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We prove a characterization of the support of the law of the solution for a stochastic wave equation
with two-dimensional space variable, driven by a noise white in time and correlated in space. The
result is a consequence of an approximation theorem, in the convergence of probability, for equations
obtained by smoothing the random noise. For some particular classes of coefficients, approximation in
the L?-norm for p =1 is also proved.
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1. Introduction and preliminaries

In this paper we characterize the topological support of the law of the solution to the
stochastic wave equation with two-dimensional spatial variable

2
(% - A> u(t, x) = o(u(t, x))F(dt, dx) + b(u(t, x)), u(0, x) = up(x), %(0, X) = vp(x)
(1.1)

where (¢, x) € [0, co[ XR2. In this equation F(¢, x) is a generalized Gaussian field with
covariance

E(F (2, )F(s, y)) = 0(t = 8)f(Ix = y)), (1.2)

where 0 denotes the Dirac delta function and f'is a continuous function on ]0, oo[ satisfying
an integrability condition made precise in assumption (C1) below. In addition, the functional
J: (R X Z(R%) — R given by

S = | ar] x| avoteore—shuce, )

is positive definite. With these hypotheses the process {F(t, x), (¢, x) € [0, co[ XR?} exists.
We consider the mild formulation of (1.1). Let

1 _
S(t, x) = E(t2 — PP s
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then a solution of (1.1) is a stochastic process {u(t, x), (¢, x) € [0, co[ X[R?} satisfying

0
u(t, x) = JRZ S(t, x — y)vo(y)dy + ey (JW S(t, x — y)uo(y)dy>

+ JOJIR? S(t— s, x — Y)o(u(s, y)F(ds, dy) + b(u(s, y))dsdy]. (1.3)

Consider the following set of assumptions on the elements defining (1.3):

(C1) There exist 3 € (0, 1), >0, such that, for 0 << ry,

t
J rf(r) 1n(1 + f) dr < c1P.
0 r
(C2) up: R?> — R is of class #! and bounded with 3/2(1 4 B)-Hélder continuous partial
derivatives, and vp: R?> — R is such that |vp| 4 |Vuo| € L% for some g €]4, oc].
(C3) 0, b: R — R are globally Lipschitz functions.

Equation (1.3) was solved by Dalang and Frangos (1998) up to some small time #y > 0. In a
previous paper (Millet and Sanz-Solé 1999), we proved that, assuming (C1), (C2) and (C3),
equation (1.3) has a unique solution on [0, T] X R? for any 7 > 0. Moreover, the trajectories
of u are y-Hoélder continuous in (¢, x) € [0, T] X K for every y € (0, 8/2(1 4+ 3)) and every
compact subset K of R2.

Let & denote the inner product space of measurable functions ¢ : R> — R such that

J dxj ylp@L/(1x — YDIe()| < +oo.
R2 R2

endowed with the scalar product

o) = | ax| dowris - by

and let A denote the completion of &. Set H = L*([0, T, ﬁ); notice that H and A need not
be spaces of functions. For & € H, let {®"(1, x), (¢, x) € [0, co) X R?} be the solution of

0
O (1, x) = j S0 x = ooy + <j S(t, x - y)uo<y>dy)
R2 R2

t

+ (S(t — -, x — ¥)o(D"(-, %)), h) g —I—J

J S(t—s, x — y)b(®"(s, y))dsdy. (1.4)
0JR2

Set

lp(2, x) — (t', x")|
@lly.x = sup |o(z, x)[ + sup ; Ve (1.5)
” Hy te[O,T]‘ | t,t'€[0,T] (|t —t ‘ + |x - X |)y
xeK xx'eK

t£1 x#£x'
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We prove in Section 2 that the support of the law of {u(t, x), (£, x) € [0, T] X K} is the
closure with respect to the norm |||, x of the set of functions {®", h € H}, where
{®"(t, x), (t, x) €[0, T] X K} is the solution of (1.4). The proof is based on an
approximation result for equations more general than (1.3) constructed by smoothing the
random noise F(¢, x). We refer the reader to Millet and Sanz-Solé (1994a; 1994b) and Bally
et al. (1995) for a presentation of the method and applications to stochastic differential and
stochastic partial differential equations.

In the framework of stochastic partial differential equations, the regularization of the
noise raises technical difficulties connected with the explosion of the corresponding integral
(see, for instance, Bally ef al. 1995). This problem does not appear here for the following
reasons. The noise F' is smoother than space-time white noise. On the other hand, the
integrability condition (C1) and Lemma A.l in Millet and Sanz-Solé (1999) yield

u(t) < CiP!

(see (A.2) and (A.11) below). This fact prevents explosions, as is made explicit in the proofs.

We now introduce some preliminaries and notation used throughout this paper. Let
{ej, j € N} be a sequence of functions of ¢ which is a complete orthonormal system of H
and is taken to be fixed. Define

t

wio = |

J e (x)F(ds, dx), j €N, £ € [0, T]. (1.6)
0JR2

Clearly {W;, j € N} is a sequence of independent Brownian motions.
Let 7 be the separable Hilbert space of functions k:[0, 7] — RY such that
fOT S ilki(s)* ds < oo and endowed with the inner product

T oo
(k, k)5 = L >~ ki(s)ki(s)ds.
Jj=1

Notice that the mapping

@ = ((@(s, %), €(%)g)jeN (1.7)

provides an isometry between H and .7Z.
Let .7, =0(F([0,s] X A4); 0<ss<t Ac.BR?), t=0. For any .7,-predictable
process ¢ € L*(Q; H) we have

[, ot 0rs a9 =3 | o0s . e (19

j=170

t € [0, T1], so that the stochastic integral with respect to the martingale measure F can also be
viewed as a stochastic integral with respect to the infinite-dimensional Gaussian process
{W;(0), t € [0, T, j € N}. We introduce smooth approximations of F constructed as follows.
Fix n €N and let &, be the partition of [0, ] determined by i7/2", i=0,1,...,2".
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Denote by A; the interval [i7/2", (i+ 1)T/2") and by |A;| its length. We write W;(A;) for
the increment W,((i + 1)T/2") — W;(iT/2"), i =0, ..., 2" — 1. Define

W = (W;? = J Wi(s)ds, j € N), (1.9)
0
where, for j > n,

iy =0,

and, for 1 < j < n,

iy
S 2" T WHADIA()  if te 27T, T],
i=1

W) = (1.10)
0 if +€[0,27"T).
Set
"(1,x) = > W (0e(x). (L11)
jeN
It is easy to check that almost surely, w” € H and, more precisely,
" || Loy < Cn'22"2, Wp € [1, o0). (1.12)
Indeed, fix p € [2, c0); then
n_ 2" /2
o | Fngemy = B[22 222" T2 A Wi(A)?
j=1 =1
< CnP/22"/2,
Moreover, for any 0 < ¢} < t, < T, similar computations imply
lo" 1ol Lrosy < Cn'22"2 1, — 1a]'/2. (1.13)

Let (R, .7, P) be the canonical space associated with a standard Brownian motion. Denote
by (Q, .7, P) the product space (QV, . 7N, P?N) which will be our reference probability
space.

