
RESEARCH ANNOUNCEMENTS 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 16, Number 2, April 1987 

CR M A P P I N G S OF FINITE MULTIPLICITY 
AND EXTENSION OF P R O P E R 

HOLOMORPHIC M A P P I N G S 

M. S. BAOUENDI, S. R. BELL AND LINDA PREISS ROTHSCHILD 

1. Introduction. We shall describe some general theorems about CR 
mappings between three-dimensional manifolds which, among other results, 
imply that any proper holomorphic mapping ƒ : D —» D' between pseudocon-
vex domains in C2 with real analytic boundaries extends to be holomorphic 
in a neighborhood of the closure of D (Theorem 8). In case the domain D 
is strictly pseudoconvex, this result follows from the classical Lewy-Pinëuk 
reflection principle [9, 11]. In case D' is strictly pseudoconvex, or in case D 
and D' are given by polynomial defining functions, ƒ extends by [2]. In case 
the proper mapping ƒ is biholomorphic, the extendability has been proved 
by Baouendi, Jacobowitz, and Treves [1]. The general case of a proper holo­
morphic mapping between weakly pseudoconvex domains which is not bi­
holomorphic is more complicated because branching might occur. We have 
developed a method in the spirit of [1] which allows us to prove extendability 
at boundary points even if branching occurs (Theorems 3 and 6). 

The mapping f(z,w) = (z2,w) which maps the domain E = {(2,w) € 
C2 : |2 |4 + | w | 2 < l } onto the unit ball in C2 has the property that it maps 
points of type four (in the sense of Kohn [8]) in the boundary of E to points of 
type two in the boundary of the ball. Furthermore, the local branching order 
of ƒ at these points is two. We prove that this phenomenon holds in general. 
If M and M' are abstract three-dimensional CR manifolds, and H:M —» M' 
a CR mapping, there is a notion of multiplicity of H at po € M, for which the 
type of po is equal to the multiplicity at po times the type of H(po). Theorems 
1 and 2 state these results more precisely. Theorems 5 and 7 give applications 
of these results and of the extendability result (Theorem 3) to CR and proper 
self-mappings. 
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2. Main results and applications. A real smooth manifold M is called 
a CR manifold if there is a subbundle V of CTM, the complexified tangent 
bundle of M, satisfying the conditions [V^V] C V, and V D V = (0); V is 
called the CR bundle of M. 

If M and M' are two CR manifolds with CR bundles V and V, a CR 
mapping from M into M' is a smooth mapping H:M —• M', such that at 
every p E M 

(1) #'(*) e ^ ( p ) , w e 1>p, 

where Vp is the fiber of V at p, V'H, v is the fiber of V at -fiT(p), and 
if7: CTM -+ CTM' is the differential map of H. 

From now on we restrict ourselves to the case: diniR, M = dimR M' = 
3, dime y = dime V' = 1. Let p0 G M, p(, = H(p0) € M', and let L,L' be 
two nonvanishing smooth sections of V and "V', defined near po a n d #(Po) 
respectively. It follows from (1) that there exists a smooth function A defined 
in a neighborhood of po in M such that, for all p € M near po> 

(2) H'(Lp) = X(p)L'H{p). 

DEFINITION. The CR mapping H:M —• M' is oî finite multiplicity at p0 

if there exists a differential operator of the form 

(3) S = Mi • • • My 

(called string of length j ) with Mp = L or L, such that 

(4) SA(po) ^ 0. 

The mapping is said to be of multiplicity k if the shortest string S for which 
(4) holds is of length k — 1. 

In particular H is of multiplicity 1 if À (po) i1 0, of multiplicity 2 if A(po) = 
0, and either LA(po) j=> 0 or LA(po) 7̂  0, etc. 

It is clear that for a CR mapping H to be of multiplicity k is independent 
of the choice of the vector fields L and V. 

