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1 
The title may suggest that the book deals with the general theory 

of transcendental numbers. A complex number a is said to be al­
gebraic if it is a root of a polynomial f{x) = anxn H h axx + a0 

with rational coefficients and ƒ (JC) ^ 0. If a is not algebraic, it 
is called transcendental. In 1874, Cantor showed that the set of 
all algebraic numbers is countable so that transcendental numbers 
exist. The first rigorous proof of the existence of transcenden­
tal numbers was given thirty years earlier by Liouville. We say 
that a is of degree n, if the smallest degree of polynomials ƒ 
as described above equals n. Liouville proved the existence of 
a positive constant c(a) such that every pair of rational integers 
p, q with q > 0 and p/q ^ a satisfies 

(1) 
C(a) / • j r \ 

> - V 1 (fl is degree of a). 
q 

It is an easy consequence that numbers with very good ratio­
nal approximations, such as ]C^Li 2 " , are transcendental. After 
successive improvements of the exponent n due to Thue (1909), 
Siegel (1921) and Dyson, Gelfond (1947/1948), Roth (1955) 
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proved, for any e > 0, the existence of a constant c(a, e) > 0 
such that for every pair p, g as described above 

(2) r-tr'T*'-
The number 2 in the exponent cannot be further improved. It 

is a direct consequence that a = X^jli 2~ and similar numbers 
are transcendental. Roth's result (2) was generalized by Schmidt 
in 1971 to the case of approximation of an algebraic number by 
algebraic numbers of lower degree. This deep and useful branch 
of the theory of Diophantine approximations, which is still in fast 
development, is only touched upon in Chapter 1 of the book under 
review. A reader interested in this area is referred to lecture notes 
of W. M. Schmidt [9]. 

Proving the transcendence of specific numbers, such as e, n, 
en, log2, log 3/ log2, C(3) = Y%L\ n~3 and the constant of Euler, 
y, is a completely different problem. (The transcendence of the 
latter two numbers is still undecided.) In 1744, Euler stated with­
out proof that a number of the form logé/ log a, where a and b 
are positive rational numbers with b not equal to a rational power 
of a, must be a transcendental number. In 1837, Wantzel showed 
that the line segments which can be constructed by ruler and com­
pass have lengths which can be expressed in terms of numbers ob­
tained by successively solving a series of quadratic equations and 
are therefore algebraic. Thus the transcendence of n implies the 
impossibility of "squaring the circle" by ruler and compass, thereby 
solving a problem of antiquity in the negative. Hermite proved the 
transcendence of e in 1873, Lindemann the transcendence of n 
in 1882 by developing Hermite's method further. These results are 
contained in the theorem of Lindemann-Weierstrass: if the alge­
braic numbers ax, . . . , an are linearly independent over Q, then 
the numbers e"1, . . . , ea" are algebraically independent over Q. 
(Complex numbers cx, . . . , cn are said to be algebraically inde­
pendent over a field K if P(c{, . . . , cn) / 0 for any polynomial 
P(z{, . . . , z ) which is not identically zero and has coefficients 
from K.) 

In 1929, Gelfond showed that en is transcendental by a new 
analytic method involving interpolation techniques. By pursuing 
Gelfond's ideas, Gelfond and Schneider derived in 1934, indepen­
dently of each other, a proof of Euler's assertion on logé/ log a. 
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Their results also imply the solution of the seventh problem posed 
by Hubert in his famous 1900 address to the International Congress 
of Mathematicians, namely the transcendence of of where a 
is an algebraic number not 0 or 1 and /? is an algebraic irra­
tional number. In 1966/1967, Baker succeeded in obtaining a 
far-reaching generalization of the Gelfond-Schneider theorem. He 
proved the transcendence of numbers of the form a\l • • • an

n and 
ft0 + px log a j H h Pn logan under certain natural conditions on 
the algebraic numbers a{, ... , an , fiQ, fix, ... , Pn . This was the 
starting point of a period of more than twenty years of research 
in which the method has proved to be of great importance. This 
research is hardly mentioned in the book. Introductions to the 
part of transcendental number theory dealing with the Gelfond-
Schneider method and its extensions have been given by Wald-
schmidt [13, 14], Baker [1], Masser [8], and Feldman [4]. 