Set k(f) = fot k(s)ds for k € 7. For any integer n =1, let T ]; denote the transformation
of Q defined by

T5 @) = o +k — W"(w). (1.14)

Notice that T4(w) = @ + [ (s, w)ds, where {¢,(t, w), ¢ € [0, T]} is an .7 -valued process
adapted to the filtration generated by {W;(1), ¢ € [0, 1], j € N}. Therefore, by Girsanov’s
theorem, Po(T ];)’1 < P. This fact will be used in the proof of Theorem 2.1.

The paper is organized as follows. In Section 2 we prove the characterization of the
support by means of an approximation in probability. In Section 3 we prove approximations
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in LP-norm under stronger hypotheses on the coefficients. As usual, all constants are
denoted by C, regardless of their values.

2. Approximation in probability and support theorem
The purpose of this section is to prove the following result:

Theorem 2.1. Assume (C1)—(C3), fix a compact set K C R*> and let {u(t, x), t € [0, T],
x € K} be the solution of (1.3). Then for any y € (0, 8/2(1 + p)) the topological support of
the law of u in the space Z7([0, T1 X K) of y-Hdlder continuous functions in (t, x) is given
by the closure in ¢7([0, TI X K) of the set of functions {®" he& HY}, where
{®"(t, x), t € [0, T], x € K} is the solution of (1.4).

The proof of Theorem 2.1 is a consequence of an approximation result, concerning
convergence in probability, for an equation more general than (1.3).
More precisely, let us introduce the following hypothesis:

(C3") The coefficients 4, B, D, b: R — R are globally Lipschitz functions.
Then we consider the evolution equations

t

X,(t, x) = XO(t, x) + J

J S(t— 5. x — WAX(s, ) F(ds, dy)
0JR2

+ <S(t - X = *)B(Xn(a *))9 wn>H + <S(t — 5 X = *)D(Xn(’ *))’ h>H

+ [tj S(t— s, x — ¥)b(X,(s, y))dsdy, 2.1)
JoJr2

t

X(t, x) = X°(¢, x) +J

5= s 5=+ BOXG. )P

t

+(S(t =, x — *)D(X(, %)), hyw + J

J S(t—s, x — y)b(X(s, y))dsdy, 2.2)
0JR?

where n =1, A, B, D, b satisfy (C3'), h € H, " is defined in (1.11) and

0
X0t x) = J S(t, x — y)vo(y)dy + o (J S(t, x — y)uo(y)dy>- (2.3)
R2 R2

Our aim is to prove the following:

Proposition 2.1. Assume (C1), (C2) and (C3"). For any y € (0, 8/2(1 + ), n >0 and every
compact set K C R?,
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Tim P(|X, — X[|,.x > 1) =0, 2.4)

where ||-||,.x has been defined in (1.5).

We first show that Theorem 2.1 is an easy consequence of this proposition.

Proof of Theorem 2.1. Assume that Proposition 2.1 has been proved. For n = 1, set

(1, x) = XO(t, x) + (S(t — -, x — 9)0(p(-, %)), ©") i1

+ th S(t—s, x — y)b(u,(s, y))dsdy, (2.5)
0JR2

t

va(t, x) = X°(¢, x) +J

J S(t—s, x — y)a(v,(s, ¥)F(ds, dy)
0JR2

+(S(t— -, x =)o, (, %), h— 0" g

+ JZJ S(t— s, x — y)b(v,(s, y))dsdy. (2.6)
0Jm2

Clearly, equations (2.5) and (2.6) are particular cases of (2.1), while equations (1.3) and (1.4)
are particular cases of (2.2), obtained by choosing A =D =0, B=0 and 4 =D =o,
B = —o, respectively.

Moreover, u, = ®". Given h € H, set k = Z(h), where 7 is the isometry defined in
(1.7). Then, by (1.8), equation (2.6) can be rewritten as follows:

Uy(t, x) = XO(t, x) + i Jt(S(t — 5, x — %)0(U,(s, %)), e,-),;, Wi(ds)
j=170
+Y L(S(t — 5, X = 00 Va(s, ¥)), e)(ki(s) — W (s))ds
j=1

+ JtJ S(t—s, x — y)b(v,(s, y))dsdy,
0JR2

with WJ” defined in (1.10). Therefore, v*(w) =uo T’,‘l(w), where Tﬁ is the absolutely
continuous transformation on Q defined by (1.14).
The convergence (2.4) implies, for any 1 >0,

lim P(||®*" — ull,x >n) =0,
lim P([|u(T7) = @,k >m) = 0.

These two convergences yield the characterization of the support stated in Theorem 2.1 (see,
for instance, Millet and Sanz-Solé (1994a; or 1994b). Indeed, since w, € H, the first
convergence implies that the support of u in Z7([0, T'] X K) is included in the closure of
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{®": h e H}. Since w" is adapted, Po(T")"! < P; the second convergence yields the
converse inclusion. ]

The question of the existence and uniqueness of a solution to equations (2.1) and (2.2) is
solved in Lemma A.1, which is a slight extension of Theorem 1.2 in Millet and Sanz-Solé
(1999). We remark that the existence of a solution X, to (2.1) as well as upper estimates of
X, require some localization, due to the term involving w” which has an unbounded H-
norm. For this reason we localize w” as follows: for any positive integer n, M € N, and
t €0, T], set

A (£) = { sup sup 2" WiA)] < M} 2.7)

Isjsnosis([2"tT-']-1)*"
and
o"M(t, x) = " (t, V)14, ,00-
Notice that
sup [l (1, %)y < M+/n. 2.8)

0=t=<T
Fix o> (2In2)"/? and, for every n>0, set
M(n) = a2"?n'/? (2.9)
and
An(1) = Ap (D) (2.10)
Lemma 2.1. The following convergence holds:

lim P(4,(T)°) = 0.

Proof. Let Z denote an N(0, 1) random variable. Then
P(A4,(T)°) < n2"P(|Z] > 2" M(n))

2n/2 21 M(n)?
< Cn2" exp (_(n)>
n 2

Remark 2.1. Due to (2.8), on the set 4,(7T) we have
"y < Cn2"? (2.11)

and, for any 0 < < ¢t' < T, on A4,(¢') we have
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o™ ol < Cn2"2 | — 1'%, (2.12)
In particular, if [¢#, t'] C A; for some i =0, ..., 2" — 1, on 4,(¢') we have
||CU"1[,J]||H =< Cn. (213)

Lemma A.1 yields the existence and uniqueness of the solution X, to (2.1) and Remark
2.2 shows that the trajectories of X, almost surely have y-Holder continuous trajectories for
y <p/2(1 + f); since X is a particular case of X,, it also has y-Holder continuous
trajectories.