Following Kohn [8], the CR manifold M is of finite type at po if and only if 
any smooth complex vector field defined near po is in the Lie algebra spanned 
by L and L. It is of type m at po (m > 2) if the shortest bracket of L's and L's 
not in the span of L and L at po, is of length m. (We have used the following 
convention: the length of [L, L] is 2, that of [L, [L, L]] is 3, etc.) 

We can now state our first result. 

THEOREM 1. Let H:M -+ M' be a CR mapping from M into M'. If 
H is of multiplicity k at po € M (1 < k < 00), and M' is of type m' at 
Po = if(po) (2 < m' < 00), then'. 

(i) M is of type m at po with m = km'. 
(ii) If S is a string of the form (3) with length < k — 1, and with at least 

one Mp = L, then SX(po) = 0; in particular Lk~1X(po) ^ 0. 
(ÜÏ) H>(CTP0M) £VH{po)®VH(po). 

Note that if Hpo:TPoM —> TH^^M' is the differential map at po, then (iii) 
implies that 

ffJoîMo}. 
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If k = 1, it follows from (2), (4) (with S = 1), and (iii) that H'VQ is an 
isomorphism; therefore H is a local diffeomorphism from a neighborhood of 
Po onto a neighborhood of H(po). This fact, when if is a boundary value of a 
holomorphic mapping from a pseudoconvex domain in C2 to another, follows 
from Derridj [5]. 

The proof of Theorem 1 uses recursive arguments with repeated applica­
tions of the following two observations. 

First, suppose A and B are vector fields on M for which there exist smooth 
functions otj{u), f33(u) on M, 1 < j < r, and smooth vector fields Aj and Bj 
on M' such that 

H'(AU) = £ aj{u)A'jtH(u)t H\BU) = £ /3,-(u)Bj. H ( t t ); 
3 3 

then 
H'([A,B}U) = X>&)(u)B;,„(u) -Y^BaAMA'^M 

3 3 

+ £KA)(«)[4> S «W)-

Second, if E\ and E% are two commutators of L and L of length n\ and n<i 
respectively then 

[EuE2]=aL + bL + Ylc"Ca> 
a 

where each Ca is a commutator of L and L of length |a| < n\ 4- ri2, and 
a,b,ca are smooth functions on M. 

One of the crucial steps in the proof of Theorem 1 consists of proving that 
if Si and S2 are two strings of the form (3) with length k — 1, having the same 
number of L's, then 

5iA(po) = 52A(po). 

We say that the mapping H:M —• M' is flat at po if all partial derivatives 
of H of any order vanish at po-

The following result is a consequence of Theorem 1. 

THEOREM 2. Let H:M -> M' 66 a CR mapping and p0 € M. /ƒ M and 
M' are of finite type at po and p'0 = H(po) respectively, then the following 
conditions are equivalent: 

(a) H is of finite multiplicity atpo-
(b) H'po * {0}. 
(c) H is not flat at po. 

Examples show that the conclusions of Theorems 1 and 2 are no longer 
valid if the finite type conditions are dropped in the assumptions. 

Our main analyticity result is the following. 

THEOREM 3. Let M, M' be two real analytic CR manifolds, H a smooth 
CR mapping from M into M', andpo € M. If H is of finite multiplicity atpo 
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and M' of finite type atpf
0 = H (po), then H is real analytic in a neighborhood 

ofpo-

The proof of Theorem 3 uses the general approach of [1]. Since M and 
M' are real analytic, they can be considered as embedded in C2 , where the 
variables are denoted by z, w. We assume that po = H{po) = 0, and that M 
and M' are respectively given locally by 

Imw = <p(z, z, Rew), Imw = ijj(z, z, Rew), 

with <p(z, 0, Rew) = ip(z, 0, Rew) = 0. The mapping H is then locally given 
by a pair of CR functions (ƒ, g) defined on M and satisfying 

As in [1], it suffices to show that ƒ and g are real analytic with respect to 
Rew, uniformly in z. 

We have here À = Lf, where the function À is as in (2). By Theorem 1 we 
have Lkf(0) / 0 and V7(0) = 0 , 0 < j < k. 