The method of Hermite-Lindemann is based on two properties 
of the exponential function, namely, ez satisfies the functional 
equation f{x)f(y) = f(x + y) and ez satisfies the differential 
equation y = y . In 1929 Siegel developed a method for proving 
transcendence of the values at algebraic points of solutions of a 
linear differential equation with coefficients in the field of ratio­
nal functions. Siegel did not require that the functions satisfy a 
functional equation. The solutions to which Siegel's method ap­
plies have to satisfy certain arithmetic conditions and are called 
IT-functions. In 1949 Siegel [12] presented his method in the form 
of a general theorem on i?-functions. This theorem reduces the 
proof of algebraic independence of certain numbers to the verifi­
cation of a certain "normality condition." Siegel was able to verify 
this normality condition only in the case of J?-functions satisfy­
ing a first or second order linear differential equation. In 1954, 
Shidlovskii was able to reduce the proof of the arithmetic prop­
erty to the verification of a certain irreduciblity condition for the 
functions. One year later, he showed that algebraic independence 
of certain functions over the field of rational functions is a neces­
sary and sufficient condition for the algebraic independence of the 
values of these functions at algebraic points. This made it possible 
to prove transcendence and algebraic independence of the values at 
algebraic points of many concrete is-functions which are solutions 
of linear differential equations of arbitrary order. Shidlovskii's 
book contains an exclusive exposition of the fundamental results 
on the arithmetic properties of the values of Is-functions. The 
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most complete account on the subject in English up to now had 
been given by Mahler [7], 

Thus, the book under review does not deal with the general the­
ory of transcendental numbers, covering topics as the Thue-Siegel-
Roth-Schmidt method, Gelfond-Baker method, Siegel-Shidlovskii 
method, and various other topics which belong to the field such 
as Mahler's classification, metrical theory, elliptic functions, and 
abelian varieties. For such books, see Siegel [12], Schneider [10], 
Gelfond [5], Lang [6], Baker [1], and Feldman [3]. 

2 

A proper title of the book would have been "The Siegel-Shid­
lovskii method," or " ̂ -functions." Siegel's contribution is con­
tained in two fundamental publications, his famous 1929 paper 
[11] and his book [12] published in 1949. Shidlovskii's contri­
bution consists of a series of about forty papers published since 
1954. Further contributions have been made by the Soviet math­
ematicians Belogrivov, Chirskii, Galochkin, Gorelov, Kazakov, 
Makarov, Nesterenko, Oleinikov, Salikhov, Shmelev and further 
Lang, Mahler, Osgood, Wallisser and Xu. Since many publications 
are only available in Russian, the appearance of Shidlovskii's book 
in English makes the literature on the subject more readily avail­
able. 

Already Legendre had considered the functions 
oo n 

<'> / • , W ' E „ ! a ( a + 1 ) . . . ( t t + „ - 1 ) (°*Z<o) 

which are solutions of the differential equation xy"+ay' = y, and 
had proved that the numbers fa(x)/f^(x) are irrational if a and 
x are rational, x ^ 0. In 1910 Stridsberg showed that each of 
the numbers fa(x) and f'a(x) is irrational. A basic result which 
Siegel obtained in 1929 relates to the functions 

(4) ^)-^»(^)-gw l ( ,+y^+ l l )(îr 
(A£Z<0) 

which satisfy the differential equation y" + ^f^-y' + y = 0. The 
function Kx(z) differs only by the factor T(A+l)_1(z/2)2/l from 
the Bessel function Jx(z), and K0(z) = J0(z). Siegel proved the 
following analog of the theorem of Lindemann-Weierstrass: The 
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2mn numbers K2 (£.), K\ (ÇMh = 1, ... , m ; j = 1, ... , n) are 
h J h J 

algebraically independent, provided that £x, ... , Çn are algebraic 
numbers whose squares are distinct and nonzero and that the ratio­
nal numbers kx, ... , km satisfy the conditions Xh £ Z<0, kh+\ £ 
Z and (kh ±kh) $ Z for hx ^ h2. In addition, he obtained a 
positive lower bound for the modulus of a polynomial with integral 
coefficients in Z0(£) and 7Q(£) for nonzero algebraic Ç. A result 
of the latter type is called an algebraic independence measure. 