Our next purpose is to check that the sequence of processes Y,(t, x) := X,(t, x) —
X(t, x), n =1, satisfies the requirements of Lemma A.2. To this end, we introduce some
notation and prove several lemmas. For any » = 1, t € [0, T], set

th=max{k27"T; k=1,...,2" —1: k27"T < ¢},

t, =max{t, —27"T, 0}, (2.14)

ty

X, (1, x) = X°(t, %) +J

J S(t— s, x — Y)AXo(s, )F(ds, dy)
0 JR2

+(S(t — -, x = %) B(X,(-, ) 10,1,(), @") 1

+(S(t = -, x = ) DXu(:, N 10,1,1C)s B) 1

+ Jth S(t—s, x — Y)b(X,(s, y))dsdy, (2.15)
0 JR?

In

X (t,x) = X, x) + J

| st =+ B mFs ay

+(S(t = -, x — ¥)D(X(, *)10.,1()s ) i1

+ Jt”J S(t—s, x — y)b(X(s, y))dsdy. (2.16)
0 JR?

For convenience’ sake, we do not write explicitly the fact that the process X~ depends on .
In what follows, || ||, denotes the L”(€2)-norm.

Lemma 2.2. Suppose that conditions (Cl), (C2) and (C3") hold. Then, for any p € [1, o0)
and every integer n =1,

sup [ X(s, x) — X (s, x)||, < C27"FD/2 2.17)
(s.X)E[0.TIXR?

and
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sup  sup | X (s, x)||, < 0. (2.18)
n=1 (s5,x)€[0, T]X R?

Proof. Set || X(t, x) — X~ (£, ¥)||) < CY_}_ Vi(t, x), with

)

J JRZS(I — s, x — )4+ B)(X(s, y)F(ds, dy)

ty

Vi(t, x) = E(

VZ(t: x) = E(<S(t - X *)D(X(’ *))1(1,,,t](')a h>H|p)’

)

Burkholder’s and Holder’s inequalities, along with (A.15) and (A.11), yield

Jr JRZS(t — 5, x — y)b(X(s, y))dsdy

ty

Vi(t, x) = E(

Vi(t,x) < Cu(t— )2 {1+ sup  E(X(t, x)|?) | < c2"FHDr/2,
(t,x)€[0,T]¥XR?

with u(t — t,) given by (A.2).
The Cauchy-Schwarz and Hoélder inequalities imply

Vat, x) < C||h|| 2wt — t)?? (1+  sup  E(|X(z, x)|?)) < C27"F+Dp/2,
(,x)€[0,T]X R?

Finally, Holder’s inequality implies, for v(¢) defined by (A.3):

t

=st<T
xeR?

p
73(t, x) < C(J JRZS(t — 85 x— y)dsdy> 1+ 0sup E(X(¢, x)|?)

In

< Cu(t— t,)? < C272",
which completes the proof of (2.17). Finally, (2.18) is a straightforward consequence of
(A.15) and (2.17). O

Consider the Picard iteration scheme associated with (2.1):

X0, x) = X°(t, x),

t

X5 (1, x) = XO(¢, x) +J J S(t — s, x — MAXE(s, y)F(ds, dy)
R2

0
+(S(t — -, x — *)BXEC, %), @") g + (S(t — -, x — )D(XE(, %)), B)u

t
JrJ J S(t—s, x— y)b(Xﬁ(S, y))dsdy, k=0. (2.19)
0JR?

For any 0 =< » < ¢t < T and every integer k = 0, set
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X0, r; x) = X1, x),
X i) = X000+ | [ S sx = pAcriGs ppFs dy)
+{(S(t = x = ) B D Toa(), ") n
+(S(t =+, x = *)DXEC, ) o,n(), h)
+ J(:JRZSU — 5, X — Y)b(X%(s, y)dsdy, (2.20)

XA, x) = X5, 1,5 ). (2.21)
Notice that X’;(r, t; x) = X’;(r, X).
Lemma 2.3. Assume (C1), (C2) and (C3"). Then, for every p € [1,0), t€[0,T], k=1,
n=1,

sup  E(X (s, y) — XE(s, )P 1a, ) < CnP27 PP
(s,»)€[0, ] X R2

X |14+ sup  E(X5 s, »)|P Ly (2.22)
(s,)€[0,]x R2
and
sup  E(IXu(s, ¥) — X, (s, )P La,9) < CnP2 022
(s,¥)€[0,1]xXR2
X |1+ sup  E(|X(s, y)l”lAnm)]- (2.23)
(5,»)€[0, 1] X R?
Proof. Consider the decomposition
4
E(|X5(t, x) — XAt 0| La0) < CY_ TH(2, ), (2.24)

i=1

with

Th(t, x) = S(r — 5, x = YAXL (s, y)F(ds, dy)

P
Lo |

TE (1, x) = E(I (S(t =+, x = 9BOCE ) 1,000 ") ul "),

74301, x) = E(|(S(t =+, x = DA a0 B il Vi)

P
Tt x) = < 1A,1<r>>

S(t=s,x = WX E1(s, y)dsdy
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The local property of stochastic integrals, the inclusion A,(s) D 4,(f) for s <1,
Burkholder’s and Hélder’s inequalities and (A.11) yield

T8N (1, x) < Cu(t — t,)")?

1+  sup  E(X5 (s, y)l"lA,,(s))]
(5,)El0, (X R2

< 2~ "B+hp/2

1+  sup  E(XE'(s, y)|P1A,,<s>)1. (2.25)
(s5,)€l0,1]xR?

The Cauchy-Schwarz and Hoélder inequalities, along with (2.13) and (A.11), imply

T4 (t, x) < E[||0" 11, 04,0 | 511 = - x = )BX, ' ¢ )0 a0l 5]

< CpPp—"1+P)p/2
(s,¥)€[0,] X R2

1+  sup  E(XFG, y)PlA”(S))]. (2.26)

Similarly, using (A.3) for the last inequality, we have

Tt x) < C|lh|| 2P

I+ sup  EB(X (s »)P1am)|s (2.27)
(s,)€[0,]x R2

T (1, x) < C27°"

L+ s B(XENs )7L (2.28)
(5,¥)€[0,1]xXR2

Thus (2.24)—(2.28) conclude the proof of (2.22).
Similar computations can be carried out to prove upper estimates of the p moments of
the increments |X*!(s, x) — X%(s, x)| 14, and | X M (s, x) — XE(s, x)|14,05); they yield

lim  sup  E[(|X%(s, x) — Xo(s, )7 4+ | X5, 0) — X, (5, 0)| D) ay9] = 0. (2.29)

k=00 (s vefo,n xR

Therefore, (2.22) and (2.29) yield (2.23). O
We now prove the convergence of X, (s, y) to X,(s, y).

Lemma 2.4. Assume (C1), (C2) and (C3"). Then, for any p € [1, +00),

sup  sup  E[Lg,n(|Xa(t, )7 + X, (2, )]P)] < oo (2.30)
n=1 (1,x)€[0, T]XR?

and
sup  [[(Xa(t, X) = X, (6, D)Lyl p < Cn27" D2, (231)
(¢,x)€[0, T X R2
Proof- We want to show that, for any p € [1, c0),

supsup  sup  E[Ly,n(|X5(1, 0|7 + [X (2, )|7)] < +oo. (2.32)
n=1 k=0 (1,x)€[0,T]XR?