An important part of the proof consists of repeatedly applying L to (5). 
In addition to the arguments used in [1] (where k = 1), the following result 
in one complex variable is crucial. 

LEMMA. Let a be a positive number and R the domain in C defined by 
|£| < a, 0 < r) < a, with ç = £ + irj. Let u,v be two functions defined in R 
and satisfying: 

(i) u,v E C°°{R) and u,v are holomorphic in R, 
(u)M0 = « ( 0 M 0 € C ~ ( [ - a , o ] ) , 
(iii) there exists a positive integer p and, for 0 < j < p — 1, functions 

üj E C°°(R), holomorphic in R,aj(0) = 0, such that 

(HOT + a P - i ( 0 ( M 0 ) p ~ 1 + • • • + MO = 0, in [-a,a]. 

Then h extends holomorphically to R as u(ç)/v(<;), and u/v G 
C°° (#U( -a , a ) ) . 

For real analytic CR mappings, we have the following result, which gives a 
justification for the definition of finite multiplicity. 

THEOREM 4. Let M,M' be two real analytic CR manifolds of finite type 
at po and p'0 respectively, M connected, and H: M -» Mf a real analytic CR 
mapping with H(po) = p'0. 

(i) If H is not of finite multiplicity atpo, then H is constant, i.e. H(M) = 
P'o-

(ii) If H is of multiplicity k atpo (1 < k < oo), thenp'0 is an interior point 
of H(M). More precisely, for every U, a sufficiently small neighborhood ofpo 
in M, there exists V, an open neighborhood ofp'0 in M' such that V C H(U). 
In addition there is a finite number of real analytic curves 7 1 , . . . , 7 r contained 
in V such that, for every p' G V\(U£=i lj U {P'Q}), there exist exactly k points 
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Pi* • • • »Pfc £ U satisfying H(pj) = p', 1 < j < fc, wzt/i if of multiplicity 1 at 
eac/i pj. 

Theorems 3 and 4 together with an argument involving the iteration of # , 
and the use of properties of real analytic sets, yield the following global result. 

THEOREM 5. Let M be a real analytic compact CR manifold andH:M —> 
M a smooth CR mapping. If M is of finite type at each point and H of finite 
multiplicity at each point of M, then H is of multiplicity one at each point. 
Therefore H is a local analytic diffeomorphism. 

Several of the previous results have applications to holomorphic extend-
ability of proper maps in domains in C2 . Indeed it is well known that the 
boundary value of a holomorphic mapping is a CR mapping, and, when the 
boundaries are real analytic, the question of holomorphic extendability of a 
CR mapping reduces to that of its real analyticity. We give here some of these 
applications. 

THEOREM 6. Let D and D' be two open bounded sets of C 2 with real 
analytic boundaries. Let F:D —• D' be a proper holomorphic mapping with 
F G C°°(D). If F is nowhere flat on dD then F extends holomorphically to a 
neighborhood of D. More precisely there exist D\ and D'ly two open bounded 
neighborhoods of D and D respectively, with real analytic boundaries, such 
that F extends as a holomorphic proper mapping from D\ into D\. 

Using an argument due to Pinöuk [10] and Theorems 5 and 6 we obtain 
the following, which generalizes a result of Bedford and Bell [3]. 

THEOREM 7. Let D be an open bounded set in C 2 with real analytic bound­
ary and F a proper holomorphic self-mapping of D. If F G C°°(D) and F 
is nowhere flat on dD then F extends as a biholomorphism from an open 
neighborhood of D onto another. 

In the pseudoconvex case, using a generalized form of an argument due 
to Fornaess [7] the nowhere flatness can be dropped in Theorem 6. Then 
making use of Theorem 6 and the result of Bell and Catlin [4], and Diederich 
and Fornaess [6], we obtain 

THEOREM 8. Let D and D' be two bounded pseudoconvex domains in C2 

with real analytic boundaries. If F is a proper holomorphic map from D into 
D' then F extends as a proper holomorphic mapping from a neighborhood of 
D to a neighborhood of D . 

Complete proofs will be published elsewhere. 
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