Siegel's book does not contain any new concrete results, but 
Siegel presented his method in the form of a general theorem on 
E-functions. An analytic function f{z) = Y2^Locn^\ *s caUec* a n 

^-function if (1) the coefficients cn are taken from an algebraic 
number field K, (2) for any e > 0 the conjugates of cn have a 
growth order bounded by nen , (3) the coefficients cn have denom­
inators of growth order bounded by nen . Simple examples of E~ 
functions are ez, sinz, J0(z), fa(z) and Ka(z) for a e Q\Z<0. 
The JE-functions form a ring which is closed under the operations 
of differentiation, integration from 0 to z, and the change of vari­
ables from z to A, where A is an algebraic number. Siegel's 
general theorem involves a certain analytic normality condition 
for sets of products of powers of the functions under consider­
ation which in concrete examples was hard to verify. In 1955 
Shidlovskii reduced the algebraic independence of the values of 
2?-functions to the algebraic independence of the functions them­
selves over the field of rational functions. This theorem made it 
possible to prove transcendence and algebraic independence of the 
values at algebraic points of many concrete 2?-functions which are 
solutions of linear differential equations of arbitrary order. One 
of Shidlovskii's fundamental theorems can be stated as follows. 

Let 
m 

(5) *Z = 0w + Ea**r* (h=l,...,m) 
k=\ 

be a system of linear differential equations with coefficients in the 
field of rational functions C(z). Suppose that the E-functions 
fx(z)9 ... , fm(z) form a solution of system (5). Let a ^ 0 be 
any algebraic number different from the poles of the functions QhQ 

and Qhk. Then the largest number of functions fx{z), ... , fm(z) 
that are algebraically independent over C(z) is equal to the largest 
number of function values fx(a), ... , fm{ot) that are algebraically 
independent over Q, in other words, the transcendence degree of 
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/ j (z ) , . . . , fm(z) over C(z) is equal to the transcendence degree 
of flipt) 9 ... ,fm(a) over Q. 

The book under review is devoted to Shidlovskii's fundamental 
theorems and their applications. Chapter 1 deals with approxi­
mation by algebraic numbers. Chapter 2 contains a proof of the 
Theorem of Lindemann-Weierstrass. In Chapters 3 and 4 three 
versions of Shidlovskii's Fundamental Theorem are given. Chap­
ters 5-10 provide applications to linear differential equations of 
first, second, prime and arbitrary order. Chapters 11-13 deal with 
transcendence and algebraic independence measures. The treat­
ment is thorough and complete, but sometimes a bit boring for 
nonexperts or nonfanatics. The scope is rather narrow. There is 
even hardly attention for Siegel's G-functions which have been 
extensively studied in the past twenty years. (A G-function is an 
analytic function Y^L0cnz

n satisfying the same three conditions 
as E-iunctions; only the factor {n\)~l is omitted and some au­
thors replace the bound nen by ecn where c is an arbitrarily 
large constant.) The results on G-functions are summarized in 
the "Concluding remarks." Another example of the narrow view 
can be found on p. 435: "We note that the size of the constant 
T in Lemma 8 has been lowered in papers by Brownawell [8:1], 
Bertrand and Beukers [4:1], Nesterenko [52:11], and others. In 
this book we used Nesterenko's first result, because it is more acces­
sible to the Soviet reader." The Soviet reader may be interested in 
at least knowing the value of T in the various improvements. The 
given argument has an opposite effect for the users of the English 
translation of Shidlovskii's book. Of course, the important point 
in publishing this English translation is that an important method 
in transcendental number theory has been made better accessible. 
There is a list of about 250 references. 