Indeed, (2.30) is a consequence of (2.32) and (2.29). For r < ¢, consider the decomposition



898 A. Millet and M. Sanz-Solé

6
E(XEN 1 i x)[P L) < CY TE(, 7 ), (2.33)
i=1

where

A, vy x) = | X0, X)),

TE2(¢, 1y x) = E(

H St — 5, x — MAXK(s, y)F(ds, dy)
0JR2

p
1An<z>),

TE3(t, 1y x) = B((S(t — - x — %) BXEC, ) 0.,7()s @) 1|P1ay0),
TENA (e, 7y x) = B((S( — -, x — »)[BXE) — BAXOIC, 9)10,10), @) 1] 14,0),

T*3(1, 15 x) = B((S(t — - x — DX, 910,40 7Y 1P 1ay0)s

P
1A,,(r>>~

Under hypotheses weaker than (C2), we proved in Millet and Sanz-Sol¢ (1999) that
X2, 1) < Cllvollg, + Vol g0). (2.34)

TEe(, 7y x) = E(

” S(t — s, x — y)b(XX(s, y))dsdy
0JR2

Burkholder’s and Hélder’s inequalities yield

TE2(¢, 7y x) < CJ J(t —s)
0

1+ sup  E(Xk(u, »)|”1a,0)|ds. (2.35)
(u,y)€[0,s] X R2

Let 7, be the operator defined on real-valued functions by
Ta(p)(s, X) = p((s + 27 AT, x).
Let £, be the closed subspace of H generated by the orthonormal system
2"T A () ® (%), i=0,...,2"—1,j=1,...,n,

and denote by 7, the orthogonal projection operator on &,. Then since X fl(s, y) is Ty, -
measurable, the definition of w, in (1.11) implies
p)

1
J, | o maiste = x = 9B M OLaols s, )

Tﬁ+1’3(t, 7 X) = E(
0

and, by Burkholder’s and Holder’s inequalities, if J is defined by (A.1),
T, 7 x) < CE[|(n 0 Ta)(S(t — +, x = #)BX, (. )1 0.0 La,0)ll

-
< CJ J(t—s)
0 (u,y)€[0,s]X R?

1+  sup  E(X%(u, y)|plA"(u))‘| ds. (2.36)
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The Cauchy-Schwarz and Hoélder inequalities, along with (2.11) and (2.22), imply
7,14, 7 x) < E(Jo" Lol 1S — - x = HIBX ) = B DIC, H)loa() Lol )

< npznp/zj J(t —s) sup E(|1 Xk (s, ) — XE(s, »)|P1ay0)ds
0 yeR

< anf’z*"ﬁ"!'/zj J(t—s)
0

1+  sup  E(X ', »)|P14,0)]|ds.
(1, )€[0,5]XR?

(2.37)
Analogously,

r
T = g [ g9
0 (u,y)€[0,s] X R?

I+  sup  E(Xj(u y)l”m(u))]dsa (2.38)

TES(, 75 x) < CJ (1—s)
0

L+ sup  E(X 5 »)[P1a,w)|ds. (2.39)
(u,y)€[0,s]xXR2

Therefore, (2.33)—(2.39) yield

1+  sup  {E([|X%(u, y)|”

r
E(XA (1, 7 9)P L) < J
0 (u,y)€[0,s]XR?

+ X5, p)? + | X, y)|”]1A”<u))}] ds.  (2.40)

Set, for any £k =0, ¢t € [0, T],

ek = sup  E((XE(s, )T+ [ XECs, 9D a)-
(5,»)€[0, 1] X R?

Then, using (2.40) with » =¢ and r = ¢, and adding term by term the corresponding
inequalities, we obtain

RORS CJt[l +h(s) + of T (9)1ds, (2.41)
0

with the convention ¢,'(-) = 0. Since, by (2.34),
(pg(t) < 2sup | X°(¢, x)|? < C,

xeR?

(2.41) yields

sup sup sup qoﬁ(t) =C,
n=1 k=0 1€[0,T]
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which establishes (2.32). Finally, inequalities (2.23) and (2.30) inply (2.31), which completes
the proof of the lemma. U

In what follows, K denotes an arbitrary compact subset of R?. For any s, t, 7 € [0, T],
x, ¥ € K, yeR?, set

'}/(t, f,x,y_c; Say):S(t—S’x—J’)_S(?—Sa?_C—J’)
and

I, b x, %8, 9)=|y(t, 1, x, X s, y)|.

Lemma 2.5. Assume that the function f satisfies condition (Cl). For any 0<y<
B/ +p), t,1€[0, T], x,x € K,

T, 2, x, % -, ®)||lg < C(t— 1" + |x — x|"), (2.42)

T
J J [(1,7,x, % s, y)dsdy < C(|t — 7'/% + |x — x|'/?). (2.43)
0 JR2

Proof. Assume 0 <t <7< T and set
Dt 6, x, %508, y) = (St — 5, x = y) = S(f — 5, x = ) o.(s),
Do(t, £, x, X505, ) = [(S(£ — 5, x — ) — S(f — 5, X — y)10,1(5)],
(e, £, x, %505, y) = S(t — 5, X — ) 1[.7(5);

then
2 2 2
”r(t’ Z, x, )_C; ) >|<)HH = CZ ||rl'(t7 Z, x, )_C; ) >k)”H
i=1

For i =1, 2, it is easy to check that
||F1(t, 1, x, X; -, *)HZH S Ui+ ﬂt,?—z + 2(/41,?—[,&[,?—1)1/2,
IT2(t, 7, x, %5 -, )3y < Miyzox + Nigow + 2(M 5o Nz )2,

where u;7_r, Uii—1, Mi5—x, Nix—x are defined in (A.6)—(A.9), respectively. Finally, for u(?)
defined by (A.2),

||F3(t, ?9 X, X; *)HZH = ﬂ(? — t)

Thus the estimates (A.11)—(A.13) show (2.42). ~
In order to prove (2.43), set I'(¢, 7, x, X; s, y) < Z?:IF,-(t, i, x, X; s, y), with
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I__‘I(ZL’ Ea X, )?a S, y) = |S(t -8, X = y) - S(Z_ S, X — y)|a
fZ(ts ;3 X, )_Ca S, J’) = |S(;_ §, X — y) - S(z_ S, X — y)|

Assume 0 < ¢t < 7 < T, then
T —
[/ @s] aPice boxms s ) = QO 4 v = 0,
0 Jre

with v(f — ¢), v, 74, V.-, defined in (A.3)—(A.5). Hence, inequalities (A.3) and (A.10)
imply

T
J dsJ dyTi(t, 7, x, %, 5, y) < C(T — 1)'/2. (2.44)
0 Rz

Moreover,
T — — —
J dsj dyba(t, 7,3, % 5, ) < Tog(t, 7 x, )+ 2D50a(t, 7, %),
0 R2

with

.
Lotioxn=| T ds| alsEo s -G s -l
0 x—y|<i-s

|x—y|<i—s

|3 y|<i-s
|[x—y[=i—s

7
Doa(t, 1, x, X) = J dsJ dyS(t — s, x — y).
0

Using (A.14), we obtain (¢, 1, x, X) < C|x — %|'/2. Finally, an explicit computation implies
Doo(t, 7, x, X) < C|x — x|'/2. Thus

T
J dsJ dyla(1, 7, x, X3 5, y) < Clx — x|'/2. (2.45)
0 R2

Inequalities (2.44) and (2.45) show (2.43) and conclude the proof of the lemma. O

In the next proposition, we show that the sequence of processes {X,(z, x), n= 1}
satisfies assumption (P1) of Lemma A.2. It proves estimates similar to those in Millet and
Sanz-Solé (1999, Proposition 1.4) which are uniform in 7.

