 115
likelihood ancillary; relative error; saddlepoint approximation; tail-area approximation; conditional inference; Laplace's approximation; 35
limit theorems; mathematical finance; stochastic volatility; diffusion processes; discrete time observations; empirical distributions; 283
local linear regression; mean squared error; nonlinear regression; optimal design; sequential design; bandwidth choice; 3

Malliavin's calculus; partial differential equations involving measure data; stochastic partial differential equations; variational inequalities; 445
Markov chain; Groebner basis; succession probability; Laplace; 401
Markov moments; windings of planar random process; continuous local martingales; 461
mathematical finance; stochastic volatility; diffusion processes; discrete time observations; empirical distributions; limit theorems; 283
maximum likelihood; orthogonalization; asymptotic distribution; blur; 185
maximum likelihood estimation; minimum contrast estimators; nonparametric estimation; rates of convergence; sieves; empirical processes; finite-dimensional metric space; 329
mean squared error; analytic and Lipschitz functions; efficiency; mean integrated squared error; 273
measure metric; ordering of distributions; random determinants; random convex sets; convex sets; dilation; 377
mean integrated squared error; mean squared error; analytic and Lipschitz functions; efficiency; 273
mean squared error; nonlinear regression; optimal design; sequential design; bandwidth choice; local linear regression; 3
minimum contrast estimators; nonparametric estimation; rates of convergence; sieves; empirical processes; finitedimensional metric space; maximum likelihood estimation; 329
minimax risk; statistical experiments; Bahadur efficiency; Chernoff's function; large-deviation efficiency; largedeviation principle; 203
model selection; binary regression; Consistency; Bayes estimates; 411
multiple stochastic integral; normal martingales; stochastic integration by parts; structure equation; variational derivative; anticipating stochastic differential equation; anticipating stochastic integral; Azéma's martingale; homogeneous chaos; 81

Nadaraya-Watson estimator; nonparametric regression; strong convergence; strong law of large numbers; universal convergence; conditional expectation; kernel estimator; 143
nonlinear regression; optimal design; sequential design; bandwidth choice; local linear regression; mean squared error; 3
nonparametric estimation; rates of convergence; sieves; empirical processes; finite-dimensional metric space; maximum likelihood estimation; minimum contrast estimators; 329
nonparametric regression; strong convergence; strong law of large numbers; universal convergence; conditional expectation; kernel estimator; Nadaraya-Watson estimator; 143
nonparametric regression; optimal constant; tapered orthogonal series estimator; jump-point estimation; 15
normal martingales; stochastic integration by parts; structure equation; variational derivative; anticipating stochastic differential equation; anticipating stochastic integral; Azéma's martingale; homogeneous chaos; multiple stochastic integral; 81
objective Bayesian smoothing; penalized sum of squares; B-spline surface; bias compensation; epicentre; 167 optimal design; sequential design; bandwidth choice; local linear regression; mean squared error; nonlinear regression; 3
optimal constant; tapered orthogonal series estimator; jump-point estimation; nonparametric regression; 15 ordering of distributions; random determinants; random convex sets; convex sets; dilation; measure metric; 377 orthogonalization; asymptotic distribution; blur; maximum likelihood; 185
partially specified model; semimartingale; survival analysis; partial likelihood; 65
partial differential equations involving measure data; stochastic partial differential equations; variational inequalities; Malliavin's calculus; 445
partial likelihood; partially specified model; semimartingale; survival analysis; 65
penalized sum of squares; B-spline surface; bias compensation; epicentre; objective Bayesian smoothing; 167
quasi-linear dependence; separation criteria; triangular matrix decomposition; conditional independence; graphical Markov model; 477
random censorship; asymptotic local minimax risk; density estimation; Kaplan-Meier estimator; kernel; 519 random convex sets; convex sets; dilation; measure metric; ordering of distributions; random determinants; 377 random determinants; random convex sets; convex sets; dilation; measure metric; ordering of distributions; 377 rates of convergence; sieves; empirical processes; finite-dimensional metric space; maximum likelihood estimation; minimum contrast estimators; nonparametric estimation; 329
relative error; saddlepoint approximation; tail-area approximation; conditional inference; Laplace's approximation; likelihood ancillary; 35
resampling; time series; variance estimation; blocking methods; bootstrap; kernel methods; 305
saddle-point approximation; serial correlation; serial correlogram; 497
saddlepoint approximation; tail-area approximation; conditional inference; Laplace's approximation; likelihood ancillary; relative error; 35
self-similar processes; small tails; stable processes; stationary increments; 127
semimartingale; survival analysis; partial likelihood; partially specified model; 65
separation criteria; triangular matrix decomposition; conditional independence; graphical Markov model; quasi-linear dependence; 477
sequential design; bandwidth choice; local linear regression; mean squared error; nonlinear regression; optimal design; 3
serial correlation; serial correlogram; saddle-point approximation; 497
serial correlogram; saddle-point approximation; serial correlation; 497
small tails; stable processes; stationary increments; self-similar processes; 127
stable processes; stationary increments; self-similar processes; small tails; 127
stationary increments; self-similar processes; small tails; stable processes; 127
statistical experiments; Bahadur efficiency; Chernoff's function; large-deviation efficiency; large-deviation principle; minimax risk; 203
stochastic integration by parts; structure equation; variational derivative; anticipating stochastic differential equation; anticipating stochastic integral; Azéma's martingale; homogeneous chaos; multiple stochastic integral; normal martingales; 81
stochastic partial differential equations; variational inequalities; Malliavin's calculus; partial differential equations involving measure data; 445
stochastic volatility; diffusion processes; discrete time observations; empirical distributions; limit theorems; mathematical finance; 283
strong convergence; strong law of large numbers; universal convergence; conditional expectation; kernel estimator; Nadaraya-Watson estimator; nonparametric regression; 143
strong law of large numbers; universal convergence; conditional expectation; kernel estimator; Nadaraya-Watson estimator; nonparametric regression; strong convergence; 143
structure equation; variational derivative; anticipating stochastic differential equation; anticipating stochastic integral; Azéma's martingale; homogeneous chaos; multiple stochastic integral; normal martingales; stochastic integration by parts; 81
succession probability; Laplace; Markov chain; Groebner basis; 401
survival analysis; partial likelihood; partially specified model; semimartingale; 65
tail-area approximation; conditional inference; Laplace's approximation; likelihood ancillary; relative error; saddlepoint approximation; 35
tapered orthogonal series estimator; jump-point estimation; nonparametric regression; optimal constant; 15
time series; variance estimation; blocking methods; bootstrap; kernel methods; resampling; 305
triangular matrix decomposition; conditional independence; graphical Markov model; quasi-linear dependence; separation criteria; 477
universal convergence; conditional expectation; kernel estimator; Nadaraya-Watson estimator; nonparametric regression; strong convergence; strong law of large numbers; 143
variance estimation; blocking methods; bootstrap; kernel methods; resampling; time series; 305
variational inequalities; Malliavin's calculus; partial differential equations involving measure data; stochastic partial differential equations; 445
variational derivative; anticipating stochastic differential equation; anticipating stochastic integral; Azéma's martingale; homogeneous chaos; multiple stochastic integral; normal martingales; stochastic integration by parts; structure equation; 81
windings of planar random process; continuous local martingales; Markov moments; 461