3 

The original Russian version of Shidlovskii's book was pub­
lished in 1987. In 1988 Beukers, Brownawell, and Heekman [2] 
showed that the essential part of Siegel's normality condition can 
be expressed very naturally in terms of the differential Galois group 
corresponding to the system (5). Their observation made it possi­
ble to verify Siegel's normality condition for large classes of gen­
eralized hypergeometric equations. This and other recent develop­
ments are mentioned in a Foreword by W. D. Brownawell (3 pp.) 
and in "Supplementary remarks on recent work for the English 
edition" (8 pp.) and 25 additional references. 
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SiegePs general theorem can be stated as follows [12, pp. 52-53]. 
Let 

m 

(6) Y'h=Y,QhkYk (h = l,...,m) 
fc=l 

be a system of linear differential equations with coefficients in C(z). 
Suppose that the E-functions fx(z), ... , fm{z) form a solution of 
system (6) and that the (m*u) power products 

form a normal system for all v = 1, 2, ... . Let a ^ 0 be any al­
gebraic number different from the poles of the functions Qhk . Then 
the function values fx(a), ... , fm{ot) are algebraically independent 
over Q. The rather complicated definition of normal system can 
be 
found on pp. 43-44 of Siegel's book and on pp. 446-447 of the 
book under review. Beukers, Brownawell, and Heekman [2] showed 
that Siegel's normality condition can be expressed very naturally 
in terms of differential Galois groups. Siegel's normality condi­
tion for an irreducible differential equation (6) turns out to be 
equivalent with the requirement that the differential Galois group 
of (6) contains either SL(m) or Sp(m). Another characteriza­
tion is that there exists a solution fx, ... , fm such that f{ff-
is transcendental for some i and j and the symmetric square 
of (6) is irreducible. By these characterizations they were able 
to prove a new and very general algebraic independence result of 
which the following generalization of the theorem of Lindemann-
Weierstrass is a special case: A parameter set S of real numbers 
{jLtl, ... , fip ; vx, ... , i/ } , where q > p > 0 and v = 1, is called 
admissible if it satisfies at least one of the following conditions: 

(A) v.-iit £ Z for 1 < / < p, 1 < j < q and 
all sums v{ + v. (1 < / < j < q) are distinct 
mod Z. 
(B) p = 0; q is odd or q = 2; and the set 
{vx, ... , vq} is modulo Z not a union of arith­
metic sequences {u, v + \jd, ... , v + (d - l)/d} 
for a fixed length d where d\q, d > 1. 

For a given parameter set S we consider the function 

f(=y . y Q*i)*~-iMp)* i-4q-p)n 
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where (a)n = a(a + 1) • • • (a + « - 1). (Hence ^ is a general­
ized hypergeometric function of type ^ . i with z replaced by 
{-z)q~p .) Let S be an admissible parameter set with rational ILL'S 

and v's. Let b be a nonzero algebraic number. Let ax, . . . , as 

be algebraic numbers which are linearly independent over Q. Then 
the numbers 

ea>,...,ea',fs(b),/s(b),...,4q-l\b) 

are algebraically independent over Q. 
A more general statement deals with r parameters sets Sl9 ... , 

Sr. Using recent work of N. M. Katz and O. Gabber it is possi­
ble to weaken the conditions (A) and (B) considerably. See [15] 
or Chapter 3 on the generalized hypergeometric function of the 
recently published book [16]. 

It is not yet clear where this new development will bring us, 
but there are many systems of equations to which Shidlovskii's 
method can be applied successfully, but which are not Siegel nor­
mal. These systems have a nonreductive differential Galois group. 
Not much systematic work has been done on this nonreductive 
case yet, but it seems that Differential Galois Theory will also play 
an important role there. Using some simple techniques from this 
theory D. Bertrand proved the following remarkable theorem. Let 

Y^+pJ^ + .-.+pJ^q 

be an inhomogeneous differential equation with px,... , pn, q e 
C(z). Suppose that it has no solution in C(z) and that the ho­
mogenized equation is irreducible. Then for any solution f(z) 
the functions ƒ , ƒ , . . . , / ^ " ^ are algebraically independent over 
C(z). These new developments will increase the importance of the 
Siegel-Shidlovskii theory. As Brownawell puts it in his Foreword, 
"Shidlovskii's book will be recognized as a classic of the Siegel-
Shidlovskii theory. Its accessible introduction to and authorita­
tive survey of the field provides a solid foundation for continuing 
progress." 
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