Proposition 2.2. Assume (C1), (C2), (C3'). For any p€[l,x), 0<t<(=<T, x,Xx € K,
v €10, /21 + )L,

sup||(Xa(2, x) = Xu(£, D) a0l p < C(1 = 7" + |x — X[").
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Proof. Consider the decomposition

6
E(|Xu(t, x) = Xo(£ D[P 1a,) < C Y Ri(t, £ x, %),
i=1

where

R,(1, T x, X) = | Xo(t, x) — Xo(Z, %)|7,

T
ij@ixﬁ&wmmmeM&w>
0 JR?

P
lAn(B 4

Ri(ta Z’ X, x) = E(|<V(t7 f’ X, X5 -y *)(B(Xn) - B(X;))(a *)’ wn>|€11An(D)a

P
La,o |-

In the proof of Proposition 1.4 in Millet and Sanz-Solé (1999) we checked that (C2) implies
that

Ri(t, t; x, X) = E(

R(t, 15 x, X) = B(|(y(t, 7, X, X5 -, )BX, (-, 9)), ©") |57 1 4,0)s

Ri(l‘, ?’ X, X) = E(|<V(t, Z X, )?, Yy *)D(Xn(’ *)), h> i[L‘l,,(b);

T
@@ﬁ%ﬂ=E<Lh]@ZLm&w%ﬂ@ﬁﬁwy

R\(4, % x, %) < C(|t —7° + |x — X|°) (2.46)

for 0 = /(2(1 + f5)). Burkholder’s and Hoélder’s inequalities yield

R(t, 6 x, %) < C||T(t, 1, x, X; -, )| &,

14+ sup  E(|X,(s, y)lplAnm)]' (2.47)
(S,y)E[O,T]XR2

Using the operators 7, and 7, introduced in the proof of Lemma 2.4, we may rewrite the
scalar product appearing in R> as a stochastic integral; thus Burkholder’s inequality implies

)

. (2.48)

T
J, ], o T 15 5 B 9P, d)

R (t, F; x, X) = E(

< CIT(, £ ox, X Ol |1+ sup E(X (s, p)[P L)

(5,)€[0,TIXR?

The Cauchy-Schwarz and Hélder inequalities, along with (2.11) and (2.31), imply
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Rt T x, ) < {E(|@a |32 Vayr)EY (5 T %, X5 -0 #)(B(X,) — BOX))C 932 1)

1/2
= Cnpzﬂp/Z”r(t’ ;’ X, )_C; sy *)|‘;’I{ sup E(|XH(S7 y) - X;(S’ y)|2p1/4n(5))}
(s,»)€[0, T]X R2

< Cn?P2 PR T( 1, x, X - 9| (2.49)

Finally

R(t, T x, %) < Cl|A| Tt 7, x, %5 -, 0l

I+ sup  E(|X,(s, y)|p1An(S))]ﬂ (2.50)
(s,)€[0,T]¥XR2

T

Ré(t, ;x, %) < C (J

J I'(t, £, x, X; 5, y)dsdy | ?
0 Jr2

I+ sup  E(X,(s, y)PlAn(s>)] :
(5,0)€[0,TIXR?

(2.51)

Hence, (2.46)—(2.51), (2.30) and Lemma 2.5 yield the proposition. O

Remark 2.2. Proposition 2.2 establishes the y-Holder continuity for the trajectories of X, on

A,(T), because the sets A4,(f), t € [0, T], are decreasing. In Lemma 2.1 we have shown

limg_,oo P(4,(T)) = 1, so that the trajectories of X, are almost surely y-Holder continuous
on [0, T] X K for any y <f3/2(1 + ) and any compact subset K of R2.

We now prove that the processes {X,(t, x), n = 1} satisfy condition (P2) of Lemma A2.

Proposition 2.3. Suppose that conditions (C1), (C2) and (C3") are satisfied. Then, for any
pE[l,00),(t,x)€[0, T] X K,

Tim (X, (1, %) = X(t, D) all, = 0. (2.52)
Proof. Set

8
X(t, x) = X(t,x) = Y _ Uit x),
i=1

where
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ULt x) = OJ S(t — s, x = V(A + BYX,(s, ) — (4 + BYX(s, WIF(ds, dy),

U1, x) = (S(t — -, x = H[DX,(:, %)) = DX, )], h) s

Ut = | || 5= 5.5 = DI, )~ BOXCs sy,

Ub(t, x) = (S(t — -, x — [ B(Xu(: ) — B(X;, (-, $)], ©")

(
US(t, x) = (S(1 — -, x = O[BX, (-, %)) = BX ¢, )], @),

Ui(ts x) = <S(t — X *)B(Xi(n *))7 wn>H - J()J[RZS(t -5 X = y)B(Xi(Sn y))F(dS, dy)a

t

Uit = | [ 50— 5.5 = B G5 30) = BOC (s, mIFGEsdy)

t

Ut = | || 50— 55— DIBOY () = BOGGs P dy),

with X, and X~ defined in (2.15) and (2.16), respectively.
For ¢t€[0,T], let K(f)={x€R*:d(x, K)<T—t}; fix t€[0,T] and x € K(?).
Burkholder’s and Hoélder’s inequalities imply

U1, ) a0l < J J(t = s) sup [[(Xu(s, y) = X(s, Y)Lao), ds.

veK(s)

The Cauchy-Schwarz and Holder inequalities yield
t
Ut D La,0ll < C\MH%J J(t = 5) sup [[(Xu(s, ¥) = X (s, ¥)La,ll} ds.
0 yeK(s)
Analogously,
t
U3 Dol = €[ (=9 sup 06,65 2) = X Lol ds.
0 yeK(s)
Since
t
Ut = | [ o mIS(e = = 0BG = BOOIC 9Laol(s, FEs, dy)
Burkholder’s and Holder’s inequalities easily yield
(U3t %)+ UL ) Lol < j J(t =) sup (X, (5. ¥) = X~ (s, ) Lul|” ds.

YEK(s)

Thus, (2.31) and (2.17) ensure that
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(U2, x) + ULt DLl

t
< CpP2 "+Pp/2 4 CJ J(t—s) sup [[(Xn(s, ) — X(s, ) 1a,9)7 ds.
0 yeK(s)

Thus, by Gronwall’s lemma, if suffices to check

sup sup || U (t, )1 anll, — O, i=4,6,8. (2.53)
0=<t<T xeK(1) n—00

The Cauchy-Schwarz and Hoélder inequalities, along with (2.11) and (2.31), imply that
U5 D)ol 5

< C{E(lo"La, o [[GD}? sup  {E(Xu(t, x) — X, (1, )P 1400)} '/
(1,x)€[0,T]xXR2

< Cn?r2-"Pr/2,
Burkholder’s and Hélder’s inequalities and (2.31) imply
t
1T )il < CLJU —5) Suug(H(XZ(S, X) = Xu(s, X)L, [l )ds
xe

< CnP2 "0+Pr/2,

thus (2.53) holds for i =4, 8.
Set [[US(t, )1 4,0]l5 < CUGN (1, x) + UG (2, x)), with

Usl(t, x) = ‘ J j [ ({Ta(S(t = -, x — *)B(X (-, %))))
0JR2
P
= S(t = x — #)BX (-, )} La,)I(s, »F(ds, dy)||
p
USA (1, x) = ” [2a(S(t — - x — DB () La)s )
0JR2
P
— S(t — 5, x — Y)BX (s, ¥) Ly ]F(ds, dy)|| -
P

By Burkholder’s inequality and the fact that s, is a contraction of H, we deduce that
UG (1, x) < CE(|[[Ta(S(t = - x = )BX (-, #))) = S(t = -, x = )BX (-, )], 01 7)-

Define



906 A. Millet and M. Sanz-Solé
U (1, x) = E(|[Ta(S(t — - x = %) = St — - x — DITa B, )il 9,
USH2(t, x) = E([[S( = -, x = 9) L, [Ta(BOX ™, %)) = B G, #)]I15).

Expressions (2.18) and (A.12) together yield

sup  USH(y, x) < c27mrP (2.54)
(t,x)€[0, T]X R?

for any y <f/2(1 + f5). Moreover, since X is a particular case of X,, by (2.17) and
Proposition 2.2 we have

sup (X T(s+27", %) — X7 (s, )14, (s42-7)
(s,x)€[0,T1xXR?

,=<C27" (2.55)

for 0 <y <f/2(1 + ). Furthermore, (2.18) yields that if 1/p+ 1/¢g =1, then

sup
(5,x)€[0, T]X R?

(X (s +27" 0+ [X (s, )DL gyo\ sz p S C[P(4,(T))1"1,

so that, using Lemma 2.1 and (2.55), we conclude that

lim sup U4, x)=0. (2.56)
" (1,x)€[0,TIXR?

Inequalities (2.54) and (2.56) imply

lim  sup  U%(4,x)=0. (2.57)

=00 (1.x)€[0, TIXR?

Let 7y denote the identity operator on the Hilbert space H. Burkholder’s inequality yields
US2(t, x) < CZ,(t, x), with, for (¢, x) € [0, T] X R?,

Z(t, x) = E([|(wn — L)(S(t — -, x — ) B(X (-, )L, )| 77)-

The sequence (||(, — Ix)(S(t — -, x — *)B(X (-, ¥)) X L4)||m), n =1, decreases to 0 as
n— oo. It is bounded by sup,2|S(¢—-, x — *)B(X (-, )| z; we prove that this last
random variable belongs to L”(Q). Indeed, The Cauchy-Schwarz inequality implies

4
E(sgpllsu — ., x—#)BX (, *))IIZ) <CY T

i=1

with
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Ty = E(|S(1 — - x = 0)(1+ [X°C, 9)[|7),

T, :E<sup

X

J;dsjjdysz(t =8, x—=f(y—z)St —s,x—2)

LHJRZS“ — 1y — (A + BYX(r, ) F(dr, dr])‘

X

J:”JRZS(S = 2= 9+ B)(X(r, E)F(dr, df)

T; =E (sup
n

X |<1[0’Sn](')S(S -5 )= *)D(X(’ *))9 h>H|

p/2>

Jt dsjjdy dzS(t—s,x— y)f(|ly —zDS(t — s, x — 2).

0
p/2>

Ty = E(sup JtdsJJ dydzS(t — s, x — ) f(ly — z])S(t — s, x — 2)

n 0

X |(Lo,5,1()S(s = -, 2 = %) DX (-, %)), h) |

X

J [ sts— oy - mpxc n))drdn‘
0 JR2

X

“ S(s — r, 2 — EYB(X(r, £))drdE
0 JR?

p/2>

T, < Cjtdsjjdysz(t —s,x=Wf(|y—2zDS(t—s,x—2)
0

Hoélder’s inequality implies that

X E (sup

n

L”JRZS(S —r, y—n)(4d+ B)X(r, n)F(dr, dy)

p>l/2
p) 1/2

X E (sup

n

J "JRZ S(s — r, z— E)(A + B)(X(r, £))F(dr, d©)

0

Doob’s maximal inequality applied to the martingale

(J JRZS(S -nhy- 77)(14 + B)(X(V, W))F(dr, dn)’ Z)

0
and (A.11) imply that
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Ty<C|l+ sup E(X(s, »|")

(s,)€[0,TIXR?

A similar, easier computation using The Cauchy-Schwarz’s and Hélder’s inequality yields

T+ Ty<C

I+ sip E(X(s 0I7).
(5,y)€[0,T]XR?

Therefore, these estimations and (A.15) imply, for p € [1, oo,
E (suplIS(r = x =B )|y ) < oo

Thus, by dominated convergence, the sequence (Z,(t, x)),=1 decreases to 0. Moreover,
Z,(t, x) is jointly continuous in (¢, x); consequently, by Dini’s theorem,

sup Z,(t,x) | 0as n — oco.
(1,%)€[0,TIX K

Thus,
sup U (t,x) — 0. 2.58)
(,x)€[0,TIXK n—oo

The convergences (2.57) and (2.58) complete the proof of (2.53) for i = 6, and hence that of
the proposition. O

Proof of Proposition 2.1. Since equation (2.2) defining the process {X(t, x), (¢, x) €
[0, T]1 X R?} is a particular case of (2.1) which defines {X,(z x), (¢, x) € [0, T] X R},
Propositions 2.2 and 2.3 ensure the validity of conditions (P1) and (P2) of Lemma A.2 for the
sequence of processes Y,(z, x) := X,(¢, x) — X(¢, x) and the sequence of adapted sets
B, (1) := A,(¢) defined in (2.10). Therefore, given any 0 <y <pf/2(1 + f), p € [1, ),

}eroloE(|\Xn -X ;KIA,,(T)) =0, (2.59)

where ||-||,,« is given by (1.5).
Fix ¢ >0; by Lemma 2.1 there exists ny € N such that P(4,(T)¢)<e for n = ny. Then,
for any >0,

P(|Xn = Xllyx >m) < e+ P(| Xy — Xlly.x > 1, Au(T))
< e+n PE(|IX, — X} g La,r)- (2.60)
Since € >0 is arbitrary, (2.59) and (2.60) show (2.4). O

3. Approximation in L?

In the previous section, we proved an approximation theorem in probability, by showing the
L? convergence of the sequence X, localized by A, s ). The aim of this section is to check
that under a stronger growth assumption on the coefficients, a slight modification of the proof
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yields the LP-convergence of X” to X without localization. Let us introduce the following
growth condition:

(C4') There exists 0 € (0, 1) and a constant C >0 such that, for x € R?,
[A@)] + [B@)| + [DE)] + [bEo)] < C(1 + [x]°).
Then we have the following proposition:

Proposition 3.1. Assume (Cl), (C2) and (C4'), and let X and X" be defined by (2.1) and
(2.2), respectively. For any y € (0, 8/2(1 + f)), every compact subset K C R*> and every
p € [l, +00),

lim|[ [, — X[, x| = 0. (3.1)

The proof is very similar to that of Proposition 2.1, and will only be sketched. It depends
on several technical lemmas, which are ‘unlocalized’ versions of Lemmas 2.3 and 2.4.

Lemma 3.1. Suppose that conditions (C1), (C2) and (C4'") hold. Then, for any p € [1, +00),
t€0,T], 0" €16, 1] and n= 1,

sup  E(X%(s, ») — XE(s, »)I?)
(s,)€[0,]X R?

< CpP/2p—n(+B)p/2
(s,¥)€[0,] ¥ R2

1+ sup E(lXﬁl(S,y)é/p)] (3.2)
and

sup  E(|X,(s, ¥) — X, (s, y)|P) < CnP/22-n14Pp/2
(s,y)€[0,] X R?

I+ sup  E(JX(s, y)lép)] ~
(5,)€[0, 1] X R?

(3.3)
Proof. Consider the decomposition
— 4 ~ .
E(X5(t, x) = XAt 0| < €Y TH,
i1

where each term T ’;’i is deduced from the corresponding term 7 ’;J introduced in (2.24) by
removing 1 4,(5.

Let p and g be conjugate exponents such that 0 p = 6’. Then The Cauchy-Schwarz and
Hoélder inequalities, along with (1.13) and (A.11), imply
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T*2(t, x) < E(| 14,00 ul| W)V TE([ 114, 0()S(t — -5 x — %) BXETI(C, )| 50 P

1/p
< CnPP2 PP PR (e — )PP 1+ sup  E(XE'(s, »)|°7P)
(s,)€[0,] X R2

< CpP/2p-1+B)/2)p

1+  sup  E(X (s, 0P
(s,)€[0, ] ¥ R2

The upper estimates of T ﬁ’i, i=1,3,4 are obtained by means of a straightforward
modification of those of T’ ’;’[ in the proof of Lemma 2.3; this concludes the proof of (3.2).

Using the arguments in the proof of Millet and Sanz-Solé (1999, Theorem 1.2), we
obtain the convergence of the Picard iteration scheme, that is, for p € [1, 4+00),

lim swp (XA 0 - Xl 9l + X 0 - X0l =0 (G4)
00 (5,x)€[0, T]X R?

Therefore, (3.2) and (3.4) imply (3.3). O
We now prove LP-convergence of X, (s, y) to X,(s, y).

Lemma 3.2. Assume (C1), (C2) and (C4'), then, for p € [1, +0),

sup  sup (|| Xu(t, 0| p + [ X5, (5 0] p) < o0 3.5)
n=1 (1,x)€[0,T]XR?

and

sup || Xou(t, x) — X5 (8, X)||, < Cn!/227n04D2, (3.6)
(1,x)€[0, T]X R2

Proof. The proof reduces to that of

supsup  sup (|| XKL 0|, + 1 XK, 2] ) < oo 3.7)
n=1 k=0 (1,x)€[0, T]xR2

Indeed, (3.4) and (3.7) imply (3.5), while (3.3) and (3.5) yield (3.6). For r < ¢, consider the
decomposition

6
E(X5 (8, r 0)|P) < CY TEi(e, v x), (3.8)
i=1

where T51i(¢, r; x) is deduced from the term T**1i(¢, r; x) in (2.33) by removing 1 4.
The arguments used to obtain upper estimates of 7¥*1 for i # 4 are similar to that in Lemma
2.4 and are omitted. They yield the analogues of (2.34)—(2.36), (2.38) and (2.39).

Let 0' €10, 1[, p = (0")"', p and g be conjugate exponents; then The Cauchy-Schwarz
and Holder inequalities, along with (A.11) and (1.12), yield
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T*4 1, 1y x) < B(|o" | %)Y EB(|[S(1 — -, x — )10 4([BXE) = BXXOIC, #)||29)Y?

1/p
scnp/zzﬂp/zl sup  EB((X* — X¥)s, y)|pp)] .
(s,¥)€[0,r]1xXR2

Hence (3.2) implies

1/p
fﬁ“"‘(l‘, rx) < Cnp/22np/2{npp/22n(1+ﬁ)pp/2 1+ sup E(|Xﬁ71(s, y)|<5'17p)‘| }

(s,)€[0, 71X R

< CpP2~"Br/2

1+ sup  E(XE (s, )P (3.9)
(s,»)€[0,r]XR?

Set ¢,! =0 and, for every k =0,
(1) = sup sup E(LX (s, »)|” + X }(s, »)| 7).

0=s<t¢ yeRz
Then, for every k = 0,
t
okl < cJ [1+ @k(s) + pE1()]ds.
0
Since supo<,<r @°(f) = C < oo, this implies (3.7). O

Replacing (2.30) and (2.31) by (3.5) and (3.6) respectively, the arguments in the proofs of
Propositions 2.2 and 2.3 yield the following result:

Proposition 3.2. Assume (C1), (C2) and (C4'). Let K be a compact subset of R*> and
p €[1, o0), then we have the following:
(i) For 0<y<B/QUL+pP), 0<t<i<T,x,x€Kk,
sup|[ X(t, x) = Xu(Z, )| p + | X (2, x) = X(7, )| < C(|t = 1] + |x = x"). (3.10)
n

(if) For (t, x) € [0, T]xK,
1i111n||X,,(t, x) — X(t, x)||, = 0. (3.11)

Proof of Proposition 3.1. To conclude the proof of this proposition, it suffices to apply Bally
et al. (1995, Lemma A.1). Indeed, the results proved in the previous proposition ensure the
validity of the hypothesis of that lemma. O

Appendix

This section quotes some notation introduced in our previous paper (Millet and Sanz-Solé
1999), which is extensively used along the paper. It also contains some technical results.
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For any t € [0, T], h =0, & € R?, set

=] e e, (A
= [[as ax] avss 0= 38t 0 = 5 [ s (A2)
(1) = %J{: dsjm \/%W - %2 (A3)
= as] st = Stk b (A4
pon = [ as dyS(s + h, y), (A.5)

0 s<|y|<s+h

t

Hih = OdS y dyjl ‘ dz[S(s, y) = SCs + b, M|y = 2DISCs, 2) = S(s + A, 2], (A6)
y<s z|<s

t

ﬁz,h =| ds

d J dzS(s + b, W)f(ly — 2DS(s + b, 2, (A7)
0 s<|y|<s+h s<|z|<s+h

t

M= [ @], @600y -2t (A8)

[E |z—&[=s

Ny = ‘,‘dsj_m dy|  dzlS(s ) = S(s. y = Oy = 2DIS(s, ) = S(s. 2= 8. (A9)

"
:
2 Iy—l<s |—El<s

A direct computation shows that
Vin+Vop < Ch'/2, (A.10)

Assume that f satisfies assumption (Cl); then Lemma A.1 in Millet and Sanz-Solé (1999)
implies that

Jy=sclf, uns=cft',  relo, 1], (A.11)

while, for # € [0, T], hV || <1 and 0<0<p/(1+ ), Lemma A.5 in Millet and Sanz-Solé
(1999) shows that

U+ fen < Cha, (A.12)
Mz + Nie < CIEL. (A.13)

Furthermore, (A.24) in Millet and Sanz-Solé (1999) yields that for 0 < s < T, x € R?,
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J d4 dz(S(r, z) — S(r, z — x)) < C|x|'/2. (A.14)
|x|/2 |z—x|<|z|<s

The following result is a slight generalization of Theorem 1.2 in Millet and Sanz-Solé
(1999).

Lemma A.1. Suppose (C1), (C2) end (C'3); for any T >0, equation (2.1) (equation (2.2))
has a unique solution X, (X) on [0, T] X R%. Futhermore,
sup sup E(|X(¢, x)|?)<oo, pe]l, ). (A.15)

0=<t=<T xeR?

Sketch of proof. Since (2.2) is a particular case of (2.1), we only prove the existence of the
solution to (2.1). The argument for (2.2) is simpler, since no localization is required. Given
M >0, consider the evolution equation

t

LM@MZX%JHW

J S(t = 5, % — D) AKX ar(s, W)F(ds, d)
0JR?

+ <S(t - X = *)B(Xn,M('a *))s wn,M>H

+ <S(t - X *)D(Xn,M('a *))’ h>H

t
+ J J S(t — s, x — ¥)b(X . m(s, y))dsdy. (A.16)
0Jre

A slight extension of the proof of Millet and Sanz-Solé (1999, Theorem 1.2) based on
Picard’s iteration scheme — using The Cauchy-Schwarz’s inequality for the scalar products,
Gronwall’s lemma and (A.11) — provides the existence and uniqueness of the solution to
(A.16). For any (t, x) € [0, 1] X R?, define

Xn(t, )C) = Xn,M(t, )C) on An,M(T)'

For fixed n and M, the sets (A4, u(?))icqo,r] are decreasing in ¢ Therefore, a standard
argument based on the local property of stochastic integrals implies that this definition is
consistent and, since P(Uy=14,1(1)) = 1 for every integer n, this provides the existence and
uniqueness of solution to equation (2.1).

The proof of (A.15) is a straightforward extension of the corresponding inequality (1.8)
in Millet and Sanz-Solé (1999). ]

The following lemma is a localized version of Lemma A.l in Bally et al. (1995). For the
sake of completeness we give the main arguments of the proof.

Lemma A.2. Let {Y,(t, x), (1, x) € Ko}, n=1, be a sequence of processes indexed by
Ko = [0, T] X K, K being a compact set of R>. Let {B,(1), t € [0, T]} C.7 be a sequence
of adapted sets which, for every n, decreases in t. Make the following assumptions, for every
p € (1, 00):
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(P1) There exists 0 >0 such that, for any 0<t<{<T, x,x€ K,

sup E(| Y, (1, x) — Y,(4, ©)|P15,5) < C(|t — 7| + |x — %[)**°.

(P2) For every (t,x) € [0, T] X K,
lim E(|Y,(1, x)|715,,)) = 0.
Then, for any p € (0, 0/p) and any r € [1, p),
Jim E([[Y, ][}, ¢ 15,(r) = 0.

Proof. Let £ =2d+0',d=23,0<d' <0; set z=(t, x), Z= (1, X). Then, by (P1),
Y, - Y,(2|?
J J E(Mlgn(t)>d2dz < CB’,
KoJ Ko

|z — 2|t
where

B’:J J |z — 2|79+07%dz dz < +o0.
KoJ Koy

Set

_ )| P
2o | [ BOBON, o
Kod K

|z -z
Clearly, by Fubini’s theorem, E(Z) < CB’, so that
P(Z>AP)< CA PR
The Garsia—Rodemich—Rumsey lemma yields
1Y,(2) = Y@ g0 = CZ'P|z 2",

with pg = &'/ p. Since {B,(?), t € [0, T} decreases in ¢, this yields, for any p <d6/p,
Yu(z) — Y.u(z Y.(z2) — Y,(2)|?
P<Sup| - hEl B,,(T)) - “E<Sup| /@) = 1(2) lw)>

Jay |z —zJr otz |z — z|er

< CA PE(Z)< CA™P.

On the set B,(T), we now proceed exactly as in Bally e al. (1995, Lemma A.1) and show
that for any € >0, r € [1, p), there exists N € N such that, for any n = N,

E(”Yn”g,[(an(T)) = EV + Ce.
g

Remark A.1. Under condition (C1), inequalities (A.12) and (A.13) have been improved in a
recent paper of Millet and Morien (2000) as follows. For 0 <d < <1,
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Hen+in < CH, Mg+ N < CIE]°. (A.17)
Suppose that (C2) is replaced by the following condition:

(C2") up: R2 - R? is of class %! and bounded with B-Hélder continuous partial
derivatives, and vg: R? — R? is such that |vg| + |Vuo| € L% for some go €14V 2/(1 — B)[.

The processes u and X have almost surely y-Holder continuous trajectories for 0 <y <, and
the same arguments show that Theorem 2.1 can be reinforced to characterize the topological
support of u in Z7([0, T] X K) for y €]0, B[. All intermediary results can also be stated for
y €]0, [ instead of y €10, 5/2(1 + A))[. O

Acknowledgements

Part of this work was done during a visit of the authors to the Mathematical Sciences
Research Institute at Berkeley. We would like to thank the hospitality and support provided
by them. Both authors have also been partially supported by grant ERBF MRX CT960075A
from the European Union. The second named author has been supported by grant PB96-0088
from the Subdireccion General de Formacion y Promocion del Conocimiento.

References

Bally, V., Millet, A. and Sanz-Solé, M. (1995) Approximation and support theorem in Holder norm for
parabolic stochastic partial differential equations. Ann. Probab., 23, 178—222.

Dalang, R. and Frangos, N. (1998) The stochastic wave equation in two spatial dimensions. Annals of
Probab., 26, 187-212.

Millet, A. and Sanz-Solé, M. (1994a) The support of an hyperbolic stochastic partial differential
equation. Probab. Theory Related Fields, 98, 361-387.

Millet, A. and Sanz-Solé, M. (1994b) A simple proof of the support theorem for diffusion processes.
In J. Azéma, P-A. Meyer and M. Yor (eds), Séminaire de Probabilités XXVIII, Lecture Notes in
Math. 1583, pp. 36—48. Berlin: Springer-Verlag.

Millet, A. and Sanz-Solé, M. (1999) A stochastic wave equation in two space dimensions: Smoothness
of the law. Ann. Probab., 27, 803—-844.

Millet, A. and Morien, P-L. (2000) On a stochastic wave equation in two space dimensions: regularity
of the solution and its density. Stoch. Proc. Appl., 86, 141-162.

Received April 1988 and revised November 1